COVID-19-associated secondary hemophagocytic lymphohistiocytosis (cytokine storm syndrome)


Cite item

Full Text

Abstract

In most cases, COVID-19 has a favorable outcome. However, the risk of developing critical forms of the disease, including secondary hemophagocytic lymphohistiocytosis – HLH (cytokine storm syndrome), remains high. This dictates the interest in studying pathogenetic mechanisms, features of the clinical picture, laboratory and instrumental criteria for covid-19 disease. The article analyzes the causes of acute respiratory distress syndrome and multiple organ failure as manifestations of HLH. The necessity of monitoring signs of hyperinflammation (ferritin, C-reactive protein, etc., biomarkers of inflammation) and activation of thrombosis is substantiated, in order to make timely decisions about the beginning of pathogenetic therapy. However, there are limitations for routine testing of the level of Pro-inflammatory cytokines. Information about the diagnostic criteria of HLH is summarized, and the expediency of these criteria for establishing secondary HLH, which has complicated the course of COVID-19, is emphasized.

About the authors

Ekaterina I. Alekseeva

National Medical Research Center for Children’s Health; I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: alekatya@yandex.ru
ORCID iD: 0000-0002-3874-4721
SPIN-code: 4713-9943

MD, PhD, Professor, Corresponding Member of the RAS

Russian Federation, 2 bld 1 Lomonosovsky prosp., 119991, Moscow; Moscow

Rustem F. Tepaev

National Medical Research Center for Children’s Health; I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: tepaev@nczd.ru
ORCID iD: 0000-0001-6667-9472
SPIN-code: 3907-3234

MD, PhD

Russian Federation, Moscow; Moscow

Ilia Y. Shilkrot

National Association of Non-Governmental Medical Organizations

Email: 7606399@gmail.com
ORCID iD: 0000-0003-0369-9593
SPIN-code: 5826-6385

MD, PhD

Russian Federation, Moscow

Tatyana M. Dvoryakovskaya

National Medical Research Center for Children’s Health, Moscow; I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: bzarova@nczd.ru
ORCID iD: 0000-0002-8165-6401
SPIN-code: 7524-7085

MD, PhD

Russian Federation, Moscow; Moscow

Aleksander G. Surkov

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Author for correspondence.
Email: asurkov@1msmu.ru
ORCID iD: 0000-0001-6823-0273
SPIN-code: 2805-9855

MD, PhD

Russian Federation, Moscow

Ivan A. Kriulin

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: kriulin.vanya@yandex.ru
ORCID iD: 0000-0003-2370-3182

