Роль экстраклеточных везикул различного происхождения в развитии преэклампсии

Обложка

Цитировать

Полный текст

Аннотация

Преэклампсия – это клинически неблагоприятный исход беременности, определяющий основные показатели материнской и/ или перинатальной заболеваемости и смертности. Согласно современным представлениям, центральная роль в развитии преэклампсии принадлежит плаценте, при этом межклеточные и межвезикулярные коммуникации с участием экстраклеточных везикул (extracellular vesicles, EVs) инициируют целый каскад различных биологических эффектов, определяя механизмы онтогенеза гестационного процесса в норме и патологии. Экстраклеточные везикулы (EVs) при преэклампсии вырабатываются как синцитиотрофобластом, так и материнским организмом — клетками кровеносной (тромбоциты, эритроциты, лейкоциты) и сердечно-сосудистой (эндотелий сосудов, гладкомышечная мускулатура) систем. Изменения концентрации этих EVs в плазме крови, могут способствовать реализации преэклампсии, усиливая провоспалительные и прокоагулянтные состояния, свойственные процессу гестации. В настоящем обзоре основное внимание уделяется имеющейся в свободном доступе информации о возможных взаимодействиях между EVs плацентарного и материнского происхождения, а также о влиянии EVs различного происхождения на гемостатический баланс. Понимание вклада EVs в развитие преэклампсии может способствовать углублению знаний о ее патогенезе и определить диагностическую и прогностическую значимость экстраклеточных везикул в качестве биомаркеров.

Об авторах

Мария Геннадьевна Николаева

Алтайский Государственный медицинский Университет; Национальный медицинский исследовательский центр гематологии

Автор, ответственный за переписку.
Email: nikolmg@yandex.ru
ORCID iD: 0000-0001-9459-5698
SPIN-код: 8295-9290
Scopus Author ID: 57191960907
ResearcherId: AAI-6271-2020

доктор медицинских наук, доцент кафедры акушерства и гинекологии с курсом ДПО

Россия, 656038, Барнаул, проспект Ленина 40; Барнаул

Василиса Юрьевна Терехина

Алтайский государственный медицинский университет

Email: vasutka_07@mail.ru
ORCID iD: 0000-0003-0695-6145
SPIN-код: 9359-1428

ассистент кафедры акушерства и гинекологии с курсом ДПО

Россия, 656038, Барнаул, проспект Ленина 40

Алексей Владимирович Кудинов

Национальный медицинский исследовательский центр гематологии

Email: kudinovalexej@gmail.com
ORCID iD: 0000-0002-0967-6117
SPIN-код: 6231-4604
Scopus Author ID: 37102157300
ResearcherId: AAB-8493-2020

кандидат биологических наук, старший научный сотрудник

Россия, Барнаул

Андрей Павлович Момот

Алтайский государственный медицинский университет; Национальный медицинский исследовательский центр гематологии

Email: xyzan@yandex.ru
ORCID iD: 0000-0002-8413-5484
SPIN-код: 8464-9030
Scopus Author ID: 6603848680
ResearcherId: M-7923-2015

