Концептуальные подходы к поиску эффективного лечения новой коронавирусной инфекции на разных этапах
- Авторы: Камалов А.А.1, Мареев В.Ю.1, Орлова Я.А.1
-
Учреждения:
- Медицинский научно-образовательный центр МГУ имени М.В. Ломоносова
- Выпуск: Том 76, № 1 (2021)
- Страницы: 43-50
- Раздел: АКТУАЛЬНЫЕ ВОПРОСЫ ИНФЕКЦИОННЫХ БОЛЕЗНЕЙ
- URL: https://ogarev-online.ru/vramn/article/view/125697
- DOI: https://doi.org/10.15690/vramn1402
- ID: 125697
Цитировать
Полный текст
Аннотация
В статье проведена попытка проанализировать изменение философии в подходах к лечению COVID-19, которые произошли в течение последних месяцев, на основе опубликованных научных исследований и собственного опыта лечения новой коронавирусной инфекции в Медицинском научно-образовательном центре МГУ (МНОЦ МГУ), который в разгар эпидемии работал как «COVID-госпиталь». Делается акцент на обосновании этапного использования разных видов терапии. Подробно обсуждаются основания для применения у пациентов с COVID-19 спиронолактона как препарата для этиотропной и патогенетической терапии. Авторы приходят к выводу, что применение с самых первых дней болезни противовирусных препаратов в комбинации с препаратами, препятствующими входу вируса SARS-CoV-2 в клетки, должно быть дополнено упреждающей противовоспалительной терапией, прерывающей прогрессирование болезни, и параллельным использованием антикоагулянтов, снижающих риск тромботических и тромбоэмболических осложнений.
Полный текст
Открыть статью на сайте журналаОб авторах
Армаис Альбертович Камалов
Медицинский научно-образовательный центр МГУ имени М.В. Ломоносова
Email: priemnaya@mc.msu.ru
ORCID iD: 0000-0003-4251-7545
SPIN-код: 6609-5468
д.м.н., профессор, академик РАН
Россия, МоскваВячеслав Юрьевич Мареев
Медицинский научно-образовательный центр МГУ имени М.В. Ломоносова
Email: prof_mareev@ossn.ru
ORCID iD: 0000-0002-7285-2048
SPIN-код: 9465-8979
Scopus Author ID: 55410873900
д.м.н., профессор
Россия, МоскваЯна Артуровна Орлова
Медицинский научно-образовательный центр МГУ имени М.В. Ломоносова
Автор, ответственный за переписку.
Email: 5163002@bk.ru
ORCID iD: 0000-0002-8160-5612
SPIN-код: 3153-8373
Scopus Author ID: 24503460300
https://istina.msu.ru/profile/YAOrlova@mc.msu.ru/
д.м.н., доцент
Россия, 119192, Москва, Ломоносовский пр., д. 27, корп. 10Список литературы
- Официальный сайт Правительства РФ — стопкоронавирус.рф. Available from: https://xn--80aesfpebagmfblc0a.xn--p1ai/ (accessed: 13.07.2020).
- Официальный сайт ВОЗ. Available from: https://covid19.who.int/ (accessed:13.07.2020).
- Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Eng J Med. 2020;382(18):1708–1720. doi: https://doi.org/10.1056/NEJMoa2002032
- Randomised evaluation of COVID-19 therapy (RECOVERY trail). 29.06.2020. Available from: https://www.recoverytrial.net/news/no-clinical-benefit-from-use-of-lopinavir-ritonavir-in-hospitalised-covid-19-patients-studied-in-recovery
- Chen C, Huang J, Cheng Z, et al. Favipiravir versus arbidol for COVID-19: a randomized clinical trial. MedRxiv. 2020. doi: https://doi.org/10.1101/2020.03.17.20037432
- Cai Q, Yang M, Liu D, et al. Experimental treatment with favipiravir for COVID-19: an open-label control study. Engineering (Beijing). 2020;6(10):1192-1198. doi: https://doi.org/10.1016/j.eng.2020.03.007
- Savarino A, Boelaert JR, Cassone A, et al. Effects of chloroquine on viral infections: an old drug against today’s diseases. Lancet Infect Dis. 2003;3(11):722–727. doi: https://doi.org/10.1016/S1473-3099(03)00806-5
- Vincent MJ, Bergeron E, Benjannet S, et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J. 2005;2:69. doi: https://doi.org/10.1186/1743-422X-2-69
- Gautret P, Lagier J-C, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open- label non-randomized clinical trial. Int J Antimicrob Agents. 2020; 56(1):105949. doi: https://doi.org/10.1016/j.ijantimicag.2020.105949
