The role of lipids in the signaling mechanisms of toll-like receptors


Cite item

Full Text

Abstract

Toll-like receptors (TLRs) are important players in innate and adaptive immune responses involved in the initiation of the inflammatory process in response to the stimulating influence of endogenous (аllarmine) and exogenous ligands (pathogens viruses, bacteria, fungi). It has now become apparent that not only viral and bacterial infections but non-infectious inflammatory diseases are accompanied by the activation of inflammatory response systems and the development of chronic inflammation associated with disorders in the regulation of the TLRs system. In this regard, the ligand-independent activation of TLRs, which occurs with the participation of lipids, is actively studied. Their signalling functions of TLRs implemented in unique microdomains does membrane lipid rafts that coordinate many cellular processes. The ability to activate TLRs has been found for saturated fatty acids (SFAs), both exogenous and endogenous. On the other hand, TLRs can be inhibited by omega-3 polyunsaturated fatty acids (PUFAs), which can block the inflammatory process. The activation of TLRs triggers a signal cascade that induces the production of reactive oxygen and nitrogen species. The development of oxidative stress is accompanied by the formation of oxidized forms of phospholipids (Ox-PLs), which also induce the development of chronic inflammation. At the same time, Ox-PLs is characterized not only by pro-inflammatory but also anti-inflammatory activity, which necessitates in-depth studies of their role in the implementation of these processes. This review article discusses the mechanisms by which SFAs, PUFAs, and Ox-PLs modulate TLRs activation in lipid rafts. Research into the details of these mechanisms will contribute to the development of a strategy to reduce the risk of chronic diseases caused by inflammatory reactions mediated by TLRs.

About the authors

O. Yu. Kytikovа

Far Eastern Scientific Center of Physiology and Pathology of Respiration

Author for correspondence.
Email: kytikova@yandex.ru
ORCID iD: 0000-0001-5018-0271
SPIN-code: 3006-5614

