Роль экстраклеточных везикул различного происхождения в развитии преэклампсии
- Авторы: Николаева М.Г.1,2, Терехина В.Ю.3, Кудинов А.В.2, Момот А.П.3,2
-
Учреждения:
- Алтайский Государственный медицинский Университет
- Национальный медицинский исследовательский центр гематологии
- Алтайский государственный медицинский университет
- Выпуск: Том 76, № 3 (2021)
- Страницы: 237-243
- Раздел: АКТУАЛЬНЫЕ ВОПРОСЫ АКУШЕРСТВА И ГИНЕКОЛОГИИ
- URL: https://ogarev-online.ru/vramn/article/view/125647
- DOI: https://doi.org/10.15690/vramn1369
- ID: 125647
Цитировать
Полный текст
Аннотация
Преэклампсия – это клинически неблагоприятный исход беременности, определяющий основные показатели материнской и/ или перинатальной заболеваемости и смертности. Согласно современным представлениям, центральная роль в развитии преэклампсии принадлежит плаценте, при этом межклеточные и межвезикулярные коммуникации с участием экстраклеточных везикул (extracellular vesicles, EVs) инициируют целый каскад различных биологических эффектов, определяя механизмы онтогенеза гестационного процесса в норме и патологии. Экстраклеточные везикулы (EVs) при преэклампсии вырабатываются как синцитиотрофобластом, так и материнским организмом — клетками кровеносной (тромбоциты, эритроциты, лейкоциты) и сердечно-сосудистой (эндотелий сосудов, гладкомышечная мускулатура) систем. Изменения концентрации этих EVs в плазме крови, могут способствовать реализации преэклампсии, усиливая провоспалительные и прокоагулянтные состояния, свойственные процессу гестации. В настоящем обзоре основное внимание уделяется имеющейся в свободном доступе информации о возможных взаимодействиях между EVs плацентарного и материнского происхождения, а также о влиянии EVs различного происхождения на гемостатический баланс. Понимание вклада EVs в развитие преэклампсии может способствовать углублению знаний о ее патогенезе и определить диагностическую и прогностическую значимость экстраклеточных везикул в качестве биомаркеров.
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
Мария Геннадьевна Николаева
Алтайский Государственный медицинский Университет; Национальный медицинский исследовательский центр гематологии
Автор, ответственный за переписку.
Email: nikolmg@yandex.ru
ORCID iD: 0000-0001-9459-5698
SPIN-код: 8295-9290
Scopus Author ID: 57191960907
ResearcherId: AAI-6271-2020
доктор медицинских наук, доцент кафедры акушерства и гинекологии с курсом ДПО
Россия, 656038, Барнаул, проспект Ленина 40; БарнаулВасилиса Юрьевна Терехина
Алтайский государственный медицинский университет
Email: vasutka_07@mail.ru
ORCID iD: 0000-0003-0695-6145
SPIN-код: 9359-1428
ассистент кафедры акушерства и гинекологии с курсом ДПО
Россия, 656038, Барнаул, проспект Ленина 40Алексей Владимирович Кудинов
Национальный медицинский исследовательский центр гематологии
Email: kudinovalexej@gmail.com
ORCID iD: 0000-0002-0967-6117
SPIN-код: 6231-4604
Scopus Author ID: 37102157300
ResearcherId: AAB-8493-2020
кандидат биологических наук, старший научный сотрудник
Россия, БарнаулАндрей Павлович Момот
Алтайский государственный медицинский университет; Национальный медицинский исследовательский центр гематологии
Email: xyzan@yandex.ru
ORCID iD: 0000-0002-8413-5484
SPIN-код: 8464-9030
Scopus Author ID: 6603848680
ResearcherId: M-7923-2015
доктор медицинских наук, профессор
Россия, 656038, Барнаул, проспект Ленина 40; БарнаулСписок литературы
- La Rocca C, Carbone F, Longobardi S, Matarese G. The immunology of pregnancy: regulatory T cells control maternal immune tolerance toward the fetus. Immunol Lett. 2014;162(1):41–48. doi: https://doi.org/10.1016/J.IMLET.2014.06.013
