Сахарный диабет и дисфункция щитовидной железы, в том числе аутоиммунного генеза. Взаимное влияние патологий


Цитировать

Полный текст

Аннотация

Заболевания щитовидной железы, в том числе аутоиммунного генеза, и сахарный диабет являются двумя наиболее распространенными эндокринными нарушениями, встречающимися в клинической практике. Данные патологии оказывают взаимное влияние друг на друга. С одной стороны, гормоны щитовидной железы участвуют в регуляции углеводного обмена: избыточная продукция тиреоидных гормонов ассоциирована с гипергликемией, в то время как при гипотиреозе наблюдается сниженный уровень продукции глюкозы печенью. С другой стороны, нарушение в гомеостазе глюкозы воздействует на функциональное состояние щитовидной железы: в органе развиваются дистрофические, склеротические и атрофические процессы, что представляет собой проявление диабетической микроангиопатии. Данная статья демонстрирует необходимость учета взаимного влияния патологий для оптимального лечения этих состояний.

Об авторах

А. В. Ткачук

Национальный медицинский исследовательский центр эндокринологии

Автор, ответственный за переписку.
Email: arinatarasova@inbox.ru
ORCID iD: 0000-0001-5917-6869
SPIN-код: 8825-8874

врач-эндокринолог, клинический ординатор

Россия, Москва

М. С. Михина

Национальный медицинский исследовательский центр эндокринологии

Email: docmikhina@mail.ru
ORCID iD: 0000-0002-4382-0514
SPIN-код: 3172-5538

врач-эндокринолог, н.с.

Россия, Москва

Л. И. Ибрагимова

Национальный медицинский исследовательский центр эндокринологии

Email: ibragimovaliudmila@gmail.com
ORCID iD: 0000-0003-3535-520X
SPIN-код: 5013-8222

к.м.н., в.н.с.

Россия, Москва

Т. В. Никонова

Национальный медицинский исследовательский центр эндокринологии

Email: tatiana_nikonova@mail.ru
ORCID iD: 0000-0001-5656-2596
SPIN-код: 8863-0201

д.м.н.