MD, PhD

Russian Federation, Vladivostok

T. P. Novgorodtseva

Far Eastern Scientific Center of Physiology and Pathology of Respiration

Email: nauka@niivl.ru
ORCID iD: 0000-0002-6058-201X
SPIN-code: 5888-6099

PhD in Biology, Professor

Russian Federation, Vladivostok

Yu. K. Denisenko

Far Eastern Scientific Center of Physiology and Pathology of Respiration

Email: karaman@inbox.ru
ORCID iD: 0000-0003-4130-8899
SPIN-code: 4997-3432

MD in Biology

Russian Federation, Vladivostok

M. V. Antonyuk

Far Eastern Scientific Center of Physiology and Pathology of Respiration

Email: antonyukm@mail.ru
ORCID iD: 0000-0002-2492-3198
SPIN-code: 3446-4852

MD, PhD, Professor

Russian Federation, Vladivostok

T. A. Gvozdenko

Far Eastern Scientific Center of Physiology and Pathology of Respiration

Email: vfdnz@mail.ru
ORCID iD: 0000-0002-6413-9840
SPIN-code: 7869-1692

MD, PhD, Professor

Russian Federation, Vladivostok

References

  1. Hagar JA, Powell DA, Aachoui Y, et al. Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science. 2013;341:1250–1253. doi: https://doi.org/10.1126/science.1240988
  2. Zakeri A, Russo M. Dual Role of Toll-like Receptors in Human and Experimental Asthma Models. Front Immunol. 2018;9:1027. doi: https://doi.org/10.3389/fimmu.2018.01027
  3. Sallustio F, Curci C, Stasi A, et al. Role of Toll-Like Receptors in Actuating Stem/Progenitor Cell Repair Mechanisms: Different Functions in Different Cells. Stem Cells Int. 2019:6795845. doi: https://doi.org/10.1155/2019/6795845
  4. Kumar V. Toll-like receptors in the pathogenesis of neuroinflammation. J Neuroimmunol. 2019;332:16–30. doi: https://doi.org/10.1016/j.jneuroim.2019.03.012
  5. Schaefer L. Complexity of danger: the diverse nature of damage-associated molecular patterns. J Biol Chem. 2014;289(51):35237–35245. doi: https://doi.org/10.1074/jbc.R114.619304
  6. De Nardo D. Toll-like receptors: activation, signalling and transcriptional modulation. Cytokine. 2015;74:181–189. doi: https://doi.org/10.1016/j.cyto.2015.02.025
  7. Scior T, Alexander C, Zaehringer U. Reviewing and identifying amino acids of human, murine, canine and equine TLR4/MD-2 Receptor complexes conferring endotoxic Innate Immunity Activation by LPS/Lipid A, or antagonistic Effects by Eritoran, in Contrast to Species-Dependent modulation by Lipid IVa. Comput Struct Biotechnol J. 2013;5:e201302012. doi: https://doi.org/10.5936/csbj.201302012
  8. Hwang DH, Kim JA, Lee JY. Mechanisms for the activation of Toll-like receptor 2/4 by saturated fatty acids and inhibition by docosahexaenoic acid. Еur J Pharmacol. 2016;785:24–35. doi: https://doi.org/10.1016/j.ejphar.2016.04.024
  9. Mirotti L, Alberca Custodio RW, Gomes E, et al. CpG-ODN shapes alum adjuvant activity signaling via MyD88 and IL-10. Front Immunol. 2017;8:47. doi: https://doi.org/10.3389/fimmu.2017.00047
  10. Сhristou EAA, Giardino G, Stefanaki E, Ladomenou F. Asthma: An Undermined State of Immunodeficiency. Int Rev Immunol. 2019;38(2):70–78. doi: https://doi.org/10.1080/08830185.2019.1588267
  11. Glass CK, Olefsky JM. Inflammation and lipid signaling in the etiology of insulin resistance. Cell Metab. 2012;15(5):635–645. doi: https://doi.org/10.1016/j.cmet.2012.04.001
  12. Gong T, Yang Y, Jin T, et al. Orchestration of NLRP3 inflammasome activation by ion fluxes. Trends Immunol. 2018;39(5):393–406. doi: https://doi.org/10.1016/j.it.2018.01.009
  13. Frazao JB, Errante PR, Condino-Neto A. Toll-like receptors’ pathway disturbances are associated with increased susceptibility to infections in humans. Archivum Immunologiae et Therapiae Experimentalis. 2013;61(6):427–443. doi: https://doi.org/10.1007/s00005-013-0243-0
  14. Bruchard M, Rebé C, Derangère V, et al. The receptor NLRP3 is a transcriptional regulator of TH2 differentiation. Nat Immunol. 2015;16(8):859–870. doi: https://doi.org/10.1038/ni.3202
  15. Koppenol-Raab M, Sjoelund V, Manes NP, et al. Proteome and secretome analysis reveals differential post-transcriptional regulation of Toll-like receptor responses. Mol Cell Proteomics. 2017;16(4 Suppl 1):S172–S186. doi: https://doi.org/10.1074/mcp.M116.064261
  16. Kleveta G, Borzęcka K, Zdioruk M, et al. LPS induces phosphorylation of actin-regulatory proteins leading to actin reassembly and macrophage motility. J Cell Biochem. 2012;113(1):80–92. doi: https://doi.org/10.1002/jcb.23330
