COVID-19, hemostasis disorders and risk of thrombotic complications

Cover Page

Cite item

Full Text

Abstract

The spread of a new coronavirus infection worldwide since the end of 2019 has becomes a pandemic. Thrombotic complications are the leading cause of death in this disease. After entering the human body, the virus starts a cascade of reactions leading to the development of a cytokine storm, activation of all parts of the hemostasis and complement systems and other changes that result in disturbances in the circulation system with the development of multiple organ failures. Numerous studies have shown that a predictor of a severe course of COVID-19 is a sharp increase of D-dimer concentration in the blood and rise of some other markers of hemostasis activation. Based on the pathogenesis, the developed schemes for the prevention and treatment of COVID-19 severe complications include low molecular weight heparins (LMWH) which are also recommended for an outpatient COVID-19 patient. The prescription of low molecular weight heparin, the duration of their use and doses should be decided on the basis of a risk assessment of factors for each individual patient in combination with laboratory monitoring.

About the authors

Alexander D. Makatsariya

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Author for correspondence.
Email: gemostasis@mail.ru
ORCID iD: 0000-0001-7415-4633
SPIN-code: 7538-2966
Scopus Author ID: 6602363216
ResearcherId: M-5660-2016
https://internist.ru/lectors/detail/makatsariya-/

MD, PhD, Professor

Russian Federation, 8-2, Trubetskaya street, Moscow, 119992

Ekaterina V. Slukhanchuk

Petrovsky National Research Center of Surgery

Email: beloborodova@rambler.ru
ORCID iD: 0000-0001-7441-2778
SPIN-code: 7423-8944

MD, PhD, Assistant Professor

Russian Federation, 2, Abrikosovsky pereulok, Moscow, 119991

Victoria O. Bitsadze

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: vikabits@mail.ru
ORCID iD: 0000-0001-8404-1042
SPIN-code: 5930-0859
Scopus Author ID: 6506003478
ResearcherId: F-8409-2017

MD, PhD, Professor

Russian Federation, 8-2, Trubetskaya street, Moscow, 119992

Jamilya Kh. Khizroeva

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: jamatotu@gmail.com
ORCID iD: 0000-0002-0725-9686
SPIN-code: 8225-4976
Scopus Author ID: 57194547147
ResearcherId: F-8384-2017

MD, PhD, Professor

Russian Federation, 8-2, Trubetskaya street, Moscow, 119992

Maria V. Tretyakova

Medical Center LLC

Email: tretyakova777@yandex.ru
ORCID iD: 0000-0002-3628-0804
SPIN-code: 1463-0065

MD, PhD, Assistant Professor

Russian Federation, Timura Frunze str.15/1, 119021, Moscow

Valentina I. Tsibizova

Almazov National Medical Research Centre

Email: tsibizova.v@gmail.com
ORCID iD: 0000-0001-5888-0774

Doctor, Departments of Functional and Ultrasound Diagnostics

Russian Federation, 2 Akkuratova str., Saint- Petersburg, 197341

Andrei S. Shkoda

LA Vorokhobov City Clinical Hospital 67

Email: 67gkb@mail.ru
ORCID iD: 0000-0002-9783-1796

MD, PhD

Russian Federation, Moscow

Elvira Grandone

I.M. Sechenov Moscow State Medical University, (Sechenov University); Thrombosis and Haemostasis Research Unit, Fondazione I.R.C.C.S. “Casa Sollievo della Soff erenza”

Email: grandoneelvira@gmail.com
ORCID iD: 0000-0002-8980-9783
Scopus Author ID: 7006391091

MD, PhD, Professor

Russian Federation, 8-2, Trubetskaya street, Moscow, 119992; San Giovanni Rotondo, FG, Italy

Ismail Elalamy

I.M. Sechenov Moscow State Medical University (Sechenov University); Medicine Sorbonne University, University Hospital Tenon

Email: ismail.elalamy@aphp.fr
ORCID iD: 0000-0002-9576-1368
Scopus Author ID: 7003652413