доктор медицинских наук, профессор

Россия, 656038, Барнаул, проспект Ленина 40; Барнаул

Список литературы

  1. La Rocca C, Carbone F, Longobardi S, Matarese G. The immunology of pregnancy: regulatory T cells control maternal immune tolerance toward the fetus. Immunol Lett. 2014;162(1):41–48. doi: https://doi.org/10.1016/J.IMLET.2014.06.013
  2. Clemmens H, Lambert DW. Extracellular vesicles: Translational challenges and opportunities. Biochem Soc Trans. 2018;46(5):1073–1082. doi: https://doi.org/10.1042/BST20180112
  3. Pieragostino D, Lanuti P, Cicalini I, et al. Proteomics characterization of extracellular vesicles sorted by flow cytometry reveals a disease-specific molecular cross-talk from cerebrospinal fluid and tears in multiple sclerosis. J Proteom. 2019;204:103403. doi: https://doi.org/10.1016/j.jprot.2019.103403
  4. Grande R, Dovizio M, Marcone S, et al. Platelet-Derived Microparticles from Obese Individuals: Characterization of Number, Size, Proteomics, and CrosstalkWith Cancer and Endothelial Cells. Front Pharmacol. 2019;10:7. doi: https://doi.org/10.3389/fphar.2019.00007
  5. Jaiswal R, Sedger LM. Intercellular Vesicular Transfer by Exosomes, Microparticles and Oncosomes — Implications for Cancer Biology and Treatments. Front Oncol. 2019;9:125. doi: https://doi.org/10.3389/fonc.2019.00125
  6. Willms E, Cabañas C, Mäger I, et al. Extracellular Vesicle Heterogeneity: Subpopulations, Isolation Techniques, and Diverse Functions in Cancer Progression. Front Immunol. 2018;9:738. doi: https://doi.org/10.3389/fimmu.2018.00738
  7. Kakarla R, Hur J, Kim YJ, et al. Apoptotic cell-derived exosomes: Messages from dying cells. Exp Mol Med. 2020;52(1):1–6. doi: https://doi.org/10.1038/s12276-019-0362-8
  8. Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7:1535750. doi: https://doi.org/10.1080/20013078.2018.1535750
  9. Klein-Scory S, Tehrani MM, Eilert-Micus C, et al. New insights in the composition of extracellular vesicles from pancreatic cancer cells: Implications for biomarkers and functions. Proteome Sci. 2014;12(1):50. doi: https://doi.org/10.1186/s12953-014-0050-5
  10. Кубатиев А.А., Боровая Т.Г., Жуковицкая В.Г., и др. Микрочастицы тромбоцитов: образование и свойства // Патогенез. — 2017. — Т. 15. — № 2. — С. 4–13. [Kubatiev AA, Borovaya TG, ZHukovickaya VG, i dr. Mikrochasticy trombocitov: obrazovanie i svojstva. Patogenez. 2017;15(2):4–13. (In Russ.)] doi: https://doi.org/10.25557/GM.2017.2.7296
  11. Пантелеев М.А., Абаева А.А., Баландина А.Н., и др. Внеклеточные везикулы плазмы крови: состав, происхождение, свойства // Биологические мембраны. — 2017. — Т. 34. — № 3. — С. 155–161. [Panteleev MA, Abaeva AA, Balandina AN, i dr. Vnekletochnye vezikuly plazmy krovi: sostav, proiskhozhdenie, svojstva. Biologicheskie Membrany. 2017;34(3):155–161. (In Russ.)] doi: https://doi.org/10.7868/S0233475517030069
  12. Керкешко Г.О., Кореневский А.В., Соколов Д.И., Сельков С.А. Роль взаимодействия экстраклеточных микровезикул трофобласта с клетками иммунной системы и эндотелия в патогенезе преэклампсии // Медицинская иммунология. — 2018. — Т. 20. — № 4. — С. 485–514. [Kerkeshko GO, Korenevskij AV, Sokolov DI, Sel’kov SA. Rol’ vzaimodejstviya ekstrakletochnyh mikrovezikul trofoblasta s kletkami immunnoj sistemy i endoteliya v patogeneze preeklampsii. Medicinskaya Immunologiya. 2018;20(4):485–514. (In Russ.)] doi: https://doi.org/10.15789/1563-0625-2018-4-485-514
  13. Marques FK, Campos FM, Filho OA, et al. Circulating microparticles in severe preeclampsia. Clin Chim Acta. 2012;24(414):253–258. doi: https://doi.org/10.1016/j.cca.2012.09.023
