Brown adipose tissue: features of biology, participation in energy metabolism and obesity (literature review)

Cover Page

Cite item

Full Text

Abstract

Obesity is one of the most common diseases, the proportion of which is increasing annually today in Russia. Not only adults but also adolescents and children are at risk. Excessive body weight leads to the development of metabolic syndrome and related complications — diseases of the circulatory, musculoskeletal, immune and other systems, to premature aging of the human body. Until this disease has become an epidemic, researchers around the world are trying to find methods to combat it. For these purposes, various types of adipose tissue in the human body, their importance, morphology and biology, the possibility of further use of the results to solve this problem are comprehensively studied.

The article provides an overview of current data on the morphological features of white, brown and beige adipose tissue at the tissue and cellular levels. The importance of specific proteins for the detection of different types of human adipose tissue is described. The biology and physiology of brown adipose tissue, which is of great importance in the implementation of various metabolic processes in the organism, is characterized. The need for further study of the role of brown adipose tissue for its possible promising use in the treatment of obesity is shown.

About the authors

Liubov N. Afanaskina

Krasnoyarsk State Medical University Named after Professor V.F. Voyno-Yasenetsky

Author for correspondence.
Email: afanln@mail.ru
ORCID iD: 0000-0003-4726-3599
SPIN-code: 9239-2428

PhD candidate of biological sciences, Docent of the Department of biology and ecology

Russian Federation, 1, P. Zeleznyak street, Krasnoyarsk, 660022

Svetlana N. Derevtsova

Krasnoyarsk State Medical University Named after Professor V.F. Voyno-Yasenetsky

Email: Derevzova@bk.ru
ORCID iD: 0000-0003-2974-5930
SPIN-code: 6525-4040

MD doctor of medicine, Professor of the Department of human anatomy and histology

Russian Federation, 1, P. Zeleznyak street, Krasnoyarsk, 660022

Lyudmila V. Sindeeva

Krasnoyarsk State Medical University Named after Professor V.F. Voyno-Yasenetsky

Email: lsind@mail.ru
ORCID iD: 0000-0003-0469-9552
SPIN-code: 9456-5564

MD doctor of medicine, Professor of the Department of human anatomy and histology

Russian Federation, 1, P. Zeleznyak street, Krasnoyarsk, 660022

Elena A. Hapilina

Krasnoyarsk State Medical University Named after Professor V.F. Voyno-Yasenetsky

Email: hapilina_elena@mail.ru
ORCID iD: 0000-0002-4898-5123
SPIN-code: 6233-8154

PhD candidate of medical sciences, Docent of the Department of human anatomy and histology

Russian Federation, 1, P. Zeleznyak street, Krasnoyarsk, 660022

Nadezhda N. Medvedeva

Krasnoyarsk State Medical University Named after Professor V.F. Voyno-Yasenetsky

Email: medvenad@mail.ru
ORCID iD: 0000-0002-7757-6628
SPIN-code: 6144-1780

MD doctor of medicine, Professor, the Head of the Department of anatomy and histology