- Clemmens H, Lambert DW. Extracellular vesicles: Translational challenges and opportunities. Biochem Soc Trans. 2018;46(5):1073–1082. doi: https://doi.org/10.1042/BST20180112
- Pieragostino D, Lanuti P, Cicalini I, et al. Proteomics characterization of extracellular vesicles sorted by flow cytometry reveals a disease-specific molecular cross-talk from cerebrospinal fluid and tears in multiple sclerosis. J Proteom. 2019;204:103403. doi: https://doi.org/10.1016/j.jprot.2019.103403
- Grande R, Dovizio M, Marcone S, et al. Platelet-Derived Microparticles from Obese Individuals: Characterization of Number, Size, Proteomics, and CrosstalkWith Cancer and Endothelial Cells. Front Pharmacol. 2019;10:7. doi: https://doi.org/10.3389/fphar.2019.00007
- Jaiswal R, Sedger LM. Intercellular Vesicular Transfer by Exosomes, Microparticles and Oncosomes — Implications for Cancer Biology and Treatments. Front Oncol. 2019;9:125. doi: https://doi.org/10.3389/fonc.2019.00125
- Willms E, Cabañas C, Mäger I, et al. Extracellular Vesicle Heterogeneity: Subpopulations, Isolation Techniques, and Diverse Functions in Cancer Progression. Front Immunol. 2018;9:738. doi: https://doi.org/10.3389/fimmu.2018.00738
- Kakarla R, Hur J, Kim YJ, et al. Apoptotic cell-derived exosomes: Messages from dying cells. Exp Mol Med. 2020;52(1):1–6. doi: https://doi.org/10.1038/s12276-019-0362-8
- Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7:1535750. doi: https://doi.org/10.1080/20013078.2018.1535750
- Klein-Scory S, Tehrani MM, Eilert-Micus C, et al. New insights in the composition of extracellular vesicles from pancreatic cancer cells: Implications for biomarkers and functions. Proteome Sci. 2014;12(1):50. doi: https://doi.org/10.1186/s12953-014-0050-5
- Кубатиев А.А., Боровая Т.Г., Жуковицкая В.Г., и др. Микрочастицы тромбоцитов: образование и свойства // Патогенез. — 2017. — Т. 15. — № 2. — С. 4–13. [Kubatiev AA, Borovaya TG, ZHukovickaya VG, i dr. Mikrochasticy trombocitov: obrazovanie i svojstva. Patogenez. 2017;15(2):4–13. (In Russ.)] doi: https://doi.org/10.25557/GM.2017.2.7296
- Пантелеев М.А., Абаева А.А., Баландина А.Н., и др. Внеклеточные везикулы плазмы крови: состав, происхождение, свойства // Биологические мембраны. — 2017. — Т. 34. — № 3. — С. 155–161. [Panteleev MA, Abaeva AA, Balandina AN, i dr. Vnekletochnye vezikuly plazmy krovi: sostav, proiskhozhdenie, svojstva. Biologicheskie Membrany. 2017;34(3):155–161. (In Russ.)] doi: https://doi.org/10.7868/S0233475517030069
- Керкешко Г.О., Кореневский А.В., Соколов Д.И., Сельков С.А. Роль взаимодействия экстраклеточных микровезикул трофобласта с клетками иммунной системы и эндотелия в патогенезе преэклампсии // Медицинская иммунология. — 2018. — Т. 20. — № 4. — С. 485–514. [Kerkeshko GO, Korenevskij AV, Sokolov DI, Sel’kov SA. Rol’ vzaimodejstviya ekstrakletochnyh mikrovezikul trofoblasta s kletkami immunnoj sistemy i endoteliya v patogeneze preeklampsii. Medicinskaya Immunologiya. 2018;20(4):485–514. (In Russ.)] doi: https://doi.org/10.15789/1563-0625-2018-4-485-514
- Marques FK, Campos FM, Filho OA, et al. Circulating microparticles in severe preeclampsia. Clin Chim Acta. 2012;24(414):253–258. doi: https://doi.org/10.1016/j.cca.2012.09.023
- Mikhailova VA, Ovchinnikova OM, Zainulina MS, et al. Detection of microparticles of leukocytic origin in the peripheral blood in normal pregnancy and preeclampsia. Bull Exp Biol Med. 2014;157(6):751– 756. doi: https://doi.org/10.1007/s10517-014-2659-x