  17. Plociennikowska A, Hromada‐Judycka A, Borzecka K, et al. Co‐operation of TLR4 and raft proteins in LPS‐induced pro‐inflammatory signaling. Cell Mol Life Sci. 2015;72(3):557–581. doi: https://doi.org/10.1007/s00018-014-1762-5
  18. Schoeniger A, Fuhrmann H, Schumann J. LPS- or Pseudomonas aeruginosa-mediated activation of the macrophage TLR4 signaling cascade depends on membrane lipid composition. Peer J. 2016;4:e1663. doi: https://doi.org/10.7717/peerj.1663
  19. Engin AB. Adipocyte-Macrophage Cross-Talk in Obesity. Adv Exp Med Biol. 2017;960:327–343. doi: https://doi.org/10.1007/978-3-319-48382-5_14
  20. Arleevskaya MI, Larionova RV, Brooks WH, et al. Toll-Like Receptors, Infections, and Rheumatoid Arthritis. Clin Rev Allergy Immunol. 2020;58(2):172–181. doi: https://doi.org/10.1007/s12016-019-08742-z
  21. Varshney P, Yadav V, Saini N. Lipid rafts in immune signalling: current progress and future perspective. Immunology. 2016;149(1):13–24. doi: https://doi.org/10.1111/imm.12617
  22. Ruysschaert JM, Lonez C. Role of lipid microdomains in TLR-mediated signalling. Biochim. Biophys. Acta. 2015;1848(9):1860–1867. doi: https://doi.org/10.1016/j.bbamem.2015.03.014
  23. Huang S, Rutkowsky JM, Snodgrass RG, et al. Saturated fatty acids activate TLR-mediated proinflammatory signaling pathways. J Lipid Res. 2012;53(9):2002–2013. doi: https://doi.org/10.1194/jlr.D029546
  24. Li Y, Deng SL, Lian ZX, et al. Roles of Toll-Like Receptors in Nitroxidative Stress in Mammals. Cells. 2019;8(6):pii:E576. doi: https://doi.org/10.3390/cells8060576
  25. Hellwing C, Tigistu-Sahle F, Fuhrmann H, et al. Lipid composition of membrane microdomains isolated detergent-free from PUFA supplemented RAW264.7 macrophages. Journal of Cellular Physiology. 2018;233(3):2602–2612. doi: https://doi.org/10.1002/jcp.26138
  26. Кытикова О.Ю., Антонюк М.В., Гвозденко Т.А., Новгородцева Т.П. Метаболические аспекты взаимосвязи ожирения и бронхиальной астмы // Ожирение и метаболизм. — 2018. — Т. 15. — № 4. — С. 9–14. [Kytikova OJu, Antonjuk MV, Gvozdenko TA, Novgorodceva TP. Metabolic aspects of the relationship of asthma and obesity. Ozhirenie i Metabolizm. 2018;15(4):9–14. (In Russ.)] doi: https://doi.org/10.14341/OMET9578
  27. Kytikova O, Novgorodtseva T, Antonyuk M, et al. Pro-resolving lipid mediators in the pathophysiology of asthma. Medicina. 2019;55(6):284. doi: https://doi.org/10.3390/medicina55060284
  28. Novgorodtseva TP, Gvozdenko TA, Vitkina TI, et al. Regulatory signal mechanisms of systemic inflammation in respiratory pathology. Russian Open Medical Journal. 2019;8(1):e0106. doi: https://doi.org/10.15275/rusomj.2019.0106
  29. Novgorodtseva TP, Denisenko YK, Zhukova NV, et al. Modification of the fatty acid composition of the erythrocyte membrane in patients with chronic respiratory diseases. Lipids in Health and Disease. 2013;12:117. doi: https://doi.org/10.1186/1476-511X-12-117
  30. Lydic TA, Goo Y-H. Lipidomics unveils the complexity of the lipidome in metabolic diseases. Clin Transl Med. 2018;7:4. doi: https://doi.org/10.1186/s40169-018-0182-9
  31. Diaz-Rohrer BB, Levental KR, Simons K, et al. Membrane raft association is a determinant of plasma membrane localization. Proc Natl Acad Sci USA. 2014;111:8500–8505. doi: https://doi.org/10.1073/pnas.1404582111
  32. Farnoud AM, Toledo AM, Konopka JB, et al. Raft-Like Membrane Domains in Pathogenic Microorganisms. Сurr Top Membr. 2015;75:233–268. doi: https://doi.org/10.1016/bs.ctm.2015.03.005
  33. Goñi FM. “Rafts”: A nickname for putative transient nanodomains. Chem Phys Lipids. 2019;218:34–39. doi: https://doi.org/10.1016/j.chemphyslip.2018.11.006
  34. Georgieva R, Chachaty C, Staneva G. Docosahexaenoic acid promotes micron scale liquid-ordered domains. A comparison study of docosahexaenoic versus oleic acid containing phosphatidylcholine in raft-like mixtures. Biochim. Biophys. Acta. 2015;1848:1424–1435. doi: https://doi.org/10.1016/j.bbamem.2015.02.027
  35. Tulodziecka K, Diaz-Rohrer BB, Farley MM, et al. Remodeling of the postsynaptic plasma membrane during neural development. Mol Biol Cell. 2016;27:3480–3489. doi: https://doi.org/10.1091/mbc.E16-06-0420