Russian Federation, 1, P. Zeleznyak street, Krasnoyarsk, 660022

References

  1. Сулаева О.Н., Белемец Н.И. Половые особенности регуляции жировой ткани // Клiнiчна ендокринологiя та ендокринна хiрургiя. — 2017. — № 4. — С. 11–20. [Sulaieva ON, Belemets NI. Sex differences in regulation of adipose tissue. Clinical Endocrinology and Endocrine Surgery. 2017;(4):11–20. (In Ukraine.)] doi: 10.24026/1818-1384.4(60).2017.118729.
  2. Vegiopoulos A, Rohm M, Herzig S. Adipose tissue: between the extremes. EMBO J. 2017;36(14):1999–2017. doi: 10.15252/embj.201696206.
  3. Mann JI. Diet and risk of coronary heart disease and type 2 diabetes. Lancet. 2002;360(9335):783–789. doi: 10.1016/S0140-6736(02)09901-4.
  4. Toss F, Wiklund P, Franks PW, et al. Abdominal and gynoid adiposity and the risk of stroke. Int J Obes (Lond.). 2011;35(11):1427–1432. doi: 10.1038/ijo.2011.9.
  5. Van Dijk SB, Takken T, Prinsen EC, Wittink H. Different anthropometric adiposity measures and their association with cardiovascular disease risk factors: a meta-analysis. Neth Heart J. 2012;20(5):208–218. doi: 10.1007/s12471-011-0237-7.
  6. Booth A, Magnuson A, Foster M. Detrimental and protective fat: body fat distribution and its relation to metabolic disease. Horm Mol Biol Clin Investig. 2014;17(1):13–27. doi: 10.1515/hmbci-2014-0009.
  7. Pararasa C, Bailey CJ, Griffiths HR. Ageing, adipose tissue, fatty acids and inflammation. Biogerontology. 2015;16(2):235–248. doi: 10.1007/s10522-014-9536-x.
  8. Palmer AK, Kirkland JL. Aging and adipose tissue: potential interventions for diabetes and regenerative medicine. Exp Gerontol. 2016;86:97–105. doi: 10.1016/j.exger.2016.02.013.
  9. Кокшарова Е.О., Майоров А.Ю., Шестакова М.В., Дедов И.И. Метаболические особенности и терапевтический потенциал бурой и «бежевой» жировой ткани // Сахарный диабет. — 2014. — № 4. — С. 5–15. [Koksharova EO, Mayorov AYu, Shestakova MV, Dedov II. Metabolic characteristics and therapeutic potential of brown and “beige” adipose tissues. Diabetes mellitus. 2014;(4):5–15. (In Russ.)] doi: 10.14341/DM201445-15.
  10. Милица К.Н., Сорокина И.В., Мирошниченко М.С., Плитень О.Н. Иммуногистохимические особенности жировой ткани сальника и подкожной жировой клетчатки у лиц с избыточной массой тела // Морфология. — 2016. — № 3. — C. 203–207. [Militsa KM, Sorokina IV, Myroshnychenko MS, Pliten ON. Immunohistochemical features of fat tissue of epiploon and subcutaneous fat tissue in patients with overweight, obesity and metabolic syndrome. Morphologia. 2016;(3):203–207. (In Russ.)]
  11. Ефремова А.В. Бурая жировая ткань: основные этапы исследования и потенциальная роль в энергетическом балансе и ожирении // Якутский медицинский журнал. — 2019. — № 1. — С. 92–94. [Efremova A.V. Brown adipose tissue: main stages of research and potential role in energy balance and obesity. Yakut Medical Journal. 2019;(1):92–94. (In Russ.)] doi: 10.25789/YMJ.2019.65.28.
  12. Rosen ED, Spiegelman BM. What we talk about when we talk about fat. Cell. 2014;156(1–2):20–44. doi: 10.1016/j.cell.2013.12.012.
  13. Tauchi-Sato K, Ozeki S, Houjou T, et al. The surface of lipid droplets is a phospholipid monolayer with a unique fatty acid composition. J Biol Chem. 2002;277:44507–44512. doi: 10.1074/jbc.m207712200.
  14. Nedergaard J, Bengtsson T, Cannon B. Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab. 2007;293: E444–E452. doi: 10.1152/ajpendo.00691.2006.
  15. Cypess AM, Lehman S, Williams G, et al. Identification and Importance of Brown Adipose Tissue in Adult Humans. The New England Journal of Medicine. 2009;360(15):1509–1517. doi: 10.1056/nejmoa0810780.
  16. Cinti S. Transdifferentiation properties of adipocytes in the adipose organ. Am J Physiol. 2009;297(5):E977–E986. doi: 10.1152/ajpendo.00183.2009.
  17. Cinti S. The adipose organ at a glance. Disease Models & Mechanisms. 2012;5(5):588–594. doi: 10.1242/dmm.009662.
  18. Cohen P, Spiegelman BM. Brown and beige fat: molecular parts of a thermogeic machine. Diabetes. 2015;64(7):2346–2351. doi: 10.2337/db15-0318.
  19. Медведев Л.Н., Елсукова Е.И. Бурая жировая ткань: молекулярно-клеточные основы регулируемого термогенеза. — Красноярск: Альмагама, 2002. — 528 с. [Elsukova EI, Medvedev LN. Buraja zhirovaja tkan’: molekuljarno-kletochnye osnovy reguliruemogo termogeneza. Krasnojarsk: Al’magama, 2002. 528 s. (In Russ.)]