PhD Student

Russian Federation, Moscow

References

  1. Naming the coronavirus disease (COVID-19) and the virus that causes it. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it (accessed: 27.07.2020).
  2. WHO Coronavirus Disease (COVID-19) Dashboard. Available from: https://covid19.who.int (accessed: 10.12.2020).
  3. Baig AM, Khaleeq A, Ali U, et al. Evidence of the COVID-19 Virus Targeting the CNS: Tissue Distribution, Host–Virus Interaction, and Proposed Neurotropic Mechanisms. ACS Chem Neurosci. 2020;11:995–998. doi: https://doi.org/10.1021/acschemneuro.0c00122
  4. Siddiqi HK, Mehra MR. COVID-19 illness in native and immunosuppressed states: A clinical-therapeutic staging proposal. J Heart Lung Transplant off Publ Int Soc Heart Transplant. 2020;39:405–407. doi: https://doi.org/10.1016/j.healun.2020.03.012
  5. Fu L, Wang B, Yuan T, et al. Clinical characteristics of coronavirus disease 2019 (COVID-19) in China: A systematic review and meta-analysis. J Infect. 2020;80:656–665. doi: https://doi.org/10.1016/j.jinf.2020.03.041
  6. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet. 2020;395:497–506. doi: https://doi.org/10.1016/S0140-6736(20)30183-5
  7. Crayne CB, Albeituni S, Nichols KE, et al. The Immunology of Macrophage Activation Syndrome. Front Immunol. 2019;10:119. doi: https://doi.org/10.3389/fimmu.2019.00119
  8. Henderson LA, Canna SW, Schulert GS, et al. On the Alert for Cytokine Storm: Immunopathology in COVID‐19. Arthritis Rheumatol. 2020;72:1059–1063. doi: https://doi.org/10.1002/art.41285
  9. La Rosée P, Horne A, Hines M, et al. Recommendations for the management of hemophagocytic lymphohistiocytosis in adults. Blood. 2019;133:2465–2477. doi: https://doi.org/10.1182/blood.2018894618
  10. Carter SJ, Tattersall RS, Ramanan AV. Macrophage activation syndrome in adults: recent advances in pathophysiology, diagnosis and treatment. Rheumatol Oxf Engl. 2019;58:5–17. doi: https://doi.org/10.1093/rheumatology/key006
  11. Chandrakasan S, Filipovich AH. Hemophagocytic lymphohistiocytosis: advances in pathophysiology, diagnosis, and treatment. J Pediatr. 2013;163:1253–1259. doi: https://doi.org/10.1016/j.jpeds.2013.06.053
  12. Grom AA, Horne A, De Benedetti F. Macrophage activation syndrome in the era of biologic therapy. Nat Rev Rheumatol. 2016;12:259–268. doi: https://doi.org/10.1038/nrrheum.2015.179
  13. Feldmann J, Callebaut I, Raposo G, et al. Munc13-4 is essential for cytolytic granules fusion and is mutated in a form of familial hemophagocytic lymphohistiocytosis (FHL3). Cell. 2003;115:461–473. doi: https://doi.org/10.1016/s0092-8674(03)00855-9
  14. Zur Stadt U, Schmidt S, Kasper B, et al. Linkage of familial hemophagocytic lymphohistiocytosis (FHL) type-4 to chromosome 6q24 and identification of mutations in syntaxin 11. Hum Mol Genet. 2005;14:827–834. doi: https://doi.org/10.1093/hmg/ddi076
  15. Zur Stadt U, Rohr J, Seifert W, et al. Familial hemophagocytic lymphohistiocytosis type 5 (FHL-5) is caused by mutations in Munc18-2 and impaired binding to syntaxin 11. Am J Hum Genet. 2009;85:482–492. doi: https://doi.org/10.1016/j.ajhg.2009.09.005
  16. McGonagle D, Sharif K, O’Regan A, et al. The Role of Cytokines including Interleukin-6 in COVID-19 induced Pneumonia and Macrophage Activation Syndrome-Like Disease. Autoimmun Rev. 2020;19:102537. doi: https://doi.org/10.1016/j.autrev.2020.102537
  17. Strippoli R, Caiello I, De Benedetti F. Reaching the Threshold: A Multilayer Pathogenesis of Macrophage Activation Syndrome. J Rheumatol. 2013;40:761–767. doi: https://doi.org/10.3899/jrheum.121233.
  18. Chen G, Wu D, Guo W, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020;130:2620–2629. doi: https://doi.org/10.1172/JCI137244
  19. Asanuma YF, Mimura T, Tsuboi H, et al. Nationwide epidemiological survey of 169 patients with adult Still’s disease in Japan. Mod Rheumatol. 2015;25:393–400. doi: https://doi.org/10.3109/14397595.2014.974881
  20. Gavand P-E, Serio I, Arnaud L, et al. Clinical spectrum and therapeutic management of systemic lupus erythematosus-associated macrophage activation syndrome: A study of 103 episodes in 89 adult patients. Autoimmun Rev. 2017;16:743–749. doi: https://doi.org/10.1016/j.autrev.2017.05.010
  21. Ramos-Casals M, Brito-Zerón P, López-Guillermo A, et al. Adult haemophagocytic syndrome. Lancet Lond Engl. 2014;383:1503–1516. doi: https://doi.org/10.1016/S0140-6736(13)61048-X
  22. Cifaldi L, Prencipe G, Caiello I, et al. Inhibition of natural killer cell cytotoxicity by interleukin-6: implications for the pathogenesis of macrophage activation syndrome. Arthritis Rheumatol Hoboken NJ. 2015;67:3037–3046. doi: https://doi.org/10.1002/art.39295
  23. Grom AA, Villanueva J, Lee S, et al. Natural killer cell dysfunction in patients with systemic-onset juvenile rheumatoid arthritis and macrophage activation syndrome. J Pediatr. 2003;142:292–296. doi: https://doi.org/10.1067/mpd.2003.110
