COVID-19-associated secondary hemophagocytic lymphohistiocytosis (cytokine storm syndrome)
- Authors: Alekseeva E.I.1,2, Tepaev R.F.1,2, Shilkrot I.Y.3, Dvoryakovskaya T.M.4,2, Surkov A.G.2, Kriulin I.A.2
-
Affiliations:
- National Medical Research Center for Children’s Health
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
- National Association of Non-Governmental Medical Organizations
- National Medical Research Center for Children’s Health, Moscow
- Issue: Vol 76, No 1 (2021)
- Pages: 51-66
- Section: INFECTIOUS DISEASES: CURRENT ISSUES
- URL: https://ogarev-online.ru/vramn/article/view/125706
- DOI: https://doi.org/10.15690/vramn1410
- ID: 125706
Cite item
Full Text
Abstract
In most cases, COVID-19 has a favorable outcome. However, the risk of developing critical forms of the disease, including secondary hemophagocytic lymphohistiocytosis – HLH (cytokine storm syndrome), remains high. This dictates the interest in studying pathogenetic mechanisms, features of the clinical picture, laboratory and instrumental criteria for covid-19 disease. The article analyzes the causes of acute respiratory distress syndrome and multiple organ failure as manifestations of HLH. The necessity of monitoring signs of hyperinflammation (ferritin, C-reactive protein, etc., biomarkers of inflammation) and activation of thrombosis is substantiated, in order to make timely decisions about the beginning of pathogenetic therapy. However, there are limitations for routine testing of the level of Pro-inflammatory cytokines. Information about the diagnostic criteria of HLH is summarized, and the expediency of these criteria for establishing secondary HLH, which has complicated the course of COVID-19, is emphasized.
Full Text
##article.viewOnOriginalSite##About the authors
Ekaterina I. Alekseeva
National Medical Research Center for Children’s Health; I.M. Sechenov First Moscow State Medical University (Sechenov University)
Email: alekatya@yandex.ru
ORCID iD: 0000-0002-3874-4721
SPIN-code: 4713-9943
MD, PhD, Professor, Corresponding Member of the RAS
Russian Federation, 2 bld 1 Lomonosovsky prosp., 119991, Moscow; MoscowRustem F. Tepaev
National Medical Research Center for Children’s Health; I.M. Sechenov First Moscow State Medical University (Sechenov University)
Email: tepaev@nczd.ru
ORCID iD: 0000-0001-6667-9472
SPIN-code: 3907-3234
MD, PhD
Russian Federation, Moscow; MoscowIlia Y. Shilkrot
National Association of Non-Governmental Medical Organizations
Email: 7606399@gmail.com
ORCID iD: 0000-0003-0369-9593
SPIN-code: 5826-6385
MD, PhD
Russian Federation, MoscowTatyana M. Dvoryakovskaya
National Medical Research Center for Children’s Health, Moscow; I.M. Sechenov First Moscow State Medical University (Sechenov University)
Email: bzarova@nczd.ru
ORCID iD: 0000-0002-8165-6401
SPIN-code: 7524-7085
MD, PhD
Russian Federation, Moscow; MoscowAleksander G. Surkov
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Author for correspondence.
Email: asurkov@1msmu.ru
ORCID iD: 0000-0001-6823-0273
SPIN-code: 2805-9855
MD, PhD
Russian Federation, MoscowIvan A. Kriulin
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Email: kriulin.vanya@yandex.ru
ORCID iD: 0000-0003-2370-3182
PhD Student
Russian Federation, MoscowReferences
- Naming the coronavirus disease (COVID-19) and the virus that causes it. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it (accessed: 27.07.2020).
- WHO Coronavirus Disease (COVID-19) Dashboard. Available from: https://covid19.who.int (accessed: 10.12.2020).
- Baig AM, Khaleeq A, Ali U, et al. Evidence of the COVID-19 Virus Targeting the CNS: Tissue Distribution, Host–Virus Interaction, and Proposed Neurotropic Mechanisms. ACS Chem Neurosci. 2020;11:995–998. doi: https://doi.org/10.1021/acschemneuro.0c00122
- Siddiqi HK, Mehra MR. COVID-19 illness in native and immunosuppressed states: A clinical-therapeutic staging proposal. J Heart Lung Transplant off Publ Int Soc Heart Transplant. 2020;39:405–407. doi: https://doi.org/10.1016/j.healun.2020.03.012
- Fu L, Wang B, Yuan T, et al. Clinical characteristics of coronavirus disease 2019 (COVID-19) in China: A systematic review and meta-analysis. J Infect. 2020;80:656–665. doi: https://doi.org/10.1016/j.jinf.2020.03.041
- Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet. 2020;395:497–506. doi: https://doi.org/10.1016/S0140-6736(20)30183-5
- Crayne CB, Albeituni S, Nichols KE, et al. The Immunology of Macrophage Activation Syndrome. Front Immunol. 2019;10:119. doi: https://doi.org/10.3389/fimmu.2019.00119
- Henderson LA, Canna SW, Schulert GS, et al. On the Alert for Cytokine Storm: Immunopathology in COVID‐19. Arthritis Rheumatol. 2020;72:1059–1063. doi: https://doi.org/10.1002/art.41285
- La Rosée P, Horne A, Hines M, et al. Recommendations for the management of hemophagocytic lymphohistiocytosis in adults. Blood. 2019;133:2465–2477. doi: https://doi.org/10.1182/blood.2018894618
- Carter SJ, Tattersall RS, Ramanan AV. Macrophage activation syndrome in adults: recent advances in pathophysiology, diagnosis and treatment. Rheumatol Oxf Engl. 2019;58:5–17. doi: https://doi.org/10.1093/rheumatology/key006
- Chandrakasan S, Filipovich AH. Hemophagocytic lymphohistiocytosis: advances in pathophysiology, diagnosis, and treatment. J Pediatr. 2013;163:1253–1259. doi: https://doi.org/10.1016/j.jpeds.2013.06.053
- Grom AA, Horne A, De Benedetti F. Macrophage activation syndrome in the era of biologic therapy. Nat Rev Rheumatol. 2016;12:259–268. doi: https://doi.org/10.1038/nrrheum.2015.179
- Feldmann J, Callebaut I, Raposo G, et al. Munc13-4 is essential for cytolytic granules fusion and is mutated in a form of familial hemophagocytic lymphohistiocytosis (FHL3). Cell. 2003;115:461–473. doi: https://doi.org/10.1016/s0092-8674(03)00855-9
- Zur Stadt U, Schmidt S, Kasper B, et al. Linkage of familial hemophagocytic lymphohistiocytosis (FHL) type-4 to chromosome 6q24 and identification of mutations in syntaxin 11. Hum Mol Genet. 2005;14:827–834. doi: https://doi.org/10.1093/hmg/ddi076
- Zur Stadt U, Rohr J, Seifert W, et al. Familial hemophagocytic lymphohistiocytosis type 5 (FHL-5) is caused by mutations in Munc18-2 and impaired binding to syntaxin 11. Am J Hum Genet. 2009;85:482–492. doi: https://doi.org/10.1016/j.ajhg.2009.09.005
- McGonagle D, Sharif K, O’Regan A, et al. The Role of Cytokines including Interleukin-6 in COVID-19 induced Pneumonia and Macrophage Activation Syndrome-Like Disease. Autoimmun Rev. 2020;19:102537. doi: https://doi.org/10.1016/j.autrev.2020.102537
- Strippoli R, Caiello I, De Benedetti F. Reaching the Threshold: A Multilayer Pathogenesis of Macrophage Activation Syndrome. J Rheumatol. 2013;40:761–767. doi: https://doi.org/10.3899/jrheum.121233.
- Chen G, Wu D, Guo W, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020;130:2620–2629. doi: https://doi.org/10.1172/JCI137244
- Asanuma YF, Mimura T, Tsuboi H, et al. Nationwide epidemiological survey of 169 patients with adult Still’s disease in Japan. Mod Rheumatol. 2015;25:393–400. doi: https://doi.org/10.3109/14397595.2014.974881
- Gavand P-E, Serio I, Arnaud L, et al. Clinical spectrum and therapeutic management of systemic lupus erythematosus-associated macrophage activation syndrome: A study of 103 episodes in 89 adult patients. Autoimmun Rev. 2017;16:743–749. doi: https://doi.org/10.1016/j.autrev.2017.05.010
- Ramos-Casals M, Brito-Zerón P, López-Guillermo A, et al. Adult haemophagocytic syndrome. Lancet Lond Engl. 2014;383:1503–1516. doi: https://doi.org/10.1016/S0140-6736(13)61048-X
- Cifaldi L, Prencipe G, Caiello I, et al. Inhibition of natural killer cell cytotoxicity by interleukin-6: implications for the pathogenesis of macrophage activation syndrome. Arthritis Rheumatol Hoboken NJ. 2015;67:3037–3046. doi: https://doi.org/10.1002/art.39295
- Grom AA, Villanueva J, Lee S, et al. Natural killer cell dysfunction in patients with systemic-onset juvenile rheumatoid arthritis and macrophage activation syndrome. J Pediatr. 2003;142:292–296. doi: https://doi.org/10.1067/mpd.2003.110
- Bracaglia C, Sieni E, Da Ros M, et al. Mutations of familial hemophagocytic lymphohistiocytosis (FHL) related genes and abnormalities of cytotoxicity function tests in patients with macrophage activation syndrome (MAS) occurring in systemic juvenile idiopathic arthritis (sJIA). Pediatr Rheumatol. 2014;12:P53, 1546-0096-12-S1-P53. doi: https://doi.org/10.1186/1546-0096-12-S1-P53