  20. Himms-Hagen J. Brown adipose tissue thermogenesis: interdisciplinary studies. FASEB J. 1990;4(11):2890–2898. doi: 10.1096/fasebj.4.11.2199286.
  21. Fedorenko A, Lishko PV, Kirichok Y. Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell. 2012;151(2):400–413. doi: 10.1016/j.cell.2012.09.010.
  22. Okamatsu-Ogura Y, Fukano K, Tsubota A, et al. Thermogenic ability of uncoupling protein 1 in beige adipocytes in mice. PLoS One. 2013;8(12):e84229. doi: 10.1371/journal.pone.0084229.
  23. Nedergaard J, Cannon B. UCP1 mRNA does not produce heat. Biochim Biophys Acta. 2013;1831(5):943–949. doi: 10.1016/j.bbalip.2013.01.009.
  24. Shabalina IG, Petrovic N, de Jong J, et al. UCP1 in Brite/Beige adipose tissue mitochondria is functionally thermogenic. Cell Reports. 2013;5(5):1196–1203. doi: 10.1016/j.celrep.2013.10.044.
  25. Lee P, Werner CD, Kebebew E, Celi FS. Functional thermogenic beige adipogenesis is inducible in human neck fat. Int J Obesity. 2014;38(2):170–176. doi: 10.1038/ijo.2013.82.
  26. Cristancho AG, Lazar MA. Forming functional fat: a growing understanding of adipocyte differentiation. Nat. Rev Mol. Cell Biol. 2011;12(11):722–734. doi: 10.1038/nrm3198.
  27. Kajimura S, Seale P, Spiegelman BM. Transcriptional control of brown fat development. Cell Metab. 2010;11(4):257–262. doi: 10.1016/j.cmet.2010.03.005.
  28. Cohen P, Levy JD, Zhang Y, et al. Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell. 2014;156(1–2):304–316. doi: 10.1016/j.cell.2013.12.021.
  29. Kajimura S, Saito M. A new era in brown adipose tissue biology: molecular control of brown fat development and energy homestasis. Ann Rew Physiol. 2014;76(1):225–249. doi: 10.1146/annurev-physiol-021113-170252.
  30. Walden TB, Hansen IR, Timmons JA, et al. Recruited vs. nonregruited molecular signatures of brown, “brite” and write adipose tissues. Am J Physiol Endocrinol Metab. 2012;302(1):E19–E31. doi: 10.1152/ajpendo.00249.2011.
  31. Елсукова Е.И., Медведев Л.Н. Новый тип термогенных адипоцитов: происхождение, свойства, функции // В мире научных открытий. — 2016. — № 8. — С. 97–127. [Elsukova EI, Medvedev LN. A new type of thermogenic adipocytes: origin, properties and functions. In the World of Scientific Discoveries. 2016;(8):97–127. (In Russ.)] doi: 10.12731/wsd-2016-8-97-127.
  32. Petrovic N, Walden TB, Shabalina IG, et al. Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem. 2010;285(10):7153–7164. doi: 10.1074/jbc.m109.053942.
  33. Sharp LZ, Shinoda K, Ohno H, et al. Human BAT possesses molecular signatures that resemble beige/brite cells. PLoS One. 2012;7(11):e49452. doi: 10.1371/journal.pone.0049452.
  34. Wu J, Boström P, Sparks LM, et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell. 2012;150(2):366–376. doi: 10.1016/j.cell.2012.05.016.
  35. Lidell ME, Betz MJ, Leinhard OD, et al. Evidence for two types of brown adipose tissue in humans. Nat Med. 2013;19(5):631–634. doi: 10.1038/nm.3017.
  36. Wijers SLJ, Saris WHM, van Marken Lichtenbelt WD. Individual thermogenic responses to mild cold and overfeeding are closely related. The J of Clinical Endocrinology & Metabolism. 2007;92(11):4299–4305. doi: 10.1210/jc.2007-1065.
  37. Van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, et al. Cold activated brown adipose tissue in healthy men. The New England J of Medicine. 2009;360(15):1500–1508. doi: 10.1056/nejmoa0808718.
  38. Avram AS, Avram MM, James WD. Subcutaneous fat in normal and diseased states: 2. Anatomy and physiology of white and brown adipose tissue. J Am Acad Dermatol. 2005;53(4):671–683. doi: 10.1016/j.jaad.2005.05.015.
  39. Cioffi F, Senese R, de Lange P, et al. Uncoupling proteins: a complex journey to function discovery. BioFactors. 2009;35(5):417–428. doi: 10.1002/biof.54.
  40. Feil S, Rafael J. Effect of acclimation temperature on the concentration of uncoupling protein and GDP binding in rat brown fat mitochondria. Eur J Biochem. 1994;219(1–2):681–690. doi: 10.1111/j.1432-1033.1994.tb19984.x.
  41. Jequier E. Thermogenic responses induced by nutrients in man: their importance in energy balance regulation. Experientia Suppl. 1983;44:26–44. doi: 10.1007/978-3-0348-6540-1_3.