MD, PhD, Professor

Russian Federation, Trubetskaya str. 8-2, 119991; rue de la Chine 75970 Paris Cédex 20, France

Giuseppe Rizzo

I.M. Sechenov First Moscow State Medical University (Sechenov University); University of Roma Tor Vergata

Email: giuseppe.rizzo@uniroma2.it
ORCID iD: 0000-0002-5525-4353
Scopus Author ID: 7102724281
ResearcherId: G-8234-2018

MD, PhD, Professor

Russian Federation, Trubetskaya str. 8-2, 119991, Moscow; Ospedale Cristo Re 00167 Roma Italy

Jean-Christophe R. Gris

I.M. Sechenov Moscow State Medical University, (Sechenov University); University Montpellier

Email: jean.christophe.gris@chu-nimes.fr
ORCID iD: 0000-0002-9899-9910
Scopus Author ID: 7005114260

MD, PhD, Professor

France, 8-2, Trubetskaya street, Moscow, 119992; Montpellier, France

Sam Schulman

I.M. Sechenov Moscow State Medical University, (Sechenov University); Thrombosis and Atherosclerosis Research Institute, McMaster University

Email: schulms@mcmaster.ca
ORCID iD: 0000-0002-8512-9043
Scopus Author ID: 55792310000

д.м.н., профессор

Canada, 8-2, Trubetskaya street, Moscow, 119992; Hamilton, Ontario, Canada

Benjamin Brenner

I.M. Sechenov Moscow State Medical University, (Sechenov University); Rambam Health Care Campus