- Kaufman KM, Linghu B, Szustakowski JD, et al. Whole-Exome Sequencing Reveals Overlap Between Macrophage Activation Syndrome in Systemic Juvenile Idiopathic Arthritis and Familial Hemophagocytic Lymphohistiocytosis: Whole-Exome Sequencing in Macrophage Activation Syndrome. Arthritis Rheumatol. 2014;66:3486–95. doi: https://doi.org/10.1002/art.38793
- Schulert GS, Canna SW. Convergent pathways of the hyperferritinemic syndromes. Int Immunol. 2018;30:195–203. doi: https://doi.org/10.1093/intimm/dxy012
- Spessott WA, Sanmillan ML, McCormick ME, et al. Hemophagocytic lymphohistiocytosis caused by dominant-negative mutations in STXBP2 that inhibit SNARE-mediated membrane fusion. Blood. 2015;125:1566–77. doi: https://doi.org/10.1182/blood-2014-11-610816
- Zhang M, Behrens EM, Atkinson TP, et al. Genetic defects in cytolysis in macrophage activation syndrome. Curr Rheumatol Rep. 2014;16:439. doi: https://doi.org/10.1007/s11926-014-0439-2
- Wada T, Kanegane H, Ohta K, et al. Sustained elevation of serum interleukin-18 and its association with hemophagocytic lymphohistiocytosis in XIAP deficiency. Cytokine. 2014;65:74–78. doi: https://doi.org/10.1016/j.cyto.2013.09.007
- Marsh RA, Madden L, Kitchen BJ, et al. XIAP deficiency: a unique primary immunodeficiency best classified as X-linked familial hemophagocytic lymphohistiocytosis and not as X-linked lymphoproliferative disease. Blood. 2010;116:1079–1082. doi: https://doi.org/10.1182/blood-2010-01-256099
- Girard C, Rech J, Brown M, et al. Elevated serum levels of free interleukin-18 in adult-onset Still’s disease. Rheumatol Oxf Engl. 2016;55:2237–2247. doi: https://doi.org/10.1093/rheumatology/kew300
- Canna SW, Girard C, Malle L, et al. Life-threatening NLRC4-associated hyperinflammation successfully treated with IL-18 inhibition. J Allergy Clin Immunol. 2017;139:1698–1701. doi: https://doi.org/10.1016/j.jaci.2016.10.022
- Canna SW, de Jesus AA, Gouni S, et al. An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat Genet. 2014;46:1140–1146. doi: https://doi.org/10.1038/ng.3089
- Liang J, Alfano DN, Squires JE, et al. Novel NLRC4 Mutation Causes a Syndrome of Perinatal Autoinflammation With Hemophagocytic Lymphohistiocytosis, Hepatosplenomegaly, Fetal Thrombotic Vasculopathy, and Congenital Anemia and Ascites. Pediatr Dev Pathol Off J Soc Pediatr Pathol Paediatr Pathol Soc. 2017;20:498–505. doi: https://doi.org/10.1177/1093526616686890
- Ménasché G, Pastural E, Feldmann J, et al. Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome. Nat Genet. 2000;25:173–176. doi: https://doi.org/10.1038/76024
- Enders A, Zieger B, Schwarz K, et al. Lethal hemophagocytic lymphohistiocytosis in Hermansky-Pudlak syndrome type II. Blood. 2006;108:81–87. doi: https://doi.org/10.1182/blood-2005-11-4413
- Jenkins MR, Rudd-Schmidt JA, Lopez JA, et al. Failed CTL/ NK cell killing and cytokine hypersecretion are directly linked through prolonged synapse time. J Exp Med. 2015;212:307–317. doi: https://doi.org/10.1084/jem.20140964
- Binder D, van den Broek MF, Kägi D, et al. Aplastic Anemia Rescued by Exhaustion of Cytokine-secreting CD8+ T Cells in Persistent Infection with Lymphocytic Choriomeningitis Virus. J Exp Med. 1998;187:1903–1920. doi: https://doi.org/10.1084/jem.187.11.1903
- Jamilloux Y, Henry T, Belot A, et al. Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions. Autoimmun Rev. 2020;19:102567. doi: https://doi.org/10.1016/j.autrev.2020.102567
- Tay MZ, Poh CM, Rénia L, et al. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020;20:363–374. doi: https://doi.org/10.1038/s41577-020-0311-8
- Netea MG, Balkwill F, Chonchol M, et al. A guiding map for inflammation. Nat Immunol. 2017;18:826–831. doi: https://doi.org/10.1038/ni.3790
- Mogensen TH. Pathogen Recognition and Inflammatory Signaling in Innate Immune Defenses. Clin Microbiol Rev. 2009;22:240–273. doi: https://doi.org/10.1128/CMR.00046-08
- Schnappauf O, Chae JJ, Kastner DL, et al. The Pyrin Inflammasome in Health and Disease. Front Immunol. 2019;10:1745. doi: https://doi.org/10.3389/fimmu.2019.01745
- Lucherini OM, Rigante D, Sota J, et al. Updated overview of molecular pathways involved in the most common monogenic autoinflammatory diseases. Clin Exp Rheumatol. 2018;36 Suppl 110:3–9.
- Sarzi-Puttini P, Giorgi V, Sirotti S, et al. COVID-19, cytokines and immunosuppression: what can we learn from severe acute respiratory syndrome? Clin Exp Rheumatol. 2020;38:337–342.