- Salomon C, Guanzon D, Scholz-Romero K, et al. Placental Exosomes as Early Biomarker of Preeclampsia: Potential Role of Exosomal MicroRNAs Across Gestation. J Clin Endocrinol Metab. 2017;102;3182–3194. doi: https://doi.org/10.1210/jc.2017-00672
- Zhang Y, Zhao C, Wei Y, et al. Increased circulating microparticles in women with preeclampsia. Int J Lab Hematol. 2018;40(3):352–358. doi: https://doi.org/10.1111/ijlh.12796
- McElrath TF, Cantonwine DE, Gray KJ, et al. Late first trimester circulating microparticle proteins predict the risk of preeclampsia < 35 weeks and suggest phenotypic differences among affected cases. Sci Rep. 2020;10(1):17353. doi: https://doi.org/10.1038/s41598-020-74078-w
- Goswami D, Tannetta DS, Magee LA, et al. Excess syncytiotrophoblast microparticle shedding is a feature of early-onset pre-eclampsia, but not normotensive intrauterine growth restriction. Placenta. 2006;27(1):56–61. doi: https://doi.org/10.1016/j.placenta.2004.11.007
- Verma S, Pillay P, Naicker T, et al. Placental hypoxia inducible factor-1α & CHOP immuno-histochemical expression relative to maternal circulatory syncytiotrophoblast micro-vesicles in preeclamptic and normotensive pregnancies. Eur J Obstet Gynecol Reprod Biol. 2018;220:18–24. doi: https://doi.org/10.1016/j.ejogrb.2017.11.004
- Jadli A, Ghosh K, Damania K, et al. Prediction of preeclampsia using combination of biomarkers at 18–23 weeks of gestation: A nested case-control study. Pregnancy Hypertens. 2019;17:20–27. doi: https://doi.org/10.1016/j.preghy.2019.04.006
- Campello E, Spiezia L, Radu CM, et al. Circulating microparticles in umbilical cord blood in normal pregnancy and pregnancy with preeclampsia. Thromb Res. 2015;136(2):427–431. doi: https://doi.org/10.1016/j.thromres.2015.05.029
- Lok CA, Nieuwland R, Sturk A, et al. Microparticle-associated P-selectin reflects platelet activation in preeclampsia. Platelets. 2007;18(1):68–72. doi: https://doi.org/10.1080/09537100600864285
- Kohli S, Ranjan S, Hoffmann J, et al. Maternal extracellular vesicles and platelets promote preeclampsia via inflammasome activation in trophoblasts. Blood. 2016;128(17):2153–2164. doi: https://doi.org/10.1182/blood-2016-03-705434
- Faas MM, de Vos P. Maternal monocytes in pregnancy and preeclampsia in humans and in rats. J Reprod Immunol. 2017;119:91–97. doi: https://doi.org/10.1016/j.jri.2016.06.009
- Dignat-George F, Boulanger CM. The many faces of endothelial microparticles. Arterioscler Thromb Vasc Biol. 2011;31:27–33. doi: https://doi.org/10.1161/ATVBAHA.110.218123
- Petrozella L, Mahendroo M, Timmons B, et al. Endothelial microparticles and the antiangiogenic state in preeclampsia and the postpartum period. Am J Obstet Gynecol. 2012;20(2):140.e20–6. doi: https://doi.org/10.1016/j.ajog.2012.06.011
- Perez-Gonzalez R, Gauthier SA, Kumar A, et al. The exosome secretory pathway transports amyloid precursor protein carboxyl-terminal fragments from the cell into the brain extracellular space. J Biol Chem. 2012;287(51):43108–43115.
- Schmorl G. Pathologisch-anatomischeuntersuchungenuber puerperal-eklampsie (pathological and anatomical examinations of puerperal-eclampsia). Leipzig: FCW Vogel; 1893:106.
- Chua S, Wilkins T, Sargent I, Redman C. Trophoblast deportation in pre-eclamptic pregnancy. Br J Obstet Gynaecol. 1991;98(10):973–979. doi: https://doi.org/10.1111/j.1471-0528.1991.tb15334.x
- Ikle FA. Dissemination of syncytial trophoblastic cells in the maternal blood stream during pregnancy. Bull Schweiz Akad Med Wiss. 1964;20:62–72.