  36. Lorent JH, Diaz-Rohrer B, Lin X, et al. Structural determinants and functional consequences of protein affinity for membrane rafts. Nat. Commun. 2017;8:1219. doi: https://doi.org/10.1038/s41467-017-01328-3
  37. Sezgin E, Levental I, Mayor S, et al. The mystery of membrane organization: composition, regulation and physiological relevance of lipid rafts. Rev Mol Cell Biol. 2017;18(6):361–374. doi: https://doi.org/10.1038/nrm.2017.16
  38. Lee I-H, Imanaka MY, Modahl EH, Lipid AP. Raft Phase Modulation by Membrane-Anchored Proteins with Inherent Phase Separation Properties. Torres-Ocampo. ACS Omega. 2019;4(4):6551–6559. doi: https://doi.org/10.1021/acsomega.9b00327
  39. Kinoshita M. Raft-based sphingomyelin interactions revealed by new fluorescent sphingomyelin analogs. J Cell Biol. 2017;216:1183–1204. doi: https://doi.org/10.1083/jcb.201607086
  40. Hou TY, Barhoumi R, Fan Y-Y, Rivera GM, et al. n-3 polyunsaturated fatty acids suppress CD4(+) T cell proliferation by altering phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P-2] organization. Biochim Biophys Acta. 2016;1858(1):85–96. doi: https://doi.org/10.1016/j.bbamem.2015.10.009
  41. Sciacca MFM, Lolicato F, Di Mauro G, et al. The role of cholesterol in driving iapp-membrane interactions. Biophys J. 2016;111(1):140–151. doi: https://doi.org/10.1016/j.bpj.2016.05.050
  42. Biwer L, Isakson BE. Endoplasmic reticulum mediated signaling in cellular microdomains. Acta Physiol (Oxf). 2017;219(1):162–175. doi: https://doi.org/10.1111/apha.12675
  43. Bian X, Saheki Y, De Camilli P. Ca2+ releases E-Syt1 autoinhibition to couple ER-plasma membrane tethering with lipid transport. EMBO J. 2018;37(2):219–234. doi: https://doi.org/10.15252/embj.201797359
  44. Suzuki M. High-density lipoprotein suppresses the type I interferon response, a family of potent antiviral immunoregulators, in macrophages challenged with lipopolysaccharide. Circulation. 2010;122(19):1919–1927. doi: https://doi.org/10.1161/CIRCULATIONAHA.110.961193
  45. Zhu X. Macrophage ABCA1 reduces MyD88-dependent Toll-like receptor trafficking to lipid rafts by reduction of lipid raft cholesterol. J Lipid Res. 2010;51(11):3196–3206. doi: https://doi.org/10.1194/jlr.M006486
  46. Yvan-Charvet L. ABCA1 and ABCG1 protect against oxidative stress-induced macrophage apoptosis during efferocytosis. Circ Res. 2010;106(12):1861–1869. doi: https://doi.org/10.1161/CIRCRESAHA.110.217281
  47. Carroll RG, Zaslona Z, Galván-Peña S, et al. An unexpected link between fatty acid synthase and cholesterol synthesis in proinflammatory macrophage activation. J Biol Chem. 2018;293(15):5509–5521. doi: https://doi.org/10.1074/jbc.RA118.001921
  48. Pinot M, Vanni S, Barelli H. Lipid cell biology. Polyunsaturated phospholipids facilitate membrane deformation and fission by endocytic proteins. Science. 2014;345:693–697. doi: https://doi.org/10.1126/science.1255288
  49. Frisz JF, Klitzing HA, Lou K, et al. Sphingolipid domains in the plasma membranes of fibroblasts are not enriched with cholesterol. J Biol Chem. 2013;288(23):16855–16861. doi: https://doi.org/10.1074/jbc.M113.473207
  50. Casares D, Escribá PV, Rosselló CA. Membrane Lipid Composition: Effect on Membrane and Organelle Structure, Function and Compartmentalization and Therapeutic Avenues. Int J Mol Sci. 2019;20(9):2167. doi: https://doi.org/10.3390/ijms20092167
  51. Harayama T, Riezman H. Understanding the diversity of membrane lipid composition. Nat Rev Mol Cell Biol. 2018;19:281–296. doi: https://doi.org/10.1038/nrm.2017.138
  52. Kiefer K, Casas J, García-López R, Vicente R. Ceramide Imbalance and Impaired TLR4-Mediated Autophagy in BMDM of an ORMDL3-Overexpressing Mouse Model. Int J Mol Sci. 2019;20(6):1391. doi: https://doi.org/10.3390/ijms20061391
  53. Levental KR. Polyunsaturated lipids regulate membrane domain stability by tuning membrane order. Biophys J. 2016;110(8):1800–1810. doi: https://doi.org/10.1016/j.bpj.2016.03.012
  54. Shaikh SR, Kinnun JJ, Wassall SR. How polyunsaturated fatty acids modify molecular organization in membranes: insight from NMR studies of model systems. Biochim. Biophys. Acta. 2015;1848(1Pt.B):211–219. doi: https://doi.org/10.1016/j.bbamem.2014.04.020
  55. Prajapati B, Jena PK, Rajput P, et al. Understanding and modulating the Toll like Receptors (TLRs) and NOD like Receptors (NLRs) cross talk in type 2 diabetes. Curr Diabetes Rev. 2014;10(3):190–200. doi: https://doi.org/10.2174/1573399810666140515112609