- Li X, Geng M, Peng Y, et al. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal. 2020;10:102–108. doi: https://doi.org/10.1016/j.jpha.2020.03.001
- Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet Lond Engl. 2020;395:1054–1062. doi: https://doi.org/10.1016/S0140-6736(20)30566-3
- Seguin A, Galicier L, Boutboul D, et al. Pulmonary Involvement in Patients With Hemophagocytic Lymphohistiocytosis. Chest. 2016;149:1294–1301. doi: https://doi.org/10.1016/j.chest.2015.11.004
- Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. The Lancet. 2020;395:1033–1034. doi: https://doi.org/10.1016/S0140-6736(20)30628-0
- Garcia Borrega J, Gödel P, Rüger MA, et al. In the Eye of the Storm: Immune-mediated Toxicities Associated With CAR-T Cell Therapy. HemaSphere. 2019;3:e191. doi: https://doi.org/10.1097/HS9.0000000000000191
- Weiss ES, Girard-Guyonvarc’h C, Holzinger D, et al. Interleukin-18 diagnostically distinguishes and pathogenically promotes human and murine macrophage activation syndrome. Blood. 2018;131:1442–1455. doi: https://doi.org/10.1182/blood-2017-12-820852
- Eloseily EM, Weiser P, Crayne CB, et al. Benefit of Anakinra in Treating Pediatric Secondary Hemophagocytic Lymphohistiocytosis. Arthritis Rheumatol Hoboken NJ. 2020;72:326–334. doi: https://doi.org/10.1002/art.41103
- Shakoory B, Carcillo JA, Chatham WW, et al. Interleukin-1 Receptor Blockade Is Associated With Reduced Mortality in Sepsis Patients with Features of Macrophage Activation Syndrome: Reanalysis of a Prior Phase III Trial. Crit Care. Med 2016;44:275–281. doi: https://doi.org/10.1097/CCM.0000000000001402
- Giamarellos-Bourboulis EJ, Netea MG, Rovina N, et al. Complex Immune Dysregulation in COVID-19 Patients with Severe Respiratory Failure. Cell Host Microbe. 2020;27:992–1000.e3. doi: https://doi.org/10.1016/j.chom.2020.04.009
- Wu C, Chen X, Cai Y, et al. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med. 2020;180(7):934-943. doi: https://doi.org/10.1001/jamainternmed.2020.0994
- Herold T, Jurinovic V, Arnreich C, et al. Level of IL-6 predicts respiratory failure in hospitalized symptomatic COVID-19 patients. Infectious Diseases (except HIV/AIDS) 2020. doi: https://doi.org/10.1101/2020.04.01.20047381
- Liu T, Zhang J, Yang Y, et al. The potential role of IL-6 in monitoring coronavirus disease 2019. Infectious Diseases (except HIV/ AIDS) 2020. doi: https://doi.org/10.1101/2020.03.01.20029769
- Bracaglia C, Prencipe G, De Benedetti F. Macrophage Activation Syndrome: different mechanisms leading to a one clinical syndrome. Pediatr Rheumatol Online J. 2017;15:5. doi: https://doi.org/10.1186/s12969-016-0130-4
- Schulert GS, Grom AA. Pathogenesis of Macrophage Activation Syndrome and Potential for Cytokine-Directed Therapies. Annu Rev Med. 2015;66:145–159. doi: https://doi.org/10.1146/annurev-med-061813-012806
- Brisse E, Wouters CH, Matthys P. Advances in the pathogenesis of primary and secondary haemophagocytic lymphohistiocytosis: differences and similarities. Br J Haematol. 2016;174:203–217. doi: https://doi.org/10.1111/bjh.14147
- Webster B, Assil S, Dreux M. Cell-Cell Sensing of Viral Infection by Plasmacytoid Dendritic Cells. J Virol. 2016;90:10050–10053. doi: https://doi.org/10.1128/JVI.01692-16
- Cervantes-Barragan L, Lewis KL, Firner S, et al. Plasmacytoid dendritic cells control T-cell response to chronic viral infection. Proc Natl Acad Sci U S A. 2012;109:3012–3017. doi: https://doi.org/10.1073/pnas.1117359109
- Crouse J, Kalinke U, Oxenius A. Regulation of antiviral T cell responses by type I interferons. Nat Rev Immunol. 2015;15:231–242. doi: https://doi.org/10.1038/nri3806
- Makris S, Paulsen M, Johansson C. Type I Interferons as Regulators of Lung Inflammation. Front Immunol. 2017;8:259. doi: https://doi.org/10.3389/fimmu.2017.00259
- Wang F, Nie J, Wang H, et al. Characteristics of Peripheral Lymphocyte Subset Alteration in COVID-19 Pneumonia. J Infect Dis. 2020;221:1762–1769. doi: https://doi.org/10.1093/infdis/jiaa150
- Yao XH, Li TY, He ZC, et al. A pathological report of three COVID-19 cases by minimal invasive autopsies. Zhonghua Bing Li Xue Za Zhi. 2020;49:411–417. doi: https://doi.org/10.3760/cma.j.cn112151-20200312-00193
- Kamphuis E, Junt T, Waibler Z, et al. Type I interferons directly regulate lymphocyte recirculation and cause transient blood lymphopenia. Blood. 2006;108:3253–3261. doi: https://doi.org/10.1182/blood-2006-06-027599
- Azkur AK, Akdis M, Azkur D, et al. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy. 2020;75:1564–1581. doi: https://doi.org/10.1111/all.14364