  24. Bracaglia C, Sieni E, Da Ros M, et al. Mutations of familial hemophagocytic lymphohistiocytosis (FHL) related genes and abnormalities of cytotoxicity function tests in patients with macrophage activation syndrome (MAS) occurring in systemic juvenile idiopathic arthritis (sJIA). Pediatr Rheumatol. 2014;12:P53, 1546-0096-12-S1-P53. doi: https://doi.org/10.1186/1546-0096-12-S1-P53
  25. Kaufman KM, Linghu B, Szustakowski JD, et al. Whole-Exome Sequencing Reveals Overlap Between Macrophage Activation Syndrome in Systemic Juvenile Idiopathic Arthritis and Familial Hemophagocytic Lymphohistiocytosis: Whole-Exome Sequencing in Macrophage Activation Syndrome. Arthritis Rheumatol. 2014;66:3486–95. doi: https://doi.org/10.1002/art.38793
  26. Schulert GS, Canna SW. Convergent pathways of the hyperferritinemic syndromes. Int Immunol. 2018;30:195–203. doi: https://doi.org/10.1093/intimm/dxy012
  27. Spessott WA, Sanmillan ML, McCormick ME, et al. Hemophagocytic lymphohistiocytosis caused by dominant-negative mutations in STXBP2 that inhibit SNARE-mediated membrane fusion. Blood. 2015;125:1566–77. doi: https://doi.org/10.1182/blood-2014-11-610816
  28. Zhang M, Behrens EM, Atkinson TP, et al. Genetic defects in cytolysis in macrophage activation syndrome. Curr Rheumatol Rep. 2014;16:439. doi: https://doi.org/10.1007/s11926-014-0439-2
  29. Wada T, Kanegane H, Ohta K, et al. Sustained elevation of serum interleukin-18 and its association with hemophagocytic lymphohistiocytosis in XIAP deficiency. Cytokine. 2014;65:74–78. doi: https://doi.org/10.1016/j.cyto.2013.09.007
  30. Marsh RA, Madden L, Kitchen BJ, et al. XIAP deficiency: a unique primary immunodeficiency best classified as X-linked familial hemophagocytic lymphohistiocytosis and not as X-linked lymphoproliferative disease. Blood. 2010;116:1079–1082. doi: https://doi.org/10.1182/blood-2010-01-256099
  31. Girard C, Rech J, Brown M, et al. Elevated serum levels of free interleukin-18 in adult-onset Still’s disease. Rheumatol Oxf Engl. 2016;55:2237–2247. doi: https://doi.org/10.1093/rheumatology/kew300
  32. Canna SW, Girard C, Malle L, et al. Life-threatening NLRC4-associated hyperinflammation successfully treated with IL-18 inhibition. J Allergy Clin Immunol. 2017;139:1698–1701. doi: https://doi.org/10.1016/j.jaci.2016.10.022
  33. Canna SW, de Jesus AA, Gouni S, et al. An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat Genet. 2014;46:1140–1146. doi: https://doi.org/10.1038/ng.3089
  34. Liang J, Alfano DN, Squires JE, et al. Novel NLRC4 Mutation Causes a Syndrome of Perinatal Autoinflammation With Hemophagocytic Lymphohistiocytosis, Hepatosplenomegaly, Fetal Thrombotic Vasculopathy, and Congenital Anemia and Ascites. Pediatr Dev Pathol Off J Soc Pediatr Pathol Paediatr Pathol Soc. 2017;20:498–505. doi: https://doi.org/10.1177/1093526616686890
  35. Ménasché G, Pastural E, Feldmann J, et al. Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome. Nat Genet. 2000;25:173–176. doi: https://doi.org/10.1038/76024
  36. Enders A, Zieger B, Schwarz K, et al. Lethal hemophagocytic lymphohistiocytosis in Hermansky-Pudlak syndrome type II. Blood. 2006;108:81–87. doi: https://doi.org/10.1182/blood-2005-11-4413
  37. Jenkins MR, Rudd-Schmidt JA, Lopez JA, et al. Failed CTL/ NK cell killing and cytokine hypersecretion are directly linked through prolonged synapse time. J Exp Med. 2015;212:307–317. doi: https://doi.org/10.1084/jem.20140964
  38. Binder D, van den Broek MF, Kägi D, et al. Aplastic Anemia Rescued by Exhaustion of Cytokine-secreting CD8+ T Cells in Persistent Infection with Lymphocytic Choriomeningitis Virus. J Exp Med. 1998;187:1903–1920. doi: https://doi.org/10.1084/jem.187.11.1903
  39. Jamilloux Y, Henry T, Belot A, et al. Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions. Autoimmun Rev. 2020;19:102567. doi: https://doi.org/10.1016/j.autrev.2020.102567
  40. Tay MZ, Poh CM, Rénia L, et al. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020;20:363–374. doi: https://doi.org/10.1038/s41577-020-0311-8
  41. Netea MG, Balkwill F, Chonchol M, et al. A guiding map for inflammation. Nat Immunol. 2017;18:826–831. doi: https://doi.org/10.1038/ni.3790
  42. Mogensen TH. Pathogen Recognition and Inflammatory Signaling in Innate Immune Defenses. Clin Microbiol Rev. 2009;22:240–273. doi: https://doi.org/10.1128/CMR.00046-08
  43. Schnappauf O, Chae JJ, Kastner DL, et al. The Pyrin Inflammasome in Health and Disease. Front Immunol. 2019;10:1745. doi: https://doi.org/10.3389/fimmu.2019.01745
  44. Lucherini OM, Rigante D, Sota J, et al. Updated overview of molecular pathways involved in the most common monogenic autoinflammatory diseases. Clin Exp Rheumatol. 2018;36 Suppl 110:3–9.