- Милованов А.П., Волощук И.Н. Депортированный синцитиотрофобласт и плацентарные микрочастицы в организме матери при нормальной беременности и преэклампсии (28 лет спустя) // Архив патологии. — 2017. — Т. 79. — № 1. — С. 61–67. [Milovanov AP, Voloshchuk IN. Deportirovannyj sincitiotrofoblast i placentarnye mikrochasticy v organizme materi pri normal’noj beremennosti i preeklampsii (28 let spustya). Arhiv Patologii. 2017;79(1):61–67. (In Russ.)] doi: https://doi.org/10.17116/patol201779161-67
- Tannetta DS, Hunt K, Jones CI, et al. Syncytiotrophoblast extracellular vesicles from preeclampsia placentas differentially affect platelet function. PLoS One. 2015;10(11):e0142538. doi: https://doi.org/10.1371/journal.pone.0142538
- Salomon C, Torres MJ, Kobayashi M, et al. A gestational profile of placental exosomes in maternal plasma and their effects on endothelial cell migration. PLoS One. 2014;9(6):e98667. doi: https://doi.org/10.1371/journal.pone.0098667
- Morgan TK. Cell- and size-specific analysis of placental extracellular vesicles in maternal plasma and pre-eclampsia. Transl Res. 2018;201:40–48. doi: https://doi.org/10.1016/j.trsl.2018.08.004
- Motta-Mejia C, Kandzija N, Zhang W, et al. Placental Vesicles Carry Active Endothelial Nitric Oxide Synthase and Their Activity is Reduced in Preeclampsia. Hypertension. 2017;70:372–381. doi: https://doi.org/10.1161/HYPERTENSIONAHA.117.09321
- Takov K, He Z, Johnston HE, et al. Small extracellular vesicles secreted from human amniotic fluid mesenchymal stromal cells possess cardioprotective and promigratory potential. Basic Res Cardiol. 2020;115:26. doi: https://doi.org/10.1007/s00395-020-0785-3
- Collett GP, Redman CW, Sargent IL, Vatish M. Endoplasmic reticulum stress stimulates the release of extracellular vesicles carrying danger-associated molecular pattern (DAMP) molecules. Oncotarget. 2018;9(6):6707–6717. doi: https://doi.org/10.18632/oncotarget.24158
- Leung DN, Smith SC, To KF, et al. Increased placental apoptosis in pregnancies complicated by preeclampsia. Am J Obstet Gynecol. 2001;184(6):1249–1250. doi: https://doi.org/10.1067/mob.2001.112906
- Pillay P, Maharaj N, Moodley J, Mackraj I. Placental exosomes and pre-eclampsia: Maternal circulating levels in normal pregnancies and, early and late onset pre-eclamptic pregnancies. Placenta. 2016;46:18–25.
- Lau SY, Barrett CJ, Guild SJ, Chamley LW. Necrotic trophoblast debris increases blood pressure during pregnancy. J Reprod Immunol. 2013;97(2):175–182. doi: https://doi.org/10.1016/j.jri.2012.12.005
- Zhang L, Wang Y, Liao AH. Quantitative abnormalities of fetal trophoblast cells in maternal circulation in preeclampsia. Prenat Diagn. 2008;28(12):1160–1166. doi: https://doi.org/10.1002/pd.5521
- Orozco AF, Jorgez CJ, Ramos-Perez WD, et al. Placental release of distinct DNA-associated microparticles into maternal circulation: reflective of gestation time and preeclampsia. Placenta. 2009;30(10):891–897. doi: https://doi.org/10.1016/j.placenta.2009.06.012
- Baig S, Kothandaraman N, Manikandan J, et al. Proteomic analysis of human placental syncytiotrophoblast microvesicles in preeclampsia. Clin Proteomics. 2014;11(1):40. doi: https://doi.org/10.1186/1559-0275-11-40
- Hausvater A, Giannone T, Sandoval Y-HG, Doonan RJ, Antonopoulos CN, Matsoukis IL, Petridou ET, Daskalopoulou SS. The association between preeclampsia and arterial stiffness. J Hypertens. 2012;30:17–33. doi: https://doi.org/10.1097/HJH.0b013e32834e4b0f
- Gill M, Motta-Mejia C, Kandzija N, et al. Placental Syncytiotrophoblast-Derived Extracellular Vesicles Carry Active NEP (Neprilysin) and Are Increased in Preeclampsia. Hypertension. 2019;73(5):1112–1119. doi: https://doi.org/10.1161/HYPERTENSIONAHA.119.12707