- Channappanavar R, Fehr AR, Vijay R, et al. Dysregulated Type I Interferon and Inflammatory Monocyte-Macrophage Responses Cause Lethal Pneumonia in SARS-CoV-Infected Mice. Cell Host Microbe. 2016;19:181–193. doi: https://doi.org/10.1016/j.chom.2016.01.007
- Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 2017;39:529–539. doi: https://doi.org/10.1007/s00281-017-0629-x
- Astuti I, Ysrafil. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response. Diabetes Metab Syndr. 2020;14:407–412. doi: https://doi.org/10.1016/j.dsx.2020.04.020
- Zhou Z, Ren L, Zhang L, et al. Heightened Innate Immune Responses in the Respiratory Tract of COVID-19 Patients. Cell Host Microbe. 2020;27:883–890.e2. doi: https://doi.org/10.1016/j.chom.2020.04.017
- Trouillet-Assant S, Viel S, Gaymard A, et al. Type I IFN immunoprofiling in COVID-19 patients. J Allergy Clin Immunol. 2020;146:206–208.e2. doi: https://doi.org/10.1016/j.jaci.2020.04.029
- Hadjadj J, Yatim N, Barnabei L, et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science. 2020;369:718–724. doi: https://doi.org/10.1126/science.abc6027
- Pairo-Castineira E, Clohisey S, Klaric L, et al. Genetic mechanisms of critical illness in Covid-19. Nature. 2021;591(7848):92–98. doi: https://doi.org/10.1038/s41586-020-03065-y
- Roumier M, Paule R, Groh M, et al. Interleukin-6 blockade for severe COVID-19. medRxiv. 2020;2020.04.20.20061861. doi: https://doi.org/10.1101/2020.04.20.20061861
- Feldmann M, Maini RN, Woody JN, et al. Trials of anti-tumour necrosis factor therapy for COVID-19 are urgently needed. Lancet Lond Engl. 2020;395:1407–1409. doi: https://doi.org/10.1016/S0140-6736(20)30858-8
- Filipovich AH. The expanding spectrum of hemophagocytic lymphohistiocytosis. Curr Opin Allergy Clin Immunol. 2011;11:512–516. doi: https://doi.org/10.1097/ACI.0b013e32834c22f5
- Stepp SE, Mathew PA, Bennett M, et al. Perforin: more than just an effector molecule. Immunol Today. 2000;21:254–256. doi: https://doi.org/10.1016/s0167-5699(00)01622-4
- Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet. 2020;395:507–513. doi: https://doi.org/10.1016/S0140-6736(20)30211-7
- Wang D, Hu B, Hu C, et al. Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China. JAMA. 2020;323:1061. doi: https://doi.org/10.1001/jama.2020.1585
- Diao B, Wang C, Tan Y, et al. Reduction and Functional Exhaustion of T Cells in Patients with Coronavirus Disease 2019 (COVID-19). Infectious Diseases (except HIV/AIDS) 2020. doi: https://doi.org/10.1101/2020.02.18.20024364
- Qin C, Zhou L, Hu Z, et al. Dysregulation of Immune Response in Patients with Coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis. 2020;ciaa248. doi: https://doi.org/10.1093/cid/ciaa248
- Zheng H-Y, Zhang M, Yang C-X, et al. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell Mol Immunol. 2020;17:541–543. doi: https://doi.org/10.1038/s41423-020-0401-3
- Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015;15:486–499. doi: https://doi.org/10.1038/nri3862
- Saeidi A, Zandi K, Cheok YY, et al. T-Cell Exhaustion in Chronic Infections: Reversing the State of Exhaustion and Reinvigorating Optimal Protective Immune Responses. Front Immunol. 2018;9:2569. doi: https://doi.org/10.3389/fimmu.2018.02569
- Yue Y, Nabar NR, Shi C-S, et al. SARS-Coronavirus Open Reading Frame-3a drives multimodal necrotic cell death. Cell Death Dis. 2018;9:904. doi: https://doi.org/10.1038/s41419-018-0917-y
- Tan Y-X, Tan THP, Lee MJ-R, et al. Induction of apoptosis by the severe acute respiratory syndrome coronavirus 7a protein is dependent on its interaction with the Bcl-XL protein. J Virol. 2007;81:6346–6355. doi: https://doi.org/10.1128/JVI.00090-07
- Yang M. Cell Pyroptosis, a Potential Pathogenic Mechanism of 2019-nCoV Infection. SSRN Electron J. 2020. doi: https://doi.org/10.2139/ssrn.3527420
- Mehta AK, Gracias DT, Croft M. TNF activity and T cells. Cytokine. 2018;101:14–18. doi: https://doi.org/10.1016/j.cyto.2016.08.003
- Brooks DG, Trifilo MJ, Edelmann KH, et al. Interleukin-10 determines viral clearance or persistence in vivo. Nat Med. 2006;12:1301–1309. doi: https://doi.org/10.1038/nm1492
- Al-Samkari H, Berliner N. Hemophagocytic Lymphohistiocytosis. Annu Rev Pathol. 2018;13:27–49. doi: https://doi.org/10.1146/annurev-pathol-020117-043625
- Wang W, He J, Lie Puyi, et al. The definition and risks of Cytokine Release Syndrome-Like in 11 COVID-19-Infected Pneumonia critically ill patients: Disease Characteristics and Retrospective Analysis. Intensive Care and Critical Care Medicine 2020. doi: https://doi.org/10.1101/2020.02.26.20026989
- Liu J, Li S, Liu J, et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine. 2020;55:102763. doi: https://doi.org/10.1016/j.ebiom.2020.102763