  14. Mikhailova VA, Ovchinnikova OM, Zainulina MS, et al. Detection of microparticles of leukocytic origin in the peripheral blood in normal pregnancy and preeclampsia. Bull Exp Biol Med. 2014;157(6):751– 756. doi: https://doi.org/10.1007/s10517-014-2659-x
  15. Salomon C, Guanzon D, Scholz-Romero K, et al. Placental Exosomes as Early Biomarker of Preeclampsia: Potential Role of Exosomal MicroRNAs Across Gestation. J Clin Endocrinol Metab. 2017;102;3182–3194. doi: https://doi.org/10.1210/jc.2017-00672
  16. Zhang Y, Zhao C, Wei Y, et al. Increased circulating microparticles in women with preeclampsia. Int J Lab Hematol. 2018;40(3):352–358. doi: https://doi.org/10.1111/ijlh.12796
  17. McElrath TF, Cantonwine DE, Gray KJ, et al. Late first trimester circulating microparticle proteins predict the risk of preeclampsia < 35 weeks and suggest phenotypic differences among affected cases. Sci Rep. 2020;10(1):17353. doi: https://doi.org/10.1038/s41598-020-74078-w
  18. Goswami D, Tannetta DS, Magee LA, et al. Excess syncytiotrophoblast microparticle shedding is a feature of early-onset pre-eclampsia, but not normotensive intrauterine growth restriction. Placenta. 2006;27(1):56–61. doi: https://doi.org/10.1016/j.placenta.2004.11.007
  19. Verma S, Pillay P, Naicker T, et al. Placental hypoxia inducible factor-1α & CHOP immuno-histochemical expression relative to maternal circulatory syncytiotrophoblast micro-vesicles in preeclamptic and normotensive pregnancies. Eur J Obstet Gynecol Reprod Biol. 2018;220:18–24. doi: https://doi.org/10.1016/j.ejogrb.2017.11.004
  20. Jadli A, Ghosh K, Damania K, et al. Prediction of preeclampsia using combination of biomarkers at 18–23 weeks of gestation: A nested case-control study. Pregnancy Hypertens. 2019;17:20–27. doi: https://doi.org/10.1016/j.preghy.2019.04.006
  21. Campello E, Spiezia L, Radu CM, et al. Circulating microparticles in umbilical cord blood in normal pregnancy and pregnancy with preeclampsia. Thromb Res. 2015;136(2):427–431. doi: https://doi.org/10.1016/j.thromres.2015.05.029
  22. Lok CA, Nieuwland R, Sturk A, et al. Microparticle-associated P-selectin reflects platelet activation in preeclampsia. Platelets. 2007;18(1):68–72. doi: https://doi.org/10.1080/09537100600864285
  23. Kohli S, Ranjan S, Hoffmann J, et al. Maternal extracellular vesicles and platelets promote preeclampsia via inflammasome activation in trophoblasts. Blood. 2016;128(17):2153–2164. doi: https://doi.org/10.1182/blood-2016-03-705434
  24. Faas MM, de Vos P. Maternal monocytes in pregnancy and preeclampsia in humans and in rats. J Reprod Immunol. 2017;119:91–97. doi: https://doi.org/10.1016/j.jri.2016.06.009
  25. Dignat-George F, Boulanger CM. The many faces of endothelial microparticles. Arterioscler Thromb Vasc Biol. 2011;31:27–33. doi: https://doi.org/10.1161/ATVBAHA.110.218123
  26. Petrozella L, Mahendroo M, Timmons B, et al. Endothelial microparticles and the antiangiogenic state in preeclampsia and the postpartum period. Am J Obstet Gynecol. 2012;20(2):140.e20–6. doi: https://doi.org/10.1016/j.ajog.2012.06.011
  27. Perez-Gonzalez R, Gauthier SA, Kumar A, et al. The exosome secretory pathway transports amyloid precursor protein carboxyl-terminal fragments from the cell into the brain extracellular space. J Biol Chem. 2012;287(51):43108–43115.
  28. Schmorl G. Pathologisch-anatomischeuntersuchungenuber puerperal-eklampsie (pathological and anatomical examinations of puerperal-eclampsia). Leipzig: FCW Vogel; 1893:106.
  29. Chua S, Wilkins T, Sargent I, Redman C. Trophoblast deportation in pre-eclamptic pregnancy. Br J Obstet Gynaecol. 1991;98(10):973–979. doi: https://doi.org/10.1111/j.1471-0528.1991.tb15334.x
  30. Ikle FA. Dissemination of syncytial trophoblastic cells in the maternal blood stream during pregnancy. Bull Schweiz Akad Med Wiss. 1964;20:62–72.