- Sokolov DI, Ovchinnikova OM, Korenkov DA, et al. Influence of peripheral blood microparticles of pregnant women with preeclampsia on the phenotype of monocytes. Transl Res. 2016;170:112–123. doi: https://doi.org/10.1016/j.trsl.2014.11.009
- Nair S, Salomon C. Extracellular vesicles and their immunomodulatory functions in pregnancy. Semin Immunopathol. 2018;40:425–437. doi: https://doi.org/10.1007/s00281-018-0680-2
- Holder BS, Jones T, Sancho Shimizu V, et al. Macrophage exosomes induce placental inflammatory cytokines: a novel mode of maternal-placental messaging. Traffic. 2016;17:168–178. doi: https://doi.org/10.1111/tra.12352
- Southcombe J, Tannetta D, Redman C, Sargent I. The immunomodulatory role of syncytiotrophoblast microvesicles. PLoS One. 2011;6:e20245. doi: https://doi.org/10.1371/journal.pone.0020245
- Janes SL, Goodall AH. Flow cytometric detection of circulating activated platelets and platelet hyper-responsiveness in pre-eclampsia and pregnancy. Clin Sci (Lond). 1994;86(6):731–739. doi: https://doi.org/10.1042/cs0860731
- Chang X, Yao J, He Q, et al. Exosomes from Women with Preeclampsia Induced Vascular Dysfunction by Delivering sFlt (Soluble Fms-Like Tyrosine Kinase)-1 and sEng (Soluble Endoglin) to Endothelial Cells. Hypertension. 2018;72(6):1381–1390. doi: https://doi.org/10.1161/HYPERTENSIONAHA.118.11706
- Xiao X, Xiao F, Zhao M, et al. Treating normal early gestation placentae with preeclamptic sera produces extracellular micro and nano vesicles that activate endothelial cells. J Reprod Immunol. 2017;120:34–41. doi: https://doi.org/10.1016/j.jri.2017.04.004
- Момот А.П. Физиологическая беременность как модель несостоявшегося тромбоза // Акушерство и гинекология Санкт-Петербурга. — 2017. — № 2. — С. 44–52. [Momot AP. Fiziologicheskaya beremennost’ kak model’ nesostoyavshegosya tromboza. Akusherstvo i Ginekologiya Sankt-Peterburga. 2017;2:44–52. (In Russ.)]
- Lacroix R, Dignat George F. Microparticles as a circulating source of procoagulant and fibrinolytic activities in the circulation. Thromb Res. 2012;129(2):27–29. doi: https://doi.org/10.1016/j.thromres.2012.02.025
- Khaspekova SG, Antonova OA, Shustova ON, et al. Activity of Tissue Factor in Microparticles Produced in vitro by Endothelial Cells, Monocytes, Granulocytes, and Platelets. Biochemistry. 2016;81(2):114–121. doi: https://doi.org/10.1134/S000629791602005X
- Vallier L, Cointe S, Lacroix R, et al. Microparticles and fibrinolysis. Semin Thromb Hemost. 2017;43:129–134. Epub 2016 Dec 6. doi: https://doi.org/10.1055/s-0036-1592301
- Han C, Wang C, Chen Y, et al. Placenta-derived extracellular vesicles induce preeclampsia in mouse models. Haematologica. 2020; 105(6):1686–1694. doi: https://doi.org/10.3324/haematol.2019.226209
- Aharon A, Katzenell S, Tamari T, Brenner B. Microparticles bearing tissue factor and tissue factor pathway inhibitor in gestational vascular complications. J Thromb Haemost. 2009;7(6):1047–1050. doi: https://doi.org/10.1111/j.1538-7836.2009.03342.x
- Szotowski B, Antoniak S, Poller W, et al. Procoagulant soluble tissue factor is released from endothelial cells in response to inflammatory cytokines. Circ Res. 2005;96:1233–1239. doi: https://doi.org/10.1161/01.RES.0000171805.24799.fa
- Gardiner C, Tannetta DS, Simms CA, et al. Syncytiotrophoblast microvesicles released from pre-eclampsia placentae exhibit increased tissue factor activity. PloS One. 2011;6(10):e26313. doi: https://doi.org/10.1371/journal.pone.0026313.
Дополнительные файлы