Email: b_brenner@rambam.health.gov.il

MD, PhD, Professor

Russian Federation, 8-2, Trubetskaya street, Moscow, 119992; Haifa, Israel

References

  1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet. 2020;395:(10223):497–506. doi: https://doi.org/10.1016/S0140-6736(20)30183-5.
  2. Tang N, Li D, Wang X, Sun Z. Abnormal Coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18(4):844–847 doi: https://doi.org/10.1111/jth.14768.
  3. Klok FA, Kruip M, van der Meer N, Arbous M, Gommers D, Kant K, et al. Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: an updated analysis. Thromb Res. 2020;191:148–150. doi: https://doi.org/10.1016/j.thromres.2020.04.041.
  4. Poissy J, Goutay J, Caplan M, Parmentier E, Duburcq T, Lassalle F, et al. Pulmonary embolism in COVID-19 patients: awareness of an increased prevalence. Circulation. 2020;142(2):184–186. doi: https://doi.org/10.1161/circulationaha.120.047430.
  5. Rivellese F, Prediletto E. ACE2 at the centre of COVID-19 from paucisymptomatic infections to severe pneumonia. Autoimmun Rev. 2020;19(6):102536. doi: https://doi.org/10.1016/j.autrev.2020.102536.
  6. McGonagle D, O’Donnell JS, Sharif K, Emery P, Bridgewood C. Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia. The Lancet Rheumatology. 2020;2(7);e437–e445. doi: https://doi.org/10.1016/S2665-9913(20)30121-1.
  7. Magro C, Mulvey JJ, Berlin D, Nuovo G, Salvatore S, Harp J, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Trans Res. 2020;220;1–13. doi: https://doi.org/10.1016/j.trsl.2020.04.007.
  8. Iba T, Levi M, Levy JH. Sepsis-induced coagulopathy and disseminated intravascular coagulation. Semin Thromb Hemost. 2020;46(1):89–95. doi: https://doi.org/10.1055/s-0039-1694995
  9. Zuo Y, Yalavarthi S, Shi H, Gockman K, Zuo M, Madison JA, et al. Neutrophil extracellular traps (NETs) as markers of disease severity in COVID-19. medRxiv. 2020. (In Print). doi: https://doi.org/10.1101/2020.04.09.20059626.
  10. Schönrich G, Raftery MJ, Samstag Y. Devilishly radical NETwork in COVID-19: Oxidative stress, neutrophil extracellular traps (NETs), and T cell suppression. Advances in Biological Regulation. 2020:100741. doi: https://doi.org/10.1016/j.jbior.2020.100741.
  11. Stakos D, Skendros P, Konstantinides S, Ritis K. Traps N’Clots: NET-Mediated Thrombosis and Related Diseases. Thromb Haemost. 2020;120(3):373–383. doi: https://doi.org/10.1055/s-0039-3402731.
  12. Kambas K, Mitroulis I, Ritis K. The emerging role of neutrophils in thrombosis —the journey of TF through NETs. Front Immunol. 2012;3:385. doi: https://doi.org/10.3389/fimmu.2012.00385.
  13. He Y, Yang F-Y, Sun E-W. Neutrophil extracellular traps in autoimmune diseases. Chin Med J (Engl). 2018;131(13):1513–1519. doi: https://doi.org/10.4103/0366-6999.235122.
  14. Levi M, Schultz M, van der Poll T. Sepsis and thrombosis. In: Seminars in thrombosis and hemostasis. Thieme Medical Publishers; 2013. Р. 559–566.
  15. Levi M, van der Poll T. Coagulation and sepsis. Thromb Res. 2017;149:38–44. doi: https://doi.org/10.1016/j.thromres.2016.11.007.
  16. Levi M, ten Cate H, van der Poll T, van Deventer SJ. Pathogenesis of disseminated intravascular coagulation in sepsis. JAMA. 1993;270:975–979.
  17. Khizroeva J, Makatsariya A, Bitsadze V, Tretyakova M, Slukhanchuk E, Elalamy I, et al. Laboratory monitoring of COVID-19 patients and the significance of coagulopathy markers. Obstetrics, Gynecology and Reproduction. 2020;14;2. doi: https://doi.org/10.17749/2313-7347.141.
  18. Shoenfeld Y. Corona (COVID-19) time musings: our involvement in COVID-19 pathogenesis, diagnosis, treatment and vaccine planning. Autoimmun Rev. 2020; 9(6):102538. doi: https://doi.org/10.1016/j.autrev.2020.102538.