- Barnes BJ, Adrover JM, Baxter-Stoltzfus A, et al. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J Exp Med. 2020;217. doi: https://doi.org/10.1084/jem.20200652
- Kaplan MJ, Radic M. Neutrophil extracellular traps: double-edged swords of innate immunity. J Immunol Baltim Md 1950. 2012;189:2689–2695. doi: https://doi.org/10.4049/jimmunol.1201719
- Jorch SK, Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med. 2017;23:279–287. doi: https://doi.org/10.1038/nm.4294
- Kessenbrock K, Krumbholz M, Schönermarck U, et al. Netting neutrophils in autoimmune small-vessel vasculitis. Nat Med. 2009;15:623–625. doi: https://doi.org/10.1038/nm.1959
- Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol. 2018;18:134–147. doi: https://doi.org/10.1038/nri.2017.105
- Veras FP, Pontelli MC, Silva CM, et al. SARS-CoV-2-triggered neutrophil extracellular traps mediate COVID-19 pathology. J Exp Med. 2020;217. doi: https://doi.org/10.1084/jem.20201129
- Warnatsch A, Ioannou M, Wang Q, et al. Inflammation. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science. 2015;349:316–320. doi: https://doi.org/10.1126/science.aaa8064
- Kahlenberg JM, Carmona-Rivera C, Smith CK, et al. Neutrophil extracellular trap-associated protein activation of the NLRP3 inflammasome is enhanced in lupus macrophages. J Immunol Baltim Md. 1950. 2013;190:1217–1226. doi: https://doi.org/10.4049/jimmunol.1202388
- Meher AK, Spinosa M, Davis JP, et al. Novel Role of IL (Interleukin)-1β in Neutrophil Extracellular Trap Formation and Abdominal Aortic Aneurysms. Arterioscler Thromb Vasc Biol. 2018;38:843–853. doi: https://doi.org/10.1161/ATVBAHA.117.309897
- Golonka RM, Saha P, Yeoh BS, et al. Harnessing innate immunity to eliminate SARS-CoV-2 and ameliorate COVID-19 disease. Physiol Genomics. 2020;52:217–221. doi: https://doi.org/10.1152/physiolgenomics.00033.2020
- Chen I-Y, Moriyama M, Chang M-F, et al. Severe Acute Respiratory Syndrome Coronavirus Viroporin 3a Activates the NLRP3 Inflammasome. Front Microbiol. 2019;10:50. doi: https://doi.org/10.3389/fmicb.2019.00050
- Yang Y, Peng F, Wang R, et al. The deadly coronaviruses: The 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China. J Autoimmun. 2020;109:102434. doi: https://doi.org/10.1016/j.jaut.2020.102434
- Coperchini F, Chiovato L, Croce L, et al. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev. 2020;53:25–32. doi: https://doi.org/10.1016/j.cytogfr.2020.05.003
- Hirano T, Murakami M. COVID-19: A New Virus, but a Familiar Receptor and Cytokine Release Syndrome. Immunity. 2020;52:731–733. doi: https://doi.org/10.1016/j.immuni.2020.04.003
- Rossi-Semerano L, Hermeziu B, Fabre M, et al. Macrophage activation syndrome revealing familial Mediterranean fever. Arthritis Care Res. 2011;63:780–783. doi: https://doi.org/10.1002/acr.20418
- Kaya G, Kaya A, Saurat J-H. Clinical and Histopathological Features and Potential Pathological Mechanisms of Skin Lesions in COVID-19: Review of the Literature. Dermatopathology. 2020;7:3–16. doi: https://doi.org/10.3390/dermatopathology7010002
- Henter J-I, Horne A, Aricó M, et al. HLH-2004: Diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis. Pediatr Blood Cancer. 2007;48:124–231. doi: https://doi.org/10.1002/pbc.21039
- Swanson KV, Deng M, Ting JP-Y. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol. 2019;19:477–489. doi: https://doi.org/10.1038/s41577-019-0165-0
- Shi J, Gao W, Shao F. Pyroptosis: Gasdermin-Mediated Programmed Necrotic Cell Death. Trends Biochem Sci. 2017;42:245–254. doi: https://doi.org/10.1016/j.tibs.2016.10.004
- Man SM, Karki R, Kanneganti T-D. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev. 2017;277:61–75. doi: https://doi.org/10.1111/imr.12534
- Zhang W, Zhao Y, Zhang F, et al. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The Perspectives of clinical immunologists from China. Clin Immunol Orlando Fla. 2020;214:108393. doi: https://doi.org/10.1016/j.clim.2020.108393
- Rouse BT, Sehrawat S. Immunity and immunopathology to viruses: what decides the outcome? Nat Rev Immunol 2010;10:514–526. doi: https://doi.org/10.1038/nri2802
- Schulert GS, Zhang M, Fall N, et al. Whole-Exome Sequencing Reveals Mutations in Genes Linked to Hemophagocytic Lymphohistiocytosis and Macrophage Activation Syndrome in Fatal Cases of H1N1 Influenza. J Infect Dis. 2016;213:1180–1188. doi: https://doi.org/10.1093/infdis/jiv550
- Garg S, Garg M, Prabhakar N, et al. Unraveling the mystery of Covid‐19 cytokine storm: From skin to organ systems. Dermatol Ther. 2020;33(6):e13859. doi: https://doi.org/10.1111/dth.13859
- Bergsten E, Horne A, Aricó M, et al. Confirmed efficacy of etoposide and dexamethasone in HLH treatment: long-term results of the cooperative HLH-2004 study. Blood. 2017;130:2728–2738. doi: https://doi.org/10.1182/blood-2017-06-788349