  45. Sarzi-Puttini P, Giorgi V, Sirotti S, et al. COVID-19, cytokines and immunosuppression: what can we learn from severe acute respiratory syndrome? Clin Exp Rheumatol. 2020;38:337–342.
  46. Li X, Geng M, Peng Y, et al. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal. 2020;10:102–108. doi: https://doi.org/10.1016/j.jpha.2020.03.001
  47. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet Lond Engl. 2020;395:1054–1062. doi: https://doi.org/10.1016/S0140-6736(20)30566-3
  48. Seguin A, Galicier L, Boutboul D, et al. Pulmonary Involvement in Patients With Hemophagocytic Lymphohistiocytosis. Chest. 2016;149:1294–1301. doi: https://doi.org/10.1016/j.chest.2015.11.004
  49. Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. The Lancet. 2020;395:1033–1034. doi: https://doi.org/10.1016/S0140-6736(20)30628-0
  50. Garcia Borrega J, Gödel P, Rüger MA, et al. In the Eye of the Storm: Immune-mediated Toxicities Associated With CAR-T Cell Therapy. HemaSphere. 2019;3:e191. doi: https://doi.org/10.1097/HS9.0000000000000191
  51. Weiss ES, Girard-Guyonvarc’h C, Holzinger D, et al. Interleukin-18 diagnostically distinguishes and pathogenically promotes human and murine macrophage activation syndrome. Blood. 2018;131:1442–1455. doi: https://doi.org/10.1182/blood-2017-12-820852
  52. Eloseily EM, Weiser P, Crayne CB, et al. Benefit of Anakinra in Treating Pediatric Secondary Hemophagocytic Lymphohistiocytosis. Arthritis Rheumatol Hoboken NJ. 2020;72:326–334. doi: https://doi.org/10.1002/art.41103
  53. Shakoory B, Carcillo JA, Chatham WW, et al. Interleukin-1 Receptor Blockade Is Associated With Reduced Mortality in Sepsis Patients with Features of Macrophage Activation Syndrome: Reanalysis of a Prior Phase III Trial. Crit Care. Med 2016;44:275–281. doi: https://doi.org/10.1097/CCM.0000000000001402
  54. Giamarellos-Bourboulis EJ, Netea MG, Rovina N, et al. Complex Immune Dysregulation in COVID-19 Patients with Severe Respiratory Failure. Cell Host Microbe. 2020;27:992–1000.e3. doi: https://doi.org/10.1016/j.chom.2020.04.009
  55. Wu C, Chen X, Cai Y, et al. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med. 2020;180(7):934-943. doi: https://doi.org/10.1001/jamainternmed.2020.0994
  56. Herold T, Jurinovic V, Arnreich C, et al. Level of IL-6 predicts respiratory failure in hospitalized symptomatic COVID-19 patients. Infectious Diseases (except HIV/AIDS) 2020. doi: https://doi.org/10.1101/2020.04.01.20047381
  57. Liu T, Zhang J, Yang Y, et al. The potential role of IL-6 in monitoring coronavirus disease 2019. Infectious Diseases (except HIV/ AIDS) 2020. doi: https://doi.org/10.1101/2020.03.01.20029769
  58. Bracaglia C, Prencipe G, De Benedetti F. Macrophage Activation Syndrome: different mechanisms leading to a one clinical syndrome. Pediatr Rheumatol Online J. 2017;15:5. doi: https://doi.org/10.1186/s12969-016-0130-4
  59. Schulert GS, Grom AA. Pathogenesis of Macrophage Activation Syndrome and Potential for Cytokine-Directed Therapies. Annu Rev Med. 2015;66:145–159. doi: https://doi.org/10.1146/annurev-med-061813-012806
  60. Brisse E, Wouters CH, Matthys P. Advances in the pathogenesis of primary and secondary haemophagocytic lymphohistiocytosis: differences and similarities. Br J Haematol. 2016;174:203–217. doi: https://doi.org/10.1111/bjh.14147
  61. Webster B, Assil S, Dreux M. Cell-Cell Sensing of Viral Infection by Plasmacytoid Dendritic Cells. J Virol. 2016;90:10050–10053. doi: https://doi.org/10.1128/JVI.01692-16
  62. Cervantes-Barragan L, Lewis KL, Firner S, et al. Plasmacytoid dendritic cells control T-cell response to chronic viral infection. Proc Natl Acad Sci U S A. 2012;109:3012–3017. doi: https://doi.org/10.1073/pnas.1117359109
  63. Crouse J, Kalinke U, Oxenius A. Regulation of antiviral T cell responses by type I interferons. Nat Rev Immunol. 2015;15:231–242. doi: https://doi.org/10.1038/nri3806
  64. Makris S, Paulsen M, Johansson C. Type I Interferons as Regulators of Lung Inflammation. Front Immunol. 2017;8:259. doi: https://doi.org/10.3389/fimmu.2017.00259
  65. Wang F, Nie J, Wang H, et al. Characteristics of Peripheral Lymphocyte Subset Alteration in COVID-19 Pneumonia. J Infect Dis. 2020;221:1762–1769. doi: https://doi.org/10.1093/infdis/jiaa150
  66. Yao XH, Li TY, He ZC, et al. A pathological report of three COVID-19 cases by minimal invasive autopsies. Zhonghua Bing Li Xue Za Zhi. 2020;49:411–417. doi: https://doi.org/10.3760/cma.j.cn112151-20200312-00193
  67. Kamphuis E, Junt T, Waibler Z, et al. Type I interferons directly regulate lymphocyte recirculation and cause transient blood lymphopenia. Blood. 2006;108:3253–3261. doi: https://doi.org/10.1182/blood-2006-06-027599
  68. Azkur AK, Akdis M, Azkur D, et al. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy. 2020;75:1564–1581. doi: https://doi.org/10.1111/all.14364