  19. Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46(5):846–848. doi: https://doi.org/10.1007/s00134-020-05991-x.
  20. Cao W, Krishnaswamy S, Camire RM, Lenting PJ, Zheng XL. Factor VIII accelerates proteolytic cleavage of von Willebrand factor by ADAMTS-13. Proc Natl Acad Sci U S A. 2008;105(21):7416–7421. doi: https://doi.org/10.1073/pnas.0801735105.
  21. Hyun J, Kim HK, Kim J-E, Lim M-G, Jung JS, Park S, et al. Correlation between plasma activity of ADAMTS-13 and coagulopathy, and prognosis in disseminated intravascular coagulation. Thromb Res. 2009;124(1):75–79. doi: https://doi.org/10.1016/j.thromres.2008.11.020.
  22. Schwameis M, Schörgenhofer C, Assinger A, Steiner MM, Jilma B. Von VWF excess and ADAMTS13 deficiency: a unifying pathomechanism linking inflammation to thrombosis in DIC, malaria, and TTP. Thromb Haemost. 2015;113(4):708–718. doi: https://doi.org/10.1160/th14-09-0731.
  23. Bitsadze VO, Khizroeva J, Makatsariya AD. The acquired form of ADAMTS-13 deficiency as the cause of thrombotic microangiopathy in a pregnant woman with recurrent cerebral circulation disorders, venous thromboembolism, preeclampsia and fetal loss syndrome. Case Reports in Perinatal Medicine. 2017;6. doi: https://doi.org/10.1515/crpm-2017-0023.
  24. Katneni UK, Alexaki A, Hunt R, Schiller T, DiCuccio M, Buehler PW, et al. Consumptive Coagulopathy and Thrombosis during severe COVID-19 infection: Potential Involvement of VWF/ADAMTS-13. 2020. InPress. doi: https://doi.org/10.20944/preprints202005.0385.v2.
  25. Levi M, Thachil J, Iba T, Levy JH. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol. 2020;7:e438. doi: https://doi.org/10.1016/s2352-3026(20)30145-9.
  26. Escher R, Breakey N, Lämmle B. ADAMTS-13 activity, von Willebrand factor, factor VIII and D-dimers in COVID-19 inpatients. Thromb Res. 2020;192:174–175. doi: https://doi.org/10.1016/j.thromres.2020.05.032.
  27. Makatsariya A, Slukhanchuk E, Bitsadze V, Khizroeva J, Tretyakova M., Tsibizova V, et al. COVID-19, neutrophil extracellular traps and vascular complications in obstetric practice. 2020. J Perinat Med. 2020:000010151520200280. doi: https://doi.org/10.1515/jpm-2020-0280.
  28. Zhang Y, Xiao M, Zhang S, Xia P, Cao W, Jiang W, et al. Coagulopathy and antiphospholipid antibodies in patients with Covid-19. N Engl J Med. 2020;382(17):e38. doi: https://doi.org/10.1056/nejmc2007575.
  29. Harzallah I, Debliquis A, Drénou B. Lupus anticoagulant is frequent in patients with Covid‐19. J Thromb Haemost. 2020; doi: https://doi.org/10.1111/jth.14867.
  30. Rodríguez-Pintó I, Espinosa G, Cervera R. Catastrophic APS in the context of other thrombotic microangiopathies. Curr Rheumatol Rep. 2015;17(1):482. https://doi.org/10.1007/s11926-014-0482-z.
  31. Yang Z, Shi J, He Z, Lü Y, Xu Q, Ye C, et al. Predictors for imaging progression on chest CT from coronavirus disease 2019 (COVID-19) patients. Aging (Albany NY). 2020;12:6037–6048. doi: https://doi.org/10.18632/aging.102999.
  32. Gavriilaki E, Chrysanthopoulou A, Sakellari I, Batsis I, Mallouri D, Touloumenidou T, et al. Linking Complement activation, coagulation, and neutrophils in transplant-associated thrombotic microangiopathy. Thromb Haemost. 2019;119:1433–1440. doi: https://doi.org/10.1055/s-0039-1692721.
  33. Abike F, Engin AB, Dunder İ, Tapisiz OL, Aslan C, Kutluay L. Human papilloma virus persistence and neopterin, folate and homocysteine levels in cervical dysplasias. Arch Gynecol Obstet. 2011;284(1):209–214. doi: https://doi.org/10.1007/s00404-010-1650-7.
  34. Ziegler TR, Judd SE, Ruff JH, McComsey GA, Eckard AR. Amino acid concentrations in HIV-infected youth compared to healthy controls and associations with CD4 counts and inflammation. AIDS Research and Human retroviruses. 2017;33:681–689.