  56. Rocha DM, Caldas AP, Oliveira LL, et al. Saturated fatty acids trigger TLR4-mediated inflammatory response. Atherosclerosis. 2016;244:211–215. doi: https://doi.org/10.1016/j.atherosclerosis.2015.11.015
  57. Snodgrass RG, Huang S, Choi IW, et al. Inflammasome-mediated secretion of IL-1beta in human monocytes through TLR2 activation; modulation by dietary fatty acids. J Immunol. 2013;191:4337–4347. doi: https://doi.org/10.4049/jimmunol.1300298
  58. Kang JY, Lee JO. Structural biology of the Toll-like receptor family. Annu Rev Biochem. 2011;80:917–941. doi: https://doi.org/10.1146/annurev-biochem-052909-141507
  59. Wong SW, Kwon MJ, Choi AM, et al. Fatty acids modulate Toll‐like receptor 4 activation through regulation of receptor dimerization and recruitment into lipid rafts in a reactive oxygen species‐dependent manner. J Biol Chem. 2009;284:27384–27392. doi: https://doi.org/10.1074/jbc.M109.044065
  60. Kytikova OY, Novgorodtseva TP, Antonyuk MV, et al. Molecular targets of fatty acid ethanolamides in asthma. Medicina (Kaunas). 2019;55(4):87. doi: https://doi.org/10.3390/medicina55040087
  61. Wu M-Y, Li Ch-J, Hou M-F, et al. New Insights into the Role of Inflammation in the Pathogenesis of Atherosclerosis. Int J Mol Sci. 2017;18(10):2034–2040. doi: https://doi.org/10.3390/ijms18102034
  62. McCormick SPA, Schneider WJ. Lipoprotein(a) catabolism: a case of multiple receptors. Pathology. 2019;51(2):155–164. doi: https://doi.org/10.1016/j.pathol.2018.11.003
  63. Dana N, Vaseghi G, Haghjooy Javanmard S. Crosstalk between Peroxisome Proliferator-Activated Receptors and Toll-Like Receptors: A Systematic Review. Adv Pharm Bull. 2019;9(1):12–21. doi: https://doi.org/10.15171/apb.2019.003
  64. Walton KA, Cole AL, Yeh M, et al. Specific phospholipid oxidation products inhibit ligand activation of toll-like receptors 4 and 2. Arterioscler Thromb Vasc Biol. 2003;23:1197–1203. doi: https://doi.org/10.1161/01.ATV.0000079340.80744.B8
  65. Voelker DR, Numata M. Phospholipid regulation of innate immunity and respiratory viral infection. J Biol Chem. 2019;294(12):4282–4289. doi: https://doi.org/10.1074/jbc.AW118.003229
  66. Kandasamy P, Numata M, Zemski Berry K, et al. Structural analogs of pulmonary surfactant phosphatidylglycerol inhibit Toll-like receptor 2 and 4 signaling. J. Lipid Res. 2016;57:993–1005. doi: https://doi.org/10.1194/jlr.M065201
  67. Bretscher P, Egger J, Shamshiev A, et al. Phospholipid oxidation generates potent anti-inflammatory lipid mediators that mimic structurally related pro-resolving eicosanoids by activating Nrf2. EMBO Mol Med. 2015;7:593–607. doi: https://doi.org/10.15252/emmm.201404702
  68. Azzam KM, Fessler MB. Crosstalk between reverse cholesterol transport and innate immunity. Trends Endocrinol Metab. 2012;23:169–178. doi: https://doi.org/10.1016/j.tem.2012.02.001
  69. Erridge C, Kennedy S, Spickett CM, et al. Oxidized phospholipid inhibition of toll-like receptor (TLR) signaling is restricted to TLR2 and TLR4: roles for CD14, LPS-binding protein, and MD2 as targets for specificity of inhibition. J Biol Chem. 2008;283:24748–24759. doi: https://doi.org/10.1074/jbc.M800352200
  70. Никонова А.А., Хаитов М.Р., Хаитов Р.М. Перспективы использования агонистов и антагонистов Toll-подобных рецепторов для профилактики и лечения вирусных инфекций // Медицинская иммунология. — 2019. — Т. 21.— № 3. — С. 937–406. [Nikonova AA, Khaitov MR, Khaitov RM. Perspektivy ispol’zovaniya agonistov i antagonistov dorozhnyye-podobnykh retseptorov dlya profilaktiki i lecheniya virusnykh infektsiy. Meditsinskaya Immunologiya. 2019;21(3):937–406. (In Russ.)] doi: https://doi.org/doi.org/10.15789/1563-0625-2019-3-397-40626
  71. Dowling JK, Mansell A. Toll-like receptors: the swiss army knife of immunity and vaccine development. Clin. Transl. Immunology. 2016;5(5):e85. doi: https://doi.org/10.1038/cti.2016.22

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Рисунок. Схема активации провоспалительного TLRs-сигналинга насыщенными жирными кислотами и окисленными фосфолипидами.

Download (242KB)

Copyright (c) 2020 "Paediatrician" Publishers LLC

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».