  69. Channappanavar R, Fehr AR, Vijay R, et al. Dysregulated Type I Interferon and Inflammatory Monocyte-Macrophage Responses Cause Lethal Pneumonia in SARS-CoV-Infected Mice. Cell Host Microbe. 2016;19:181–193. doi: https://doi.org/10.1016/j.chom.2016.01.007
  70. Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 2017;39:529–539. doi: https://doi.org/10.1007/s00281-017-0629-x
  71. Astuti I, Ysrafil. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response. Diabetes Metab Syndr. 2020;14:407–412. doi: https://doi.org/10.1016/j.dsx.2020.04.020
  72. Zhou Z, Ren L, Zhang L, et al. Heightened Innate Immune Responses in the Respiratory Tract of COVID-19 Patients. Cell Host Microbe. 2020;27:883–890.e2. doi: https://doi.org/10.1016/j.chom.2020.04.017
  73. Trouillet-Assant S, Viel S, Gaymard A, et al. Type I IFN immunoprofiling in COVID-19 patients. J Allergy Clin Immunol. 2020;146:206–208.e2. doi: https://doi.org/10.1016/j.jaci.2020.04.029
  74. Hadjadj J, Yatim N, Barnabei L, et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science. 2020;369:718–724. doi: https://doi.org/10.1126/science.abc6027
  75. Pairo-Castineira E, Clohisey S, Klaric L, et al. Genetic mechanisms of critical illness in Covid-19. Nature. 2021;591(7848):92–98. doi: https://doi.org/10.1038/s41586-020-03065-y
  76. Roumier M, Paule R, Groh M, et al. Interleukin-6 blockade for severe COVID-19. medRxiv. 2020;2020.04.20.20061861. doi: https://doi.org/10.1101/2020.04.20.20061861
  77. Feldmann M, Maini RN, Woody JN, et al. Trials of anti-tumour necrosis factor therapy for COVID-19 are urgently needed. Lancet Lond Engl. 2020;395:1407–1409. doi: https://doi.org/10.1016/S0140-6736(20)30858-8
  78. Filipovich AH. The expanding spectrum of hemophagocytic lymphohistiocytosis. Curr Opin Allergy Clin Immunol. 2011;11:512–516. doi: https://doi.org/10.1097/ACI.0b013e32834c22f5
  79. Stepp SE, Mathew PA, Bennett M, et al. Perforin: more than just an effector molecule. Immunol Today. 2000;21:254–256. doi: https://doi.org/10.1016/s0167-5699(00)01622-4
  80. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet. 2020;395:507–513. doi: https://doi.org/10.1016/S0140-6736(20)30211-7
  81. Wang D, Hu B, Hu C, et al. Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China. JAMA. 2020;323:1061. doi: https://doi.org/10.1001/jama.2020.1585
  82. Diao B, Wang C, Tan Y, et al. Reduction and Functional Exhaustion of T Cells in Patients with Coronavirus Disease 2019 (COVID-19). Infectious Diseases (except HIV/AIDS) 2020. doi: https://doi.org/10.1101/2020.02.18.20024364
  83. Qin C, Zhou L, Hu Z, et al. Dysregulation of Immune Response in Patients with Coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis. 2020;ciaa248. doi: https://doi.org/10.1093/cid/ciaa248
  84. Zheng H-Y, Zhang M, Yang C-X, et al. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell Mol Immunol. 2020;17:541–543. doi: https://doi.org/10.1038/s41423-020-0401-3
  85. Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015;15:486–499. doi: https://doi.org/10.1038/nri3862
  86. Saeidi A, Zandi K, Cheok YY, et al. T-Cell Exhaustion in Chronic Infections: Reversing the State of Exhaustion and Reinvigorating Optimal Protective Immune Responses. Front Immunol. 2018;9:2569. doi: https://doi.org/10.3389/fimmu.2018.02569
  87. Yue Y, Nabar NR, Shi C-S, et al. SARS-Coronavirus Open Reading Frame-3a drives multimodal necrotic cell death. Cell Death Dis. 2018;9:904. doi: https://doi.org/10.1038/s41419-018-0917-y
  88. Tan Y-X, Tan THP, Lee MJ-R, et al. Induction of apoptosis by the severe acute respiratory syndrome coronavirus 7a protein is dependent on its interaction with the Bcl-XL protein. J Virol. 2007;81:6346–6355. doi: https://doi.org/10.1128/JVI.00090-07
  89. Yang M. Cell Pyroptosis, a Potential Pathogenic Mechanism of 2019-nCoV Infection. SSRN Electron J. 2020. doi: https://doi.org/10.2139/ssrn.3527420
  90. Mehta AK, Gracias DT, Croft M. TNF activity and T cells. Cytokine. 2018;101:14–18. doi: https://doi.org/10.1016/j.cyto.2016.08.003
  91. Brooks DG, Trifilo MJ, Edelmann KH, et al. Interleukin-10 determines viral clearance or persistence in vivo. Nat Med. 2006;12:1301–1309. doi: https://doi.org/10.1038/nm1492
  92. Al-Samkari H, Berliner N. Hemophagocytic Lymphohistiocytosis. Annu Rev Pathol. 2018;13:27–49. doi: https://doi.org/10.1146/annurev-pathol-020117-043625
  93. Wang W, He J, Lie Puyi, et al. The definition and risks of Cytokine Release Syndrome-Like in 11 COVID-19-Infected Pneumonia critically ill patients: Disease Characteristics and Retrospective Analysis. Intensive Care and Critical Care Medicine 2020. doi: https://doi.org/10.1101/2020.02.26.20026989
  94. Liu J, Li S, Liu J, et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine. 2020;55:102763. doi: https://doi.org/10.1016/j.ebiom.2020.102763