  31. Милованов А.П., Волощук И.Н. Депортированный синцитиотрофобласт и плацентарные микрочастицы в организме матери при нормальной беременности и преэклампсии (28 лет спустя) // Архив патологии. — 2017. — Т. 79. — № 1. — С. 61–67. [Milovanov AP, Voloshchuk IN. Deportirovannyj sincitiotrofoblast i placentarnye mikrochasticy v organizme materi pri normal’noj beremennosti i preeklampsii (28 let spustya). Arhiv Patologii. 2017;79(1):61–67. (In Russ.)] doi: https://doi.org/10.17116/patol201779161-67
  32. Tannetta DS, Hunt K, Jones CI, et al. Syncytiotrophoblast extracellular vesicles from preeclampsia placentas differentially affect platelet function. PLoS One. 2015;10(11):e0142538. doi: https://doi.org/10.1371/journal.pone.0142538
  33. Salomon C, Torres MJ, Kobayashi M, et al. A gestational profile of placental exosomes in maternal plasma and their effects on endothelial cell migration. PLoS One. 2014;9(6):e98667. doi: https://doi.org/10.1371/journal.pone.0098667
  34. Morgan TK. Cell- and size-specific analysis of placental extracellular vesicles in maternal plasma and pre-eclampsia. Transl Res. 2018;201:40–48. doi: https://doi.org/10.1016/j.trsl.2018.08.004
  35. Motta-Mejia C, Kandzija N, Zhang W, et al. Placental Vesicles Carry Active Endothelial Nitric Oxide Synthase and Their Activity is Reduced in Preeclampsia. Hypertension. 2017;70:372–381. doi: https://doi.org/10.1161/HYPERTENSIONAHA.117.09321
  36. Takov K, He Z, Johnston HE, et al. Small extracellular vesicles secreted from human amniotic fluid mesenchymal stromal cells possess cardioprotective and promigratory potential. Basic Res Cardiol. 2020;115:26. doi: https://doi.org/10.1007/s00395-020-0785-3
  37. Collett GP, Redman CW, Sargent IL, Vatish M. Endoplasmic reticulum stress stimulates the release of extracellular vesicles carrying danger-associated molecular pattern (DAMP) molecules. Oncotarget. 2018;9(6):6707–6717. doi: https://doi.org/10.18632/oncotarget.24158
  38. Leung DN, Smith SC, To KF, et al. Increased placental apoptosis in pregnancies complicated by preeclampsia. Am J Obstet Gynecol. 2001;184(6):1249–1250. doi: https://doi.org/10.1067/mob.2001.112906
  39. Pillay P, Maharaj N, Moodley J, Mackraj I. Placental exosomes and pre-eclampsia: Maternal circulating levels in normal pregnancies and, early and late onset pre-eclamptic pregnancies. Placenta. 2016;46:18–25.
  40. Lau SY, Barrett CJ, Guild SJ, Chamley LW. Necrotic trophoblast debris increases blood pressure during pregnancy. J Reprod Immunol. 2013;97(2):175–182. doi: https://doi.org/10.1016/j.jri.2012.12.005
  41. Zhang L, Wang Y, Liao AH. Quantitative abnormalities of fetal trophoblast cells in maternal circulation in preeclampsia. Prenat Diagn. 2008;28(12):1160–1166. doi: https://doi.org/10.1002/pd.5521
  42. Orozco AF, Jorgez CJ, Ramos-Perez WD, et al. Placental release of distinct DNA-associated microparticles into maternal circulation: reflective of gestation time and preeclampsia. Placenta. 2009;30(10):891–897. doi: https://doi.org/10.1016/j.placenta.2009.06.012
  43. Baig S, Kothandaraman N, Manikandan J, et al. Proteomic analysis of human placental syncytiotrophoblast microvesicles in preeclampsia. Clin Proteomics. 2014;11(1):40. doi: https://doi.org/10.1186/1559-0275-11-40
  44. Hausvater A, Giannone T, Sandoval Y-HG, Doonan RJ, Antonopoulos CN, Matsoukis IL, Petridou ET, Daskalopoulou SS. The association between preeclampsia and arterial stiffness. J Hypertens. 2012;30:17–33. doi: https://doi.org/10.1097/HJH.0b013e32834e4b0f
  45. Gill M, Motta-Mejia C, Kandzija N, et al. Placental Syncytiotrophoblast-Derived Extracellular Vesicles Carry Active NEP (Neprilysin) and Are Increased in Preeclampsia. Hypertension. 2019;73(5):1112–1119. doi: https://doi.org/10.1161/HYPERTENSIONAHA.119.12707