- Chen Z, Hu J, Zhang Z, Jiang S, et al. Efficacy of hydroxychloroquine in patients with COVID-19: results of a randomized clinical trial. MedRxiv. 2020. doi: https://doi.org/10.1101/2020.03.22.20040758
- Geleris J, Sun Y, Platt J, et al. Observational study of hydroxychloroquine in hospitalized patients with COVID-19. N Eng J Med. 2020;382(25):2411–2418. doi: https://doi.org/10.1056/NEJMoa2012410
- Rosenberg ES, Dufort EM, Udo T, et al. Association of treatment with hydroxychloroquine or azithromycin with in-hospital mortality in patients with COVID-19 in New York state. JAMA. 2020;323(24):2493. doi: https://doi.org/10.1001/jama.2020.8630
- Boulware DR, Pullen MF, Bangdiwala AS, et al. A randomized trial of hydroxychloroquine as postexposure prophylaxis for COVID-19. N Eng J Med. 2020;383(6):517-525. doi: https://doi.org/10.1056/NEJMoa2016638
- Shen LW, Mao HJ, Wu YL, et al. TMPRSS2: A potential target for treatment of influenza virus and coronavirus infections. Biochimie. 2017;142:1–10. doi: https://doi.org/10.1016/j.biochi.2017.07.016
- Sonawane K, Barale SS, Dhanavade MJ, et al. Homology modeling and docking studies of TMPRSS2 with experimentally known inhibitors Camostat mesylate, Nafamostat and Bromhexine hydrochloride to control SARS-Coronavirus-2. ChemRxiv. Preprint. 2020. doi: https://doi.org/10.26434/chemrxiv.12162360.v1
- Rabi FA, Al Zoubi MS, Kasasbeh GA, et al. SARS-CoV-2 and coronavirus disease 2019: what we know so far. Pathogens. 2020;9(3):231. doi: https://doi.org/10.3390/pathogens9030231
- Depfenhart M, de Villiers D, Lemperle G, Meyer M, Di Somma S. Potential new treatment strategies for COVID-19: is there a role for bromhexine as add-on therapy? Intern Emerg Med. 2020;15:801-812. doi: https://doi.org/10.1007/s11739-020-02383-3
- Habtemariam S, Nabavi SF, Ghavami S, et al. Possible use of the mucolytic drug, bromhexine hydrochloride, as a prophylactic agent against SARS-CoV-2 infection based on its action on the Transmembrane Serine Protease 2. Pharmacol Res. 2020;157:104853. doi: https://doi.org/10.1016/j.phrs.2020.104853
- Zhao H, Gu DW, Li HT, et al. Inhibitory effects of spironolactone on myocardial fibrosis in spontaneously hypertensive rats. Genet Mol Res. 2015;14(3):10315–10321. doi: https://doi.org/10.4238/2015.August.28.17
- Funder JW. Spironolactone in cardiovascular disease: an expanding universe? F1000Res. 2017;6:1738. doi: https://doi.org/10.12688/f1000research.11887.1
- Yavas G, Yavas C, Celik E, et al. The impact of spironolactone on the lung injury induced by concomitant trastuzumab and thoracic radiotherapy. Int J Rad Res. 2019;17(1):87–95. doi: https://doi.org/10.18869/acadpub.ijrr.17.1.87
- Ji WJ, Ma YQ, Zhou X, et al. Spironolactone attenuates bleomycin-induced pulmonary injury partially via modulating mononuclear phagocyte phenotype switching in circulating and alveolar compartments. PLoS One. 2013;8(11):e81090. doi: 10.1371/journal.pone.0081090' target='_blank'>https://doi: 10.1371/journal.pone.0081090
- Lechowicz K, Drożdżal S, Machaj F, et al. COVID-19: the potential treatment of pulmonary fibrosis associated with SARS-CoV-2 infection. J Clin Med. 2020;9(6):1917. doi: https://doi.org/10.3390/jcm9061917
- Atalay C, Dogan N, Aykan S, et al. The efficacy of spironolactone in the treatment of acute respiratory distress syndrome-induced rats. Singapore Med J. 2010;51(6):501–505.
- Asselta R, Paraboschi EM, Mantovani A, Duga S. ACE2 and TMPRSS2 variants and expression as candidates to sex and country differences in COVID-19 severity in Italy. doi: https://doi.org/10.1101/2020.03.30.20047878
- The human protein atlas. Available from: https://www.proteinatlas.org/ENSG00000151694-ADAM17/tissue (accessed: 13.07.2020).