  95. Barnes BJ, Adrover JM, Baxter-Stoltzfus A, et al. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J Exp Med. 2020;217. doi: https://doi.org/10.1084/jem.20200652
  96. Kaplan MJ, Radic M. Neutrophil extracellular traps: double-edged swords of innate immunity. J Immunol Baltim Md 1950. 2012;189:2689–2695. doi: https://doi.org/10.4049/jimmunol.1201719
  97. Jorch SK, Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med. 2017;23:279–287. doi: https://doi.org/10.1038/nm.4294
  98. Kessenbrock K, Krumbholz M, Schönermarck U, et al. Netting neutrophils in autoimmune small-vessel vasculitis. Nat Med. 2009;15:623–625. doi: https://doi.org/10.1038/nm.1959
  99. Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol. 2018;18:134–147. doi: https://doi.org/10.1038/nri.2017.105
  100. Veras FP, Pontelli MC, Silva CM, et al. SARS-CoV-2-triggered neutrophil extracellular traps mediate COVID-19 pathology. J Exp Med. 2020;217. doi: https://doi.org/10.1084/jem.20201129
  101. Warnatsch A, Ioannou M, Wang Q, et al. Inflammation. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science. 2015;349:316–320. doi: https://doi.org/10.1126/science.aaa8064
  102. Kahlenberg JM, Carmona-Rivera C, Smith CK, et al. Neutrophil extracellular trap-associated protein activation of the NLRP3 inflammasome is enhanced in lupus macrophages. J Immunol Baltim Md. 1950. 2013;190:1217–1226. doi: https://doi.org/10.4049/jimmunol.1202388
  103. Meher AK, Spinosa M, Davis JP, et al. Novel Role of IL (Interleukin)-1β in Neutrophil Extracellular Trap Formation and Abdominal Aortic Aneurysms. Arterioscler Thromb Vasc Biol. 2018;38:843–853. doi: https://doi.org/10.1161/ATVBAHA.117.309897
  104. Golonka RM, Saha P, Yeoh BS, et al. Harnessing innate immunity to eliminate SARS-CoV-2 and ameliorate COVID-19 disease. Physiol Genomics. 2020;52:217–221. doi: https://doi.org/10.1152/physiolgenomics.00033.2020
  105. Chen I-Y, Moriyama M, Chang M-F, et al. Severe Acute Respiratory Syndrome Coronavirus Viroporin 3a Activates the NLRP3 Inflammasome. Front Microbiol. 2019;10:50. doi: https://doi.org/10.3389/fmicb.2019.00050
  106. Yang Y, Peng F, Wang R, et al. The deadly coronaviruses: The 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China. J Autoimmun. 2020;109:102434. doi: https://doi.org/10.1016/j.jaut.2020.102434
  107. Coperchini F, Chiovato L, Croce L, et al. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev. 2020;53:25–32. doi: https://doi.org/10.1016/j.cytogfr.2020.05.003
  108. Hirano T, Murakami M. COVID-19: A New Virus, but a Familiar Receptor and Cytokine Release Syndrome. Immunity. 2020;52:731–733. doi: https://doi.org/10.1016/j.immuni.2020.04.003
  109. Rossi-Semerano L, Hermeziu B, Fabre M, et al. Macrophage activation syndrome revealing familial Mediterranean fever. Arthritis Care Res. 2011;63:780–783. doi: https://doi.org/10.1002/acr.20418
  110. Kaya G, Kaya A, Saurat J-H. Clinical and Histopathological Features and Potential Pathological Mechanisms of Skin Lesions in COVID-19: Review of the Literature. Dermatopathology. 2020;7:3–16. doi: https://doi.org/10.3390/dermatopathology7010002
  111. Henter J-I, Horne A, Aricó M, et al. HLH-2004: Diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer. 2007;48:124–231. doi: https://doi.org/10.1002/pbc.21039
  112. Swanson KV, Deng M, Ting JP-Y. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol. 2019;19:477–489. doi: https://doi.org/10.1038/s41577-019-0165-0
  113. Shi J, Gao W, Shao F. Pyroptosis: Gasdermin-Mediated Programmed Necrotic Cell Death. Trends Biochem Sci. 2017;42:245–254. doi: https://doi.org/10.1016/j.tibs.2016.10.004
  114. Man SM, Karki R, Kanneganti T-D. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev. 2017;277:61–75. doi: https://doi.org/10.1111/imr.12534
  115. Zhang W, Zhao Y, Zhang F, et al. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The Perspectives of clinical immunologists from China. Clin Immunol Orlando Fla. 2020;214:108393. doi: https://doi.org/10.1016/j.clim.2020.108393
  116. Rouse BT, Sehrawat S. Immunity and immunopathology to viruses: what decides the outcome? Nat Rev Immunol 2010;10:514–526. doi: https://doi.org/10.1038/nri2802
  117. Schulert GS, Zhang M, Fall N, et al. Whole-Exome Sequencing Reveals Mutations in Genes Linked to Hemophagocytic Lymphohistiocytosis and Macrophage Activation Syndrome in Fatal Cases of H1N1 Influenza. J Infect Dis. 2016;213:1180–1188. doi: https://doi.org/10.1093/infdis/jiv550
  118. Garg S, Garg M, Prabhakar N, et al. Unraveling the mystery of Covid‐19 cytokine storm: From skin to organ systems. Dermatol Ther. 2020;33(6):e13859. doi: https://doi.org/10.1111/dth.13859
  119. Bergsten E, Horne A, Aricó M, et al. Confirmed efficacy of etoposide and dexamethasone in HLH treatment: long-term results of the cooperative HLH-2004 study. Blood. 2017;130:2728–2738. doi: https://doi.org/10.1182/blood-2017-06-788349