  46. Sokolov DI, Ovchinnikova OM, Korenkov DA, et al. Influence of peripheral blood microparticles of pregnant women with preeclampsia on the phenotype of monocytes. Transl Res. 2016;170:112–123. doi: https://doi.org/10.1016/j.trsl.2014.11.009
  47. Nair S, Salomon C. Extracellular vesicles and their immunomodulatory functions in pregnancy. Semin Immunopathol. 2018;40:425–437. doi: https://doi.org/10.1007/s00281-018-0680-2
  48. Holder BS, Jones T, Sancho Shimizu V, et al. Macrophage exosomes induce placental inflammatory cytokines: a novel mode of maternal-placental messaging. Traffic. 2016;17:168–178. doi: https://doi.org/10.1111/tra.12352
  49. Southcombe J, Tannetta D, Redman C, Sargent I. The immunomodulatory role of syncytiotrophoblast microvesicles. PLoS One. 2011;6:e20245. doi: https://doi.org/10.1371/journal.pone.0020245
  50. Janes SL, Goodall AH. Flow cytometric detection of circulating activated platelets and platelet hyper-responsiveness in pre-eclampsia and pregnancy. Clin Sci (Lond). 1994;86(6):731–739. doi: https://doi.org/10.1042/cs0860731
  51. Chang X, Yao J, He Q, et al. Exosomes from Women with Preeclampsia Induced Vascular Dysfunction by Delivering sFlt (Soluble Fms-Like Tyrosine Kinase)-1 and sEng (Soluble Endoglin) to Endothelial Cells. Hypertension. 2018;72(6):1381–1390. doi: https://doi.org/10.1161/HYPERTENSIONAHA.118.11706
  52. Xiao X, Xiao F, Zhao M, et al. Treating normal early gestation placentae with preeclamptic sera produces extracellular micro and nano vesicles that activate endothelial cells. J Reprod Immunol. 2017;120:34–41. doi: https://doi.org/10.1016/j.jri.2017.04.004
  53. Момот А.П. Физиологическая беременность как модель несостоявшегося тромбоза // Акушерство и гинекология Санкт-Петербурга. — 2017. — № 2. — С. 44–52. [Momot AP. Fiziologicheskaya beremennost’ kak model’ nesostoyavshegosya tromboza. Akusherstvo i Ginekologiya Sankt-Peterburga. 2017;2:44–52. (In Russ.)]
  54. Lacroix R, Dignat George F. Microparticles as a circulating source of procoagulant and fibrinolytic activities in the circulation. Thromb Res. 2012;129(2):27–29. doi: https://doi.org/10.1016/j.thromres.2012.02.025
  55. Khaspekova SG, Antonova OA, Shustova ON, et al. Activity of Tissue Factor in Microparticles Produced in vitro by Endothelial Cells, Monocytes, Granulocytes, and Platelets. Biochemistry. 2016;81(2):114–121. doi: https://doi.org/10.1134/S000629791602005X
  56. Vallier L, Cointe S, Lacroix R, et al. Microparticles and fibrinolysis. Semin Thromb Hemost. 2017;43:129–134. Epub 2016 Dec 6. doi: https://doi.org/10.1055/s-0036-1592301
  57. Han C, Wang C, Chen Y, et al. Placenta-derived extracellular vesicles induce preeclampsia in mouse models. Haematologica. 2020; 105(6):1686–1694. doi: https://doi.org/10.3324/haematol.2019.226209
  58. Aharon A, Katzenell S, Tamari T, Brenner B. Microparticles bearing tissue factor and tissue factor pathway inhibitor in gestational vascular complications. J Thromb Haemost. 2009;7(6):1047–1050. doi: https://doi.org/10.1111/j.1538-7836.2009.03342.x
  59. Szotowski B, Antoniak S, Poller W, et al. Procoagulant soluble tissue factor is released from endothelial cells in response to inflammatory cytokines. Circ Res. 2005;96:1233–1239. doi: https://doi.org/10.1161/01.RES.0000171805.24799.fa
  60. Gardiner C, Tannetta DS, Simms CA, et al. Syncytiotrophoblast microvesicles released from pre-eclampsia placentae exhibit increased tissue factor activity. PloS One. 2011;6(10):e26313. doi: https://doi.org/10.1371/journal.pone.0026313.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Издательство "Педиатръ", 2021

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».