Россия, Москва

Е. А. Трошина

Национальный медицинский исследовательский центр эндокринологии

Email: troshina@inbox.ru
ORCID iD: 0000-0002-8520-8702
SPIN-код: 8821-8990

д.м.н., профессор, член-корреспондент РАН

Россия, Москва

Список литературы

  1. idf.org [Internet]. International Diabetes Federation. IDF Diabetes Atlas, 8th ed., 2017 [updated 1996 April 26]. Available from: https://www.idf.org/
  2. Taylor PN, Albrecht D, Scholz A, et al. Global epidemiology of hyperthyroidism and hypothyroidism. Nat Rev Endocrinol. 2018;14(5):301–316. doi: https//doi.org/10.1038/nrendo.2018.18
  3. Gray RS, Borsey DQ, Seth J, et al. Prevalence of subclinical thyroid failure in insulin-dependent diabetes. J Clin Endocrinol Metab. 1980;(50):1034–1037. doi: https//doi.org/10.1210/jcem-50-6-1034
  4. Han C, He X, Xia X, et al. Subclinical Hypothyroidism and Type 2 Diabetes: A Systematic Review and Meta-Analysis. PLoS One. 2015;10(8):e0135233. doi: https//doi.org/10.1371/journal.pone.0135233
  5. Chen RH, Chen HY, Man KM, et al. Thyroid diseases increased the risk of type 2 diabetes mellitus: A nation-wide cohort study. Medicine (Baltimore). 2019;98(20):e15631. doi: https//doi.org/10.1097/MD.0000000000015631
  6. Cerna M, Kolostova K, Novota P, et al. Autoimmune diabetes mellitus with adult onset and type 1 diabetes mellitus in children have different genetic predispositions. Ann N Y Acad Sci. 2007;1110:140–150. doi: https//doi.org/10.1196/annals.1423.016
  7. Xie Z, Chang C, Zhou Z. Molecular mechanisms in autoimmune type 1 diabetes: a critical review. Clin Rev Allergy Immunol. 2014;47:174–192. doi: https//doi.org/10.1007/s12016-014-8422-2
  8. Triolo TM, Armstrong TK, McFann K, Yu L, Rewers MJ, Klingensmith GJ, et al. Additional autoimmune disease found in 33% of patients at type 1 diabetes onset. Diabetes Care. 2011;34:1211–1213. doi: https//doi.org/10.2337/dc10-1756
  9. Barker JM. Clinical review: Type 1 diabetes-associated autoimmunity: natural history, genetic associations, and screening. J Clin Endocrinol Metab. 2006;91:1210–1217. doi: https//doi.org/10.1210/jc.2005-1679
  10. Kota SK, Meher LK, Jammula S, et al. Clinical profile of coexisting conditions in type 1 diabetes mellitus patients. Diabetes Metab Syndr. 2012;6:70–76. doi: https//doi.org/10.1016/j.dsx.2012.08.006
  11. Kadiyala R, Peter R, Okosieme OE. Thyroid dysfunction in patients with diabetes: clinical implications and screening strategies. Int J Clin Pract. 2010;64:1130–1139. doi: https//doi.org/10.1111/j.1742-1241.2010.02376.x
  12. Hansen MP, Matheis N, Kahaly GJ. Type 1 diabetes and polyglandular autoimmune syndrome: A review. World J Diabetes. 2015;6(1):67–79. doi: https//doi.org/10.4239/wjd.v6.i1.67
  13. Ahmad FA, Mukhopadhyay B. Simultaneous presentation of type 1 diabetes and Graves’ disease. Scott Med J. 2011;56(1):59. doi: https//doi.org/10.1258/smj.2010.010024
  14. Horie I, Kawasaki E, Ando T, et al. Clinical and genetic characteristics of autoimmune polyglandular syndrome type 3 variant in the Japanese population. J Clin Endocrinol Metab. 2012;97:E1043–E1050. doi: https//doi.org/10.1210/jc.2011-3109
  15. Hage M, Zantout MS, Azar ST. Thyroid disorders and diabetes mellitus. J Thyroid Res. 2011;2011:439463. doi: https//doi.org/10.4061/2011/439463
  16. Weinstein SP, O’Boyle E, Fisher M, Haber RS. Regulation of GLUT2 glucose transporter expression in liver by thyroid hormone: evidence for hormonal regulation of the hepatic glucose transport system. Endocrinology. 1994;135(2):649–654. doi: https//doi.org/10.1210/endo.135.2.8033812
  17. Lambadiari V, Mitrou P, Maratou E, et al. Thyroid hormones are positively associated with insulin resistance early in the development of type 2 diabetes. Endocrine. 2011;39(1):28–32. doi: https//doi.org/10.1007/s12020-010-9408-3
  18. Mitrou P, Boutati E, Lambadiari V, et al. Insulin resistance in hyperthyroidism: the role of IL6 and TNF alpha. Eur J Endocrinol. 2010;162(1):121–126. doi: https//doi.org/10.1530/EJE-09-0622
  19. Potenza M, Via MA, Yanagisawa RT. Excess thyroid hormone and carbohydrate metabolism. Endocr Pract. 2009;15(3):254–262. doi: https//doi.org/10.4158/EP.15.3.254