  120. Fardet L, Galicier L, Lambotte O, et al. Development and Validation of the HScore, a Score for the Diagnosis of Reactive Hemophagocytic Syndrome: Score for Reactive Hemophagocytic Syndrome. Arthritis Rheumatol. 2014;66:2613–2620. doi: https://doi.org/10.1002/art.38690
  121. Hani C, Trieu NH, Saab I, et al. COVID-19 pneumonia: A review of typical CT findings and differential diagnosis. Diagn Interv Imaging. 2020;101:263–268. doi: https://doi.org/10.1016/j.diii.2020.03.014
  122. Ravelli A, Davì S, Minoia F, et al. Macrophage Activation Syndrome. Hematol Oncol Clin North Am. 2015;29:927–941. doi: https://doi.org/10.1016/j.hoc.2015.06.010
  123. Ravelli A, Minoia F, Davì S, et al. 2016 Classification Criteria for Macrophage Activation Syndrome Complicating Systemic Juvenile Idiopathic Arthritis: A European League Against Rheumatism/American College of Rheumatology/Paediatric Rheumatology International Trials Organisation Collaborative Initiative. Ann Rheum Dis. 2016;75:481–489. doi: https://doi.org/10.1136/annrheumdis-2015-208982
  124. Hua A, O’Gallagher K, Sado D, et al. Life-threatening cardiac tamponade complicating myo-pericarditis in COVID-19. Eur Heart J. 2020;41:2130. doi: https://doi.org/10.1093/eurheartj/ehaa253
  125. Deng Q, Hu B, Zhang Y, et al. Suspected myocardial injury in patients with COVID-19: Evidence from front-line clinical observation in Wuhan, China. Int J Cardiol. 2020;311:116–121. doi: https://doi.org/10.1016/j.ijcard.2020.03.087
  126. Kapadia S, Dibbs Z, Kurrelmeyer K, et al. The role of cytokines in the failing human heart. Cardiol Clin. 1998;16:645–656, viii. doi: https://doi.org/10.1016/s0733-8651(05)70041-2
  127. Li SS, Cheng C, Fu C, et al. Left ventricular performance in patients with severe acute respiratory syndrome: a 30-day echocardiographic follow-up study. Circulation. 2003;108:1798–1803. doi: https://doi.org/10.1161/01.CIR.0000094737.21775.32
  128. Yu C-M, Wong RS-M, Wu EB, et al. Cardiovascular complications of severe acute respiratory syndrome. Postgrad Med J. 2006;82(964):140–144. doi: https://doi.org/10.1136/pgmj.2005.037515
  129. Antonini V. Acute Kidney Injury in COVID-19 Patients | COVID-19. https://www.esicm.org/blog/?p=2789 (accessed: 02.08.2020).
  130. Richardson S, Hirsch JS, Narasimhan M, et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA. 2020;323:2052. doi: https://doi.org/10.1001/jama.2020.6775
  131. Ronco C, Reis T. Kidney involvement in COVID-19 and rationale for extracorporeal therapies. Nat Rev Nephrol. 2020;16:308–310. doi: https://doi.org/10.1038/s41581-020-0284-7
  132. Su H, Yang M, Wan C, et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int. 2020;98:219–227. doi: https://doi.org/10.1016/j.kint.2020.04.003
  133. Larsen CP, Bourne TD, Wilson JD, et al. Collapsing Glomerulopathy in a Patient With COVID-19. Kidney Int Rep. 2020;5:935–939. doi: https://doi.org/10.1016/j.ekir.2020.04.002
  134. Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet Lond Engl 2020;395:1417–1418. doi: 10.1016/S0140-6736(20)30937-5
  135. Divani AA, Andalib S, Di Napoli M, et al. Coronavirus Disease 2019 and Stroke: Clinical Manifestations and Pathophysiological Insights. J Stroke Cerebrovasc Dis. 2020;29:104941. doi: https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.104941
  136. Eliezer M, Hautefort C, Hamel A-L, et al. Sudden and Complete Olfactory Loss of Function as a Possible Symptom of COVID-19. JAMA Otolaryngol Neck Surg. 2020;146:674. doi: https://doi.org/10.1001/jamaoto.2020.0832
  137. Zhang Y, Xiao M, Zhang S, et al. Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19. N Engl J Med. 2020;382:e38. doi: https://doi.org/10.1056/NEJMc2007575
  138. Mao L, Jin H, Wang M, et al. Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020;77:683. doi: https://doi.org/10.1001/jamaneurol.2020.1127
  139. Zhao J, Rudd A, Liu R. Challenges and Potential Solutions of Stroke Care During the Coronavirus Disease 2019 (COVID-19) Outbreak. Stroke. 2020;51:1356–1357. doi: https://doi.org/10.1161/STROKEAHA.120.029701
  140. Jin H, Hong C, Chen S, et al. Consensus for prevention and management of coronavirus disease 2019 (COVID-19) for neurologists. Stroke Vasc Neurol. 2020;5:146–151. doi: https://doi.org/10.1136/svn-2020-000382
  141. On Behalf of the AHA/ASA Stroke Council Leadership. Temporary Emergency Guidance to US Stroke Centers During the Coronavirus Disease 2019 (COVID-19) Pandemic: On Behalf of the American Heart Association/American Stroke Association Stroke Council Leadership. Stroke. 2020;51:1910–1912. doi: https://doi.org/10.1161/STROKEAHA.120.030023
  142. Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8:420–422. doi: https://doi.org/10.1016/S2213-2600(20)30076-X