- Sama IE, Ravera A, Santema BT, et al. Circulating plasma concentrations of ACE2 in men and women with heart failure and effects of renin-angiotensin-aldosterone-inhibitors. Eur Heart J. 2020;41(19):1810–1817. doi: https://doi.org/10.1093/eurheartj/ehaa373
- Dalpiaz PL, Lamas AZ, Caliman IF, et al. Sex hormones promote opposite effects on ACE and ACE2 activity, hypertrophy and cardiac contractility in spontaneously hypertensive rats. PLoS One. 2015;10(5):e0127515. doi: https://doi.org/10.1371/journal.pone.0127515
- Lin B, Ferguson C, White JT, et al. Prostate-localized and androgen-regulated expression of the membrane-bound serine protease TMPRSS2. Cancer Res. 1999;59(17):4180–4184.
- Wambier CG, Goren A, Ossimetha A, et al. Theory Androgen-driven COVID-19 pandemic theory. ResearchGate. 2020. doi: https://doi.org/10.13140/RG.2.2.21254.11848
- Wambier CG, Goren A. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is likely to be androgen mediated. J Am Acad Dermatol. 2020;83:308–309. doi: https://doi.org/10.1016/j.jaad.2020.04.032
- Goren A, Vaño‐Galván S, Wambier CG, et al. A preliminary observation: Male pattern hair loss among hospitalized COVID‐19 patients in Spain — A potential clue to the role of androgens in COVID‐19 severity. J Cosmet Dermatol. 2020;19(7):1545-1547. doi: https://doi.org/10.1111/jocd.13443
- Montopoli M, Zumerle S, Vettor R, et al. Androgen-deprivation therapies for prostate cancer and risk of infection by SARS-CoV-2: a population-based study (N = 4532). Ann Oncol. 2020;31(8):1040–1045. doi: https://doi.org/10.1016/j.annonc.2020.04.479
- Loriaux DL, Menard R, Taylor A, et al. Spironolactone and endocrine dysfunction. Ann Int Med. 1976;85(5):630–636. doi: https://doi.org/10.7326/0003-4819-85-5-630
- McMullen GR, Van Herle AJ. Hirsutism and the effectiveness of spironolactone in its management. J Endocrinol Invest. 1993;16(11):925–932. doi: https://doi.org/10.1007/BF03348960
- Cadegiani F, Goren A, Wambier CG. Spironolactone may provide protection from SARS-CoV-2: Targeting androgens, angiotensin converting enzyme 2 (ACE2), and renin-angiotensin-aldosterone system (RAAS). Med Hypotheses. 2020;143:110112. doi: https://doi.org/10.1016/j.mehy.2020.110112
- Liaudet L, Szabo C. Blocking mineralocorticoid receptor with spironolactone may have a wide range of therapeutic actions in severe COVID-19 disease. Critical Care. 2020;24:318. doi: https://doi.org/10.1186/s13054-020-03055-6
- U.S. National Library of Medicine. Available from: https://clinicaltrials.gov/ct2/show/NCT04424134 (accessed: 30.05.2020).
- Мареев В.Ю., Орлова Я.А., Павликова Е.П., и др. Пульс-терапия стероидными гормонами больных с коронавирусной пневмонией (COVID-19), системным воспалением и риском венозных тромбозов и тромбоэмболий (исследование ПУТНИК) // Кардиология. — 2020. — Т. 60. — № 6. — С. 15–29. [Mareev VYu, Orlova YA, Pavlikova EP, et al. Steroid pulse-herapy in patients with coronavirus pneumonia (COVID-19), systemic in flammation and risk of venous thrombosis and thromboembolism (WAYFARER Study). Kardiologiia. 2020;60(6):15–29. (In Russ.)] doi: https://doi.org/10.18087/cardio.2020.6.n1226
- Dagenais M, Skeldon A, Saleh M. The inflammasome: in memory of Dr. Jurg Tschopp. Cell Death Differ. 2012;19(1):5–12. doi: https://doi.org/10.1038/cdd.2011.159
- Misawa T, Takahama M, Kozaki T, et al. Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nat Immunol. 2013;14:454–460. doi: https://doi.org/10.1038/ni.2550
- Naghavi MH, Walsh D. Microtubule regulation and function during virus infection. J Virology. 2017;91(16):e00538-17. doi: https://doi.org/10.1128/JVI.00538-17
- Lu Y, Chen J, Xiao M, et al. An overview of tubulin inhibitors that interact with the colchicine binding site. Pharm Res. 2012;29(11):2943–2971. doi: https://doi.org/10.1007/s11095-012-0828-z
- McLoughlin EC, O’Boyle NM. Colchicine-binding site inhibitors from chemistry to clinic: a review. Pharmaceuticals. 2020;13(1):8. doi: https://doi.org/10.3390/ph13010008