  20. Klieverik LP, Janssen SF, van Riel A, et al. Thyroid hormone modulates glucose production via a sympathetic pathway from the hypothalamic paraventricular nucleus to the liver. Proc Natl Acad Sci USA. 2009;106(14):5966–5971. doi: https//doi.org/10.1073/pnas.0805355106
  21. Dimitriadis G, Mitrou P, Lambadiari V, et al. Insulin action in adipose tissue and muscle in hypothyroidism. J Clin Endocrinol Metab. 2006;91(12):4930–4937. doi: https//doi.org/10.1210/jc.2006-0478
  22. Moura Neto A, Parisi MC, Tambascia MA, et al. Relationship of thyroid hormone levels and cardiovascular events in patients with type 2 diabetes. Endocrine. 2014;45(1):84–91. doi: https//doi.org/10.1007/s12020-013-9938-6
  23. Ntaios G, Gatselis NK, Makaritsis K, Dalekos GN. Adipokines as mediators of endothelial function and atherosclerosis. Atherosclerosis. 2013;227(2):216–221. doi: https//doi.org/10.1016/j.atherosclerosis.2012.12.029
  24. Donnini D, Ambesi-Impiombato FS, Curcio F. Thyrotropin stimulates production of procoagulant and vasodilative factors in human aortic endothelial cells. Thyroid. 2003;13(6):517–521. doi: https//doi.org/10.1089/105072503322238764
  25. Taddei S, Caraccio N, Virdis A, et al. Low-grade systemic inflammation causes endothelial dysfunction in patients with Hashimoto’s thyroiditis. J Clin Endocrinol Metab. 2006;91(12):5076–5082. doi: https//doi.org/10.1210/jc.2006-1075
  26. Popławska-Kita A, Szelachowska M, Modzelewska A, et al. Endothelial dysfunction in Graves’ disease. Adv Med Sci. 2013;58(1):31–37. doi: https//doi.org/10.2478/v10039-012-0047-1
  27. Chen HS, Wu TE, Jap TS, et al. Subclinical hypothyroidism is a risk factor for nephropathy and cardiovascular diseases in Type 2 diabetic patients. Diabet Med. 2007;24(12):1336–1344. doi: https//doi.org/10.1111/j.1464-5491.2007.02270.x
  28. Zhou JB, Li HB, Zhu XR, et al. Subclinical hypothyroidism and the risk of chronic kidney disease in T2D subjects: A case-control and dose-response analysis. Medicine (Baltimore). 2017;96(15):e6519. doi: https//doi.org/10.1097/MD.0000000000006519
  29. Mori T, Cowley AW Jr. Renal oxidative stress in medullary thick ascending limbs produced by elevated NaCl and glucose. Hypertension. 2004;43(2):341–346. doi: https//doi.org/10.1161/01.HYP.0000113295.31481.36
  30. Yang GR, Yang JK, Zhang L, An YH, Lu JK. Association between subclinical hypothyroidism and proliferative diabetic retinopathy in type 2 diabetic patients: a case-control study. Tohoku J Exp Med. 2010;222(4):303–310. doi: https//doi.org/10.1620/tjem.222.303
  31. Liu M, Hu Y, Li G, Hu W. Low growth hormone levels in short-stature children with pituitary hyperplasia secondary to primary hypothyroidism. Int J Endocrinol. 2015;2015:283492. doi: https//doi.org/10.1155/2015/283492.
  32. Godsland IF. Insulin resistance and hyperinsulinaemia in the development and progression of cancer. Clin Sci (Lond). 2009;118(5):315–332. doi: https//doi.org/10.1042/CS20090399
  33. Jalving M, Gietema JA, Lefrandt JD, et al. Metformin: taking away the candy for cancer? Eur J Cancer. 2010;46(13):2369–2380. doi: https//doi.org/10.1016/j.ejca.2010.06.012
  34. Aschebrook-Kilfoy B, Sabra MM, Brenner A, et al. Diabetes and thyroid cancer risk in the National Institutes of Health-AARP Diet and Health Study. Thyroid. 2011;21(9):957–963. doi: https//doi.org/10.1089/thy.2010.0396
  35. Malaguarnera R, Frasca F, Garozzo A, et al. Insulin receptor isoforms and insulin-like growth factor receptor in human follicular cell precursors from papillary thyroid cancer and normal thyroid. J Clin Endocrinol Metab. 2011;96(3):766–774. doi: https//doi.org/10.1210/jc.2010-1255
  36. Li H, Qian J. Association of diabetes mellitus with thyroid cancer risk: A meta-analysis of cohort studies. Medicine (Baltimore). 2017;96(47):e8230. doi: https//doi.org/10.1097/MD.0000000000008230
  37. Blanc E, Ponce C, Brodschi D, et al. Association between worse metabolic control and increased thyroid volume and nodular disease in elderly adults with metabolic syndrome. Metab Syndr Relat Disord. 2015;13(5):221–226. doi: https//doi.org/10.1089/met.2014.0158