- Fardet L, Galicier L, Lambotte O, et al. Development and Validation of the HScore, a Score for the Diagnosis of Reactive Hemophagocytic Syndrome: Score for Reactive Hemophagocytic Syndrome. Arthritis Rheumatol. 2014;66:2613–2620. doi: https://doi.org/10.1002/art.38690
- Hani C, Trieu NH, Saab I, et al. COVID-19 pneumonia: A review of typical CT findings and differential diagnosis. Diagn Interv Imaging. 2020;101:263–268. doi: https://doi.org/10.1016/j.diii.2020.03.014
- Ravelli A, Davì S, Minoia F, et al. Macrophage Activation Syndrome. Hematol Oncol Clin North Am. 2015;29:927–941. doi: https://doi.org/10.1016/j.hoc.2015.06.010
- Ravelli A, Minoia F, Davì S, et al. 2016 Classification Criteria for Macrophage Activation Syndrome Complicating Systemic Juvenile Idiopathic Arthritis: A European League Against Rheumatism/American College of Rheumatology/Paediatric Rheumatology International Trials Organisation Collaborative Initiative. Ann Rheum Dis. 2016;75:481–489. doi: https://doi.org/10.1136/annrheumdis-2015-208982
- Hua A, O’Gallagher K, Sado D, et al. Life-threatening cardiac tamponade complicating myo-pericarditis in COVID-19. Eur Heart J. 2020;41:2130. doi: https://doi.org/10.1093/eurheartj/ehaa253
- Deng Q, Hu B, Zhang Y, et al. Suspected myocardial injury in patients with COVID-19: Evidence from front-line clinical observation in Wuhan, China. Int J Cardiol. 2020;311:116–121. doi: https://doi.org/10.1016/j.ijcard.2020.03.087
- Kapadia S, Dibbs Z, Kurrelmeyer K, et al. The role of cytokines in the failing human heart. Cardiol Clin. 1998;16:645–656, viii. doi: https://doi.org/10.1016/s0733-8651(05)70041-2
- Li SS, Cheng C, Fu C, et al. Left ventricular performance in patients with severe acute respiratory syndrome: a 30-day echocardiographic follow-up study. Circulation. 2003;108:1798–1803. doi: https://doi.org/10.1161/01.CIR.0000094737.21775.32
- Yu C-M, Wong RS-M, Wu EB, et al. Cardiovascular complications of severe acute respiratory syndrome. Postgrad Med J. 2006;82(964):140–144. doi: https://doi.org/10.1136/pgmj.2005.037515
- Antonini V. Acute Kidney Injury in COVID-19 Patients | COVID-19. https://www.esicm.org/blog/?p=2789 (accessed: 02.08.2020).
- Richardson S, Hirsch JS, Narasimhan M, et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA. 2020;323:2052. doi: https://doi.org/10.1001/jama.2020.6775
- Ronco C, Reis T. Kidney involvement in COVID-19 and rationale for extracorporeal therapies. Nat Rev Nephrol. 2020;16:308–310. doi: https://doi.org/10.1038/s41581-020-0284-7
- Su H, Yang M, Wan C, et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int. 2020;98:219–227. doi: https://doi.org/10.1016/j.kint.2020.04.003
- Larsen CP, Bourne TD, Wilson JD, et al. Collapsing Glomerulopathy in a Patient With COVID-19. Kidney Int Rep. 2020;5:935–939. doi: https://doi.org/10.1016/j.ekir.2020.04.002
- Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet Lond Engl 2020;395:1417–1418. doi: 10.1016/S0140-6736(20)30937-5
- Divani AA, Andalib S, Di Napoli M, et al. Coronavirus Disease 2019 and Stroke: Clinical Manifestations and Pathophysiological Insights. J Stroke Cerebrovasc Dis. 2020;29:104941. doi: https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.104941
- Eliezer M, Hautefort C, Hamel A-L, et al. Sudden and Complete Olfactory Loss of Function as a Possible Symptom of COVID-19. JAMA Otolaryngol Neck Surg. 2020;146:674. doi: https://doi.org/10.1001/jamaoto.2020.0832
- Zhang Y, Xiao M, Zhang S, et al. Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19. N Engl J Med. 2020;382:e38. doi: https://doi.org/10.1056/NEJMc2007575
- Mao L, Jin H, Wang M, et al. Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020;77:683. doi: https://doi.org/10.1001/jamaneurol.2020.1127
- Zhao J, Rudd A, Liu R. Challenges and Potential Solutions of Stroke Care During the Coronavirus Disease 2019 (COVID-19) Outbreak. Stroke. 2020;51:1356–1357. doi: https://doi.org/10.1161/STROKEAHA.120.029701
- Jin H, Hong C, Chen S, et al. Consensus for prevention and management of coronavirus disease 2019 (COVID-19) for neurologists. Stroke Vasc Neurol. 2020;5:146–151. doi: https://doi.org/10.1136/svn-2020-000382
- On Behalf of the AHA/ASA Stroke Council Leadership. Temporary Emergency Guidance to US Stroke Centers During the Coronavirus Disease 2019 (COVID-19) Pandemic: On Behalf of the American Heart Association/American Stroke Association Stroke Council Leadership. Stroke. 2020;51:1910–1912. doi: https://doi.org/10.1161/STROKEAHA.120.030023
- Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8:420–422. doi: https://doi.org/10.1016/S2213-2600(20)30076-X