  143. Zhou Y, Fu B, Zheng X, et al. Pathogenic T-cells and inflammatory monocytes incite inflammatory storms in severe COVID-19 patients. Natl Sci Rev. 2020;7:998–1002. doi: https://doi.org/10.1093/nsr/nwaa041
  144. Yan L, Zhang H-T, Goncalves J, et al. An interpretable mortality prediction model for COVID-19 patients. Nat Mach Intell. 2020;2:283–288. doi: https://doi.org/10.1038/s42256-020-0180-7
  145. Liu X, Shi S, Xiao J, et al. Prediction of the Severity of the Coronavirus Disease and Its Adverse Clinical Outcomes. Jpn J Infect Dis. 2020;73:404–410. doi: https://doi.org/10.7883/yoken.JJID.2020.194
  146. Cummings MJ, Baldwin MR, Abrams D, et al. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. Lancet Lond Engl. 2020;395:1763–1770. doi: https://doi.org/10.1016/S0140-6736(20)31189-2
  147. Hayden A, Park S, Giustini D, et al. Hemophagocytic syndromes (HPSs) including hemophagocytic lymphohistiocytosis (HLH) in adults: A systematic scoping review. Blood Rev. 2016;30:411–420. doi: https://doi.org/10.1016/j.blre.2016.05.001
  148. Parry AH, Wani AH, Yaseen M, et al. Demystifying pulmonary vascular complications in severe coronavirus disease-19 pneumonia (COVID-19) in the light of clinico-radiologic-pathologic correlation. Thromb Res. 2020;196:559–560. doi: https://doi.org/10.1016/j.thromres.2020.06.043
  149. Lippi G, Plebani M. Procalcitonin in patients with severe coronavirus disease 2019 (COVID-19): A meta-analysis. Clin Chim Acta 2020;505:190–191. doi: https://doi.org/10.1016/j.cca.2020.03.004
  150. Heesom L, Rehnberg L, Nasim-Mohi M, et al. Procalcitonin as an antibiotic stewardship tool in COVID-19 patients in the intensive care unit. J Glob Antimicrob Resist. 2020;22:782–784. doi: https://doi.org/10.1016/j.jgar.2020.07.017
  151. Iba T, Levy JH, Levi M, et al. Coagulopathy in COVID-19. J Thromb Haemost JTH. 2020;18(9):2103–2109. doi: https://doi.org/10.1111/jth.14975
  152. Iba T, Levy JH, Warkentin TE, et al. Diagnosis and management of sepsis‐induced coagulopathy and disseminated intravascular coagulation. J Thromb Haemost. 2019;17:1989–1994. doi: https://doi.org/10.1111/jth.14578
  153. Müller M, Carter S, Hofer MJ, et al. Review: The chemokine receptor CXCR3 and its ligands CXCL9, CXCL10 and CXCL11 in neuroimmunity: a tale of conflict and conundrum. Neuropathol Appl Neurobiol. 2010;36:368–387. doi: https://doi.org/10.1111/j.1365-2990.2010.01089.x
  154. Clark-Lewis I, Mattioli I, Gong J-H, et al. Structure-function relationship between the human chemokine receptor CXCR3 and its ligands. J Biol Chem. 2003;278:289–295. doi: https://doi.org/10.1074/jbc.M209470200
  155. Koper OM, Kamińska J, Sawicki K, et al. CXCL9, CXCL10, CXCL11, and their receptor (CXCR3) in neuroinflammation and neurodegeneration. Adv Clin Exp Med Off Organ Wroclaw Med Univ. 2018;27:849–856. doi: https://doi.org/10.17219/acem/68846
  156. Bajetto A, Bonavia R, Barbero S, et al. Chemokines and their receptors in the central nervous system. Front Neuroendocrinol. 2001;22:147–184. doi: https://doi.org/10.1006/frne.2001.0214
  157. Ratech H, Martiniuk F, Borer WZ, et al. Differential expression of adenosine deaminase isozymes in acute leukemia. Blood. 1988;72:1627–1632. doi: https://doi.org/10.1182/blood.V72.5.1627.1627
  158. Iwaki-Egawa S, Yamamoto T, Watanabe Y. Human plasma adenosine deaminase 2 is secreted by activated monocytes. Biol Chem. 2006;387:319–321. doi: https://doi.org/10.1515/BC.2006.042
  159. Gakis C, Calia G, Naitana A, et al. Serum adenosine deaminase activity in HIV positive subjects. A hypothesis on the significance of ADA2. Panminerva Med. 1989;31:107–113.
  160. Stancíková M, Lukác J, Istok R, et al. Serum adenosine deaminase activity and its isoenzyme pattern in patients with systemic lupus erythematosus. Clin Exp Rheumatol. 1998;16:583–586.
  161. Chen W, Zhang S, Zhang W, et al. Elevated serum adenosine deaminase levels in secondary hemophagocytic lymphohistiocytosis. Int J Lab Hematol. 2015;37:544–550. doi: https://doi.org/10.1111/ijlh.12334
  162. Lee PY, Schulert GS, Canna SW, et al. Adenosine deaminase 2 as a biomarker of macrophage activation syndrome in systemic juvenile idiopathic arthritis. Ann Rheum Dis. 2020;79:225–231. doi: https://doi.org/10.1136/annrheumdis-2019-216030
  163. Caricchio R, Gallucci M, Dass C, et al. Preliminary predictive criteria for COVID-19 cytokine storm. Ann Rheum Dis. 2021;80(1):88–95. doi: https://doi.org/10.1136/annrheumdis-2020-218323
  164. Xu L, Liu J, Lu M, et al. Liver injury during highly pathogenic human coronavirus infections. Liver Int. 2020;40:998–1004. doi: https://doi.org/10.1111/liv.14435
  165. Ruan Q, Yang K, Wang W, et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46:846–848. doi: https://doi.org/10.1007/s00134-020-05991-x

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 "Paediatrician" Publishers LLC

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».