  38. uspreventiveservicestaskforce.org [Internet]. US Preventive Services Task Force. Final update summary: thyroid dysfunction: screening. [updated 2019 Аpril 14]. Available from: https://www.uspreventiveservicestaskforce.org/Page/Document/UpdateSummaryFinal/thyroid-dysfunction-screening
  39. Warren RE, Perros P, Nyirenda MJ, Frier BM. Serum thyrotropin is a better predictor of future thyroid dysfunction than thyroid autoantibody status in biochemically euthyroid patients with diabetes: implications for screening. Thyroid. 2004;14:853–857. doi: https//doi.org/10.1089/thy.2004.14.853
  40. Allan WC, Haddow JE, Palomaki GE, et al. Maternal thyroid deficiency and pregnancy complications: implications for population screening. J Med Screen. 2000;7:127–130. doi: https//doi.org/10.1136/jms.7.3.127
  41. Lowe LP, Metzger BE, Dyer AR, et al. Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study: associations of maternal A1C and glucose with pregnancy outcomes. Diabetes Care. 2012;35(3):574–580. doi: https//doi.org/10.2337/dc11-1687
  42. Toulis KA, Stagnaro-Green A, Negro R. Maternal subclinical hypothyroidsm and gestational diabetes mellitus: a meta-analysis. Endocr Pract. 2014;20(7):703–714. doi: https//doi.org/10.4158/EP13440.RA
  43. Sahu MT, Das V, Mittal S, et al. Overt and subclinical thyroid dysfunction among Indian pregnant women and its effect on maternal and fetal outcome. Arch Gynecol Obstet. 2010;281(2):215–220. doi: https//doi.org/10.1007/s00404-009-1105-1
  44. Tudela CM, Casey BM, McIntire DD, Cunningham FG. Relationship of subclinical thyroid disease to the incidence of gestational diabetes. Obstet Gynecol. 2012;119(5):983–988. doi: https//doi.org/10.1097/AOG.0b013e318250aeeb
  45. Ying H, Tang YP, Bao YR, et al. Maternal TSH level and TPOAb status in early pregnancy and their relationship to the risk of gestational diabetes mellitus. Endocrine. 2016;54(3):742–750. doi: https//doi.org/10.1007/s12020-016-1022-6
  46. Cleary-Goldman J, Malone FD, Lambert-Messerlian G, et al. Maternal thyroid hypofunction and pregnancy outcome. Obstet Gynecol. 2008;112(1):85–92. doi: https//doi.org/10.1097/AOG.0b013e3181788dd7
  47. Männistö T, Vääräsmäki M, Pouta A, et al. Thyroid dysfunction and autoantibodies during pregnancy as predictive factors of pregnancy complications and maternal morbidity in later life. J Clin Endocrinol Metab. 2010;95(3):1084–1094. doi: https//doi.org/10.1210/jc.2009-1904
  48. Chen LM, Du WJ, Dai J, et al. Effects of subclinical hypothyroidism on maternal and perinatal outcomes during pregnancy: a single-center cohort study of a Chinese population. PLoS One. 2014;9(10):e109364. doi: https//doi.org/10.1371/journal.pone.0109364
  49. Oguz A, Tuzun D, Sahin M, et al. Frequency of isolated maternal hypothyroxinemia in women with gestational diabetes mellitus in a moderately iodinedeficient area. Gynecol Endocrinol. 2015;31(10):792–795. doi: https//doi.org/10.3109/09513590.2015.1054801
  50. Yang S, Shi FT, Leung PC, et al. Low thyroid hormone in early pregnancy is associated with an increased risk of gestational diabetes mellitus. J Clin Endocrinol Metab. 2016;101(11):4237–4243. doi: https//doi.org/10.1210/jc.2016-1506
  51. Agarwal MM, Dhatt GS, Punnose J, et al. Thyroid function abnormalities and antithyroid antibody prevalence in pregnant women at high risk for gestational diabetes mellitus. Gynecol Endocrinol. 2006;22(5):261–266. doi: https//doi.org/10.1080/09513590600630470
  52. Casey BM, Dashe JS, Spong CY, et al. Perinatal significance of isolated maternal hypothyroxinemia identified in the first half of pregnancy. Obstet Gynecol. 2007;109(5):1129–1135. doi: https//doi.org/10.1097/01.AOG.0000262054.03531.24
  53. Karakosta P, Alegakis D, Georgiou V, et al. Thyroid dysfunction and autoantibodies in early pregnancy are associated with increased risk of gestational diabetes and adverse birth outcomes. J Clin Endocrinol Metab. 2012;97(12):4464–4472. doi: https//doi.org/10.1210/jc.2012-2540

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Издательство "Педиатръ", 2020

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».