  42. Himms-Hagen J. Role of thermogenesis in the regulation of energy balance in relation to obesity. Can J Physiol Pharmacol. 1989;67(4):394–401. doi: 10.1139/y89-063.
  43. Del Mar Gonzalez-Barroso M, Ricquier D, Cassard-Doulcier AM. The human uncoupling protein-1 gene (UCP1): present status and perspectives in obesity research. J. Obesity Reviews: an Official Journal of the International Association for the Study of Obesity. 2000;1(2):61–72. doi: 10.1046/j.1467-789x.2000.00009.x.
  44. Мяделец О.Д., Мяделец В.О., Соболевская И.С., Кичигина Т.Н. Белая и бурая жировые ткани: взаимодействие со скелетной мышечной тканью // Вестник ВГМУ. — 2014. — № 5. — С. 32–44. [Mjadelec OD, Mjadelec VO, Sobolevskaja IS, Kichigina TN. White and brown adipose tissue: interaction with skeletal muscle tissue. Bulletin of the Vitebsk State Medical University. 2014;(5):32–44. (In Belarus.)]
  45. Timmons JA, Wennmalm K, Larsson O, et al. Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. Proc Natl Acad Sci USA. 2007;104(11):4401–4406. doi: 10.1073/pnas.0610615104.
  46. Crisan M, Casteilla L, Lehr L, et al. A reservoir of brown adipocyte progenitors in human skeletal muscle. Stem Cells. 2008;26(9):2425–2433. doi: 10.1634/stemcells.2008-0325.
  47. Lean MEJ, James WPT. Uncoupiing protein in human brown adipose tissue mitochondria. Isolation and detection by specific antiserum. FEBS Lett. 1983;163(2):235–240. doi: 10.1016/0014-5793(83)80826-6.
  48. Lidell ME, Betz MJ, Enerbäck S. Brown adipose tissue and its therapeutic potential. J Intern Med. 2014;276(4):364–377. doi: 10.1111/joim.12255.
  49. Nicholls DG, Bernson VS, Heaton GM. The identification of the component in the inner membrane of brown adipose tissue mitochondria responsible for regulating energy dissipation. J Experientia Suppl. 1978;32:89–93. doi: 10.1007/978-3-0348-5559-4_9.
  50. Kozak LP, Britton JH, Kozak UC, Wells JM. The mitochondrial uncoupling protein gene. Correlation of exon structure to transmembrane domains. J Biol Chem. 1988;263(25):12274–12277.
  51. Cassard AM, Bouillaud F, Mattei MG, et al. Human uncoupling protein gene: structure, comparison with rat gene, and assignment to the long arm of chromosome 4. J Cell Biochem. 1990;43(3):255–264. doi: 10.1002/jcb.240430306.
  52. Ricquier D, Bouillaud F. The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP. Biochem J. 2000;345(2):161–179. doi: 10.1042/bj3450161.
  53. Dietrich MO, Andrews ZB, Horvath TL. Exercise-induced synaptogenesis in the hippocampus is dependent on UCP2-regulated mitochondrial adaptation. J of Neuroscience. 2008;28(42):10766–10771. doi: 10.1523/jneurosci.2744-08.2008.
  54. Hoang T, Smith MD, Jelokhani-Niaraki M. Expression, folding, and proton transport activity of human uncoupling protein-1 (UCP1) in lipid membranes: evidence for associated functional forms. J Biol Chem. 2013;288(51):36244–36258. doi: 10.1074/jbc.m113.509935.
  55. Orava J, Nuutila P, Noponen T, et al. Blunted metabolic responses to cold and insulin stimulation in brown adipose tissue of obese humans. Obesity (Silver Spring). 2013;21(11):2279–2287. doi: 10.1002/oby.20456.
  56. Szentirmai E, Kapas L. Intact brown adipose tissue thermogenesis is required for restorative sleep responses after sleep loss. Eur J Neuroscience. 2014;39(6):984–998. doi: 10.1111/ejn.12463.
  57. Cannon B, Nedergaard J. Thermogenesis challenges the adipostat hypothesis for body-weight control. Proc Nutr Soc. 2009;68(4):401–407. doi: 10.1017/s0029665109990255.
  58. Peirce V, Vidal-Puig A. Regulation of glucose homoeostasis by brown adipose tissue. Lancet Diabetes & Endocrinol. 2013;1(4):353–360. doi: 10.1016/s2213-8587(13)70055-x.
  59. Bredella MA, Gill CM, Rosen CJ, et al. Positive effects of brown adipose tissue on femoral bone structure. Bone. 2014;58:55–58. doi: 10.1016/j.bone.2013.10.007.
  60. Dietrich MO, Horvath TL. The role of mitochondrial uncoupling proteins in lifespan. Eur J of Physiology. 2010;459(2):269–275. doi: 10.1007/s00424-009-0729-0.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 "Paediatrician" Publishers LLC

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».