  35. Zhai Z, Li C, Chen Y, Gerotziafas G, Zhang Z, Wan J, et al. Prevention and treatment of venous thromboembolism associated with coronavirus disease 2019 infection: a consensus statement before guidelines. Thromb Haemost. 2020;120(6):937. doi: https://doi.org/10.1055/s-0040-1710019.
  36. Ranucci M, Ballotta A, Di Dedda U, Bayshnikova E, Dei Poli M, et al. The procoagulant pattern of patients with COVID‐19 acute respiratory distress syndrome. J Thromb Haemost. 2020;18(7):1747–1751. doi: https://doi.org/10.1111/jth.14854.
  37. Ciceri F, Beretta L, Scandroglio AM, Colombo S, Landoni G, Ruggeri A, et al. Microvascular COVID-19 lung vessels obstructive thromboinflammatory syndrome (MicroCLOTS): an atypical acute respiratory distress syndrome working hypothesis. Crit Care Resusc. 2020;22(2):95–97.
  38. Favalli EG, Ingegnoli F, De Lucia O, Cincinelli G, Cimaz R, Caporali R. COVID-19 infection and rheumatoid arthritis: Faraway, so close! Autoimmunity Reviews. 2020;19(5):102523. doi: https://doi.org/10.1016/j.autrev.2020.102523.
  39. Wendelboe AM, Raskob GE. Global burden of thrombosis: epidemiologic aspects. Circ Res. 2016;118(9):1340–1347. doi: https://doi.org/10.1161/circresaha.115.306841.
  40. Arora G, Kassir M, Jafferany M, Galadari H, Lotti T, Satolli F, et al. The COVID‐19 Outbreak and Rheumatologic Skin Diseases. Dermatol Ther. 2020: e13357. doi: https://doi.org/10.1111/dth.13357ю
  41. Mehra MR, Desai SS, Kuy S, Henry TD, Patel AN. Cardiovascular disease, drug therapy, and mortality in COVID-19. N Engl J Med. 2020;382:e102. doi: https://doi.org/10.1056/NEJMoa2007621.
  42. Driggin E, Madhavan MV, Bikdeli B, Chuich T, Laracy J, Biondi-Zoccai G, et al. Cardiovascular considerations for patients, health care workers, and health systems during the COVID-19 pandemic. J Am Coll Cardiol. 2020;75(18):2352–2371. doi: https://doi.org/10.1016/j.jacc.2020.03.031.
  43. Aso Y, Wakabayashi S, Yamamoto R, Matsutomo R, Takebayashi K, Inukai T. Metabolic syndrome accompaned by hypercholesterolemia is strongly associated with proinflammatory state and impairment of fibrinolysis in patients with type 2 diabetes: synergistic effects of plasminogen activator inhibitor-1 and thrombin-activatable fibrinolysis inhibitor. Diabetes Care. 2005;28(9):2211–2216. doi: https://doi.org/10.2337/diacare.28.9.2211.
  44. Gerotziafas G, Sergentanis TN, Voiriot G, Lassel L, Vandreden P, Papageorgiou L, et al. Derivation and Validation of a Predictive Score for Disease Worsening in Patients with COVID-19: The COMPASS-COVID-19 Prospective Observational Cohort Study. SSRN Electronic Journal. 2020:38. doi: https://doi.org/10.2139/ssrn.3592640.
  45. Olausson N, Discacciati A, Nyman AI, Lundberg F, Hovatta O, Westerlund E, et al. Incidence of pulmonary and venous thromboembolism in pregnancies after in vitro fertilization with fresh respectively frozen‐thawed embryo transfer: Nationwide cohort study. J Thromb Haemost. 2020;18(8):1965–1973. doi: https://doi.org/10.1111/jth.14840.
  46. Ramírez I, De la Viuda E, Baquedano L, Coronado P, Llaneza P, Mendoza N, et al. Managing thromboembolic risk with menopausal hormone therapy and hormonal contraception in the COVID-19 pandemic: Recommendations from the Spanish Menopause Society, Sociedad Española de Ginecología y Obstetricia and Sociedad Española de Trombosis y Hemostasia. Maturitas; 2020;137:57–62. doi: https://doi.org/10.1016/j.maturitas.2020.04.019.
  47. Dunaif A, Segal KR, Shelley DR, Green G, Dobrjansky A, Licholai T. Evidence for distinctive and intrinsic defects in insulin action in polycystic ovary syndrome. Diabetes. 1992;41(10):1257–1266. doi: https://doi.org/10.2337/diab.41.10.1257.