- Zhou Y, Fu B, Zheng X, et al. Pathogenic T-cells and inflammatory monocytes incite inflammatory storms in severe COVID-19 patients. Natl Sci Rev. 2020;7:998–1002. doi: https://doi.org/10.1093/nsr/nwaa041
- Yan L, Zhang H-T, Goncalves J, et al. An interpretable mortality prediction model for COVID-19 patients. Nat Mach Intell. 2020;2:283–288. doi: https://doi.org/10.1038/s42256-020-0180-7
- Liu X, Shi S, Xiao J, et al. Prediction of the Severity of the Coronavirus Disease and Its Adverse Clinical Outcomes. Jpn J Infect Dis. 2020;73:404–410. doi: https://doi.org/10.7883/yoken.JJID.2020.194
- Cummings MJ, Baldwin MR, Abrams D, et al. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. Lancet Lond Engl. 2020;395:1763–1770. doi: https://doi.org/10.1016/S0140-6736(20)31189-2
- Hayden A, Park S, Giustini D, et al. Hemophagocytic syndromes (HPSs) including hemophagocytic lymphohistiocytosis (HLH) in adults: A systematic scoping review. Blood Rev. 2016;30:411–420. doi: https://doi.org/10.1016/j.blre.2016.05.001
- Parry AH, Wani AH, Yaseen M, et al. Demystifying pulmonary vascular complications in severe coronavirus disease-19 pneumonia (COVID-19) in the light of clinico-radiologic-pathologic correlation. Thromb Res. 2020;196:559–560. doi: https://doi.org/10.1016/j.thromres.2020.06.043
- Lippi G, Plebani M. Procalcitonin in patients with severe coronavirus disease 2019 (COVID-19): A meta-analysis. Clin Chim Acta 2020;505:190–191. doi: https://doi.org/10.1016/j.cca.2020.03.004
- Heesom L, Rehnberg L, Nasim-Mohi M, et al. Procalcitonin as an antibiotic stewardship tool in COVID-19 patients in the intensive care unit. J Glob Antimicrob Resist. 2020;22:782–784. doi: https://doi.org/10.1016/j.jgar.2020.07.017
- Iba T, Levy JH, Levi M, et al. Coagulopathy in COVID-19. J Thromb Haemost JTH. 2020;18(9):2103–2109. doi: https://doi.org/10.1111/jth.14975
- Iba T, Levy JH, Warkentin TE, et al. Diagnosis and management of sepsis‐induced coagulopathy and disseminated intravascular coagulation. J Thromb Haemost. 2019;17:1989–1994. doi: https://doi.org/10.1111/jth.14578
- Müller M, Carter S, Hofer MJ, et al. Review: The chemokine receptor CXCR3 and its ligands CXCL9, CXCL10 and CXCL11 in neuroimmunity: a tale of conflict and conundrum. Neuropathol Appl Neurobiol. 2010;36:368–387. doi: https://doi.org/10.1111/j.1365-2990.2010.01089.x
- Clark-Lewis I, Mattioli I, Gong J-H, et al. Structure-function relationship between the human chemokine receptor CXCR3 and its ligands. J Biol Chem. 2003;278:289–295. doi: https://doi.org/10.1074/jbc.M209470200
- Koper OM, Kamińska J, Sawicki K, et al. CXCL9, CXCL10, CXCL11, and their receptor (CXCR3) in neuroinflammation and neurodegeneration. Adv Clin Exp Med Off Organ Wroclaw Med Univ. 2018;27:849–856. doi: https://doi.org/10.17219/acem/68846
- Bajetto A, Bonavia R, Barbero S, et al. Chemokines and their receptors in the central nervous system. Front Neuroendocrinol. 2001;22:147–184. doi: https://doi.org/10.1006/frne.2001.0214
- Ratech H, Martiniuk F, Borer WZ, et al. Differential expression of adenosine deaminase isozymes in acute leukemia. Blood. 1988;72:1627–1632. doi: https://doi.org/10.1182/blood.V72.5.1627.1627
- Iwaki-Egawa S, Yamamoto T, Watanabe Y. Human plasma adenosine deaminase 2 is secreted by activated monocytes. Biol Chem. 2006;387:319–321. doi: https://doi.org/10.1515/BC.2006.042
- Gakis C, Calia G, Naitana A, et al. Serum adenosine deaminase activity in HIV positive subjects. A hypothesis on the significance of ADA2. Panminerva Med. 1989;31:107–113.
- Stancíková M, Lukác J, Istok R, et al. Serum adenosine deaminase activity and its isoenzyme pattern in patients with systemic lupus erythematosus. Clin Exp Rheumatol. 1998;16:583–586.
- Chen W, Zhang S, Zhang W, et al. Elevated serum adenosine deaminase levels in secondary hemophagocytic lymphohistiocytosis. Int J Lab Hematol. 2015;37:544–550. doi: https://doi.org/10.1111/ijlh.12334
- Lee PY, Schulert GS, Canna SW, et al. Adenosine deaminase 2 as a biomarker of macrophage activation syndrome in systemic juvenile idiopathic arthritis. Ann Rheum Dis. 2020;79:225–231. doi: https://doi.org/10.1136/annrheumdis-2019-216030
- Caricchio R, Gallucci M, Dass C, et al. Preliminary predictive criteria for COVID-19 cytokine storm. Ann Rheum Dis. 2021;80(1):88–95. doi: https://doi.org/10.1136/annrheumdis-2020-218323
- Xu L, Liu J, Lu M, et al. Liver injury during highly pathogenic human coronavirus infections. Liver Int. 2020;40:998–1004. doi: https://doi.org/10.1111/liv.14435
- Ruan Q, Yang K, Wang W, et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46:846–848. doi: https://doi.org/10.1007/s00134-020-05991-x
Supplementary files