- Deftereos SG, Giannopoulos G, Vrachatis DA, et al. Effect of colchicine vs standard care on cardiac and inflammatory biomarkers and clinical outcomes in patients hospitalized with coronavirus disease 2019: the GRECCO-19 randomized clinical trial. JAMA Netw Open. 2020;3(6):e2013136. doi: https://doi.org/10.1001/jamanetworkopen.2020.13136
- Tardif JC, Kouz S, Waters DD, et al. Efficacy and Safety of Low-Dose Colchicine after Myocardial Infarction. N Engl J Med. 2019;381(26):2497–2505. doi: https://doi.org/10.1056/NEJMoa1912388
- U.S. National Library of Medicine. Available from: https://clinicaltrials.gov/ct2/show/NCT04403243
- Deftereos S, Giannopoulos G, Vrachatis DA, et al. Colchicine as a potent anti-inflammatory treatment in COVID-19: can we teach an old dog new tricks? Eur Heart J Cardiovasc Pharmacother. 2020:6:255. doi: https://doi.org/10.1093/ehjcvp/pvaa033
- Cattaneo M, Bertinato EM, Birocchi S, et al. Pulmonary embolism or pulmonary thrombosis in COVID-19? Is the recommendation to use high-dose heparin for thromboprophylaxis justified? Thromb Haemost. 2020;120(8):1230–1232. doi: https://doi.org/10.1016/j.thromres.2020.04.013
- Leonard-Lorant I, Delabranche X, Severac F, et al. Acute pulmonary embolism in COVID-19 patients on CT angiography and relationship to D-dimer levels. Radiology. 2020;296:E189–E191. doi: https://doi.org/10.1148/radiol.2020201561
- Cui S, Chen S, Li X, et al. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J Thromb and Haemost. 2020. Apr 9. doi: https://doi.org/10.1111/JTH.14830
- Poissy J, Goutay J, Caplan M. Pulmonary embolism in COVID-19 patients: awareness of an increased prevalence. Circulation. 2020;142(2):184–186. doi: https://doi.org/10.1161/CIRCULATIONAHA.120.047430
- Zhang L, Yan X, Fan Q, et al. D‐dimer levels on admission to predict in‐hospital mortality in patients with COVID‐19. J Thromb Haemost. 2020;18(6):1324–1329. doi: https://doi.org/10.1111/jth.14859
- Spiezia L, Boscolo A, Poletto F, et al. COVID-19-related severe hypercoagulability in patients admitted to intensive care unit for acute respiratory failure. Thromb Haemost. 2020;120(6):998–1000. doi: https://doi.org/10.1055/s-0040-1710018
- McGonagle D, O’Donnell JS, Sharif K, et al. Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia. Lancet Rheumatol. 2020;2(7):e437–e445. doi: https://doi.org/10.1016/S2665-9913(20)30121-1
- Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19. N Eng J Med. 2020;338(2):120–128. doi: https://doi.org/10.1056/NEJMoa2015432
- Teuwen LA, Geldhof V, Pasut A, Carmeliet P. COVID-19: the vasculature unleashed. Nat Rev Immunol. 2020;20(7):389–391. doi: https://doi.org/10.1038/s41577-020-0343-0
- Tang N, Bai H, Chen X, et al. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020;18(5):1094–1099. doi: https://doi.org/10.1111/JTH.14817
- Wichmann D, Sperhake J, Lutgehetmann M, et al. Autopsy findings and venous thromboembolism in patients with COVID-19. Ann Intern Med. 2020:M20-2003 doi: https://doi.org/10.7326/M20-2003
- Leonard-Lorant I, Delabranche X, Severac F, et al. Acute pulmonary embolism in COVID-19 patients on CT angiography and relationship to D-dimer levels. Radiology. 2020;296(3):E189–E191. doi: https://doi.org/10.1148/radiol.2020201561
- Paranjpe I, Fuster V, Lala A, et al. Association of treatment dose anticoagulation with in-hospital survival among hospitalized patients with COVID-19. J Am Coll Cardiol. 2020;76(1):122–124. doi: https://doi.org/10.1016/j.jacc.2020.05.001
- Tang N, Bai H, Chen X, et al. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost. 2020;18(5):1094–1099. doi: https://doi.org/10.1111/JTH.14817
- Шляхто Е.В., Арутюнов Г.П., Беленков Ю.Н., и др. Применение статинов, антикоагулянтов, антиагрегантов и антиаритмических препаратов у пациентов с COVID-19 // Кардиология. — 2020. — Т. 60. — № 6. — С. 4–11. [Shlyakhto YV, Arutyunov GP, Belenkov YuN, et al. Use of statins, anticoagulants, antiaggregants and antiarrhythmic drugs in patients with COVID-19. Kardiologiia. 2020;60(6):4–14. (In Russ.)] doi: https://doi.org/10.18087/cardio.2020.6.n1180.
Дополнительные файлы