  48. Mannerås-Holm L, Baghaei F, Holm G, Janson PO, Ohlsson C, Lönn M, et al. Coagulation and fibrinolytic disturbances in women with polycystic ovary syndrome. The Journal of Clinical Endocrinology & Metabolism. 2011;96(4):1068–1076. doi: https://doi.org/10.1210/jc.2010-2279.
  49. Oral B, Mermi B, Dilek M, Alanoğlu G, Sütçü R. Thrombin activatable fibrinolysis inhibitor and other hemostatic parameters in patients with polycystic ovary syndrome. Gynecol Endocrinol. 2009;25(2):110–116. doi: https://doi.org/10.1080/09513590802549874.
  50. Макацария А.Д., Элалами И., Воробьев А.В., Бахтина А.С., Мэн М., Бицадзе В.О., и др. Тромботическая микроангиопатия у онкологических больных // Вестник Российской академии медицинских наук. — 2019. — Т. 74. — № 5. — С. 323–332. [Makatsariya AD, Elalamy I, Vorobev AV, Bakhtina AS, Meng M, Bitsadze VO, Khizroeva DKh. Thrombotic microangiopa-thy in cancer patients. Annals of the Russian Academy of Medical Sciences. 2019;74(5):323–332. (In Russ.)]. doi: https://doi.org/10.15690/vramn1204.
  51. Воробьев А.В., Макацария А.Д., Бреннер Б. Синдром Труссо: забытое прошлое или актуальное настоящее? // Акушерство и гинекология. — 2018. — № 2. — С. 27–34. [Vorobyex AV, Makatsaria AD, Brebber B. Trousseau’s syndrome: the forgotten past or actual present? Obstetrics and gynecology. 2018;(2):27–34 (In Russ.)] doi: https://doi.org/10.18565/aig.2018.2.27–34.
  52. Reese JA, Bougie DW, Curtis BR, Terrell DR, Vesely SK, Aster RH, et al. Drug‐induced thrombotic microangiopathy: Experience of the Oklahoma registry and the BloodCenter of Wisconsin. Am J Hematol. 2015;90(5):406–410. doi: https://doi.org/10.1002/ajh.23960.
  53. Liang W, Guan W, Chen R, Wang W, Li J, Xu K, et al. Cancer patients in SARS-CoV-2 infection: a nationwide analysis in China. Lancet Oncol. 2020;21(3):335–337. doi: https://doi.org/10.1016/s1470-2045(20)30096-6.
  54. Gris J-C, Mousty È, Bouvier S, Ripart S, Cochery-Nouvellon É, Fabbro-Peray P, et al. Increased incidence of cancer in the follow-up of obstetric antiphospholipid syndrome within the NOH-APS cohort. Haematologica. 2020;105(2):490–497. doi: https://doi.org/10.3324/haematol.2018.213991.
  55. Barbar S, Noventa F, Rossetto V, Ferrari A, Brandolin B, Perlati M, et al. A risk assessment model for the identification of hospitalized medical patients at risk for venous thromboembolism: the Padua Prediction Score. J Thromb Haemost. 2010;8(11):2450–2457. doi: https://doi.org/10.1111/j.1538-7836.2010.04044.x.
  56. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061–1069. doi: https://doi.org/10.1001/jama.2020.1585.
  57. Lippi G, Plebani M, Henry BM. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: a meta-analysis. Clin Chim Acta. 2020;506:145–148. doi: https://doi.org/10.1016/j.cca.2020.03.022.
  58. Wang R, He M, Yue J, Bai L, Liu D, Huang Z, et al. CONUT score is associated with mortality in patients with COVID-19: a retrospective study in Wuhan. 2020. doi: https://doi.org/10.21203/rs.3.rs-32889/v1 .
  59. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet. 2020;395:1054–1062. doi: https://doi.org/10.1016/S0140-6736(20)30566-3.
  60. Crowther M, Lim W. Use of low molecular weight heparins in patients with renal failure; time to re-evaluate our preconceptions. Springer; 2016.
  61. Shankar-Hari M, Phillips GS, Levy ML, Seymour CW, Liu VX, Deutschman CS, et al. Developing a new definition and assessing new clinical criteria for septic shock: for the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315(8):775–787. doi: https://doi.org/10.1001/jama.2016.0289.
  62. Poterucha TJ, Libby P, Goldhaber SZ. More than an anticoagulant: Do heparins have direct anti-inflammatory effects? Thromb Haemost. 2017;117(3):437–444. doi: https://doi.org/10.1160/th16-08-0620.
  63. Nagata K, Suto Y, Cognetti J, Browne KD, Kumasaka K, Johnson VE, et al. Early low-anticoagulant desulfated heparin after traumatic brain injury: Reduced brain edema and leukocyte mobilization is associated with improved watermaze learning ability weeks after injury. J Trauma Acute Care Surg. 2018;84(5):727–735. doi: https://doi.org/10.1097/ta.0000000000001819.
  64. Seeds E, Page C. Heparin inhibits allergen-induced eosinophil infiltration into guinea-pig lung via a mechanism unrelated to its anticoagulant activity. Pulm Pharmacol Ther. 2001;14(2):111–119. doi: https://doi.org/10.1006/pupt.2000.0277.
  65. Evans R, Wong VS, Morris A, Rhodes J. Treatment of corticosteroid‐resistant ulcerative colitis with heparin — a report of 16 cases. Alimentary Pharmacology & Therapeutics. 1997;11:1037–1040. doi: https://doi.org/10.1046/j.1365-2036.1997.00252.x.
  66. Vancheri C, Mastruzzo C, Armato F, Tomaselli V, Magrì S, Pistorio MP, LaMicela M, D’Amico L, Crimi N. Intranasal heparin reduces eosinophil recruitment after nasal allergen challenge in patients with allergic rhinitis. J Allergy Clin Immunol. 2001;108(5):703–708. doi: https://doi.org/10.1067/mai.2001.118785.
  67. Diamant Z, Timmers MC, Van der Veen H, Page CP, Van der Meer F, Sterk PJ. Effect of inhaled heparin on allergen-induced early and late asthmatic responses in patients with atopic asthma. Am J Respir Crit Care Med. 1996;153(6):1790–1795. doi: https://doi.org/10.1164/ajrccm.153.6.8665036.
  68. Lever R, Page CP. Novel drug development opportunities for heparin. Nat Rev Drug Discov. 2002;1(2):140–148. doi: https://doi.org/10.1038/nrd724.
  69. Gori A, Pepe G, Attanasio M, Falciani M, Abbate R, Prisco D, et al. Tissue factor reduction and tissue factor pathway inhibitor release after heparin administration. Thrombosis and Haemostasis. 1999;81:589–593.
  70. Bazargani F, Albrektsson A, Yahyapour N, Braide M. Low molecular weight heparin improves peritoneal ultrafiltration and blocks complement and coagulation. Peritoneal Dialysis International. 2005;25(4):394–404. doi: https://doi.org/10.1177/089686080502500416.
  71. Cuker A, Arepally GM, Chong BH, Cines DB, Greinacher A, Gruel Y, et al. American Society of Hematology 2018 guidelines for management of venous thromboembolism: heparin-induced thrombocytopenia. Blood Advances. 2018;2(22):3360–3392. doi: https://doi.org/10.1182/bloodadvances.2018024489.
  72. Wang L, Brown JR, Varki A, Esko JD. Heparin’s anti-inflammatory effects require glucosamine 6-O-sulfation and are mediated by blockade of L-and P-selectins. The Journal of Clinical Investigation. 2002;110:127–136. doi: https://doi.org/10.1172/jci14996.
  73. Helfer H, Siguret V, Mahé I. Tinzaparin Sodium Pharmacokinetics in Patients with Chronic Kidney Disease: Practical Implications. Am J Cardiovasc Drugs. 2020;20(3):223–228. doi: https://doi.org/10.1007/s40256-019-00382-0.
  74. Barrett CD, Moore HB, Yaffe MB, Moore EE. ISTH interim guidance on recognition and management of coagulopathy in COVID‐19: A Comment. Journal of Thrombosis and Haemostasis. 2020;08;2060. doi: https://doi.org/10.1111/jth.14860.
  75. Arabi YM, Al-Hameed F, Burns KE, Mehta S, Alsolamy SJ, Alshahrani MS, et al. Adjunctive intermittent pneumatic compression for venous thromboprophylaxis. New England Journal of Medicine. 2019;380:1305–1315. doi: https://doi.org/10.1056/NEJMoa1816150.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2020 "Paediatrician" Publishers LLC

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».