The Osteoinductive Potential of Partially Demineralized Bone Matrix and the Possibility of Its Use in Clinical Practice

Cover Page

Cite item

Full Text

Abstract

Today autografts are considered to be an optimal material for bone grafting. However, the collection of material and it’s clinical use is associated with several serious drawbacks, and therefore, in reconstructive surgery, a search for alternative treatment approaches is being conducted. A bone transplant from another person (allo-osteoplasty) is the most natural and logical option for replacing an autobone. Since 1965, allogeneic implants of a partially demineralized bone matrix combining osteoinductive and osteoconductive action have been used in clinical practice. However, the clinical results of the use of this material turned out to be ambiguous, which is due, first of all, to the significant variability of the osteoplastic potential of its various samples. For this reason, in clinical practice, sometimes preference is given to samples of non-demineralized allobone, which retain it’s structure longer. In this paper, we consider factors affecting the osteoinductive activity of a partially demineralized bone matrix, related both to the technological issues of its preparation and to the clinical conditions of use. Issues of the possible improvement of this material were discussed with a view to its further use in medical practice.

About the authors

Alexander S. Pankratov

I.M. Sechenov First Moscow State Medical University (Sechenov University); Russian Medical Academy of Continuing Professional Education

Email: stomat-2008@mail.ru
ORCID iD: 0000-0001-9620-3547
SPIN-code: 9785-2632

MD, PhD, Assistant Professor

Russian Federation, 8 bld. 2, Trubetskaya str., 119991, Moscow; Moscow

Irina S. Fadeeva

Institute of Theoretical and Experimental Biophysics RAS

Email: fadeeva.iteb@gmail.com
ORCID iD: 0000-0002-1709-9970
SPIN-code: 6475-1023

PhD in Biology

Russian Federation, Pushchino-on-Oka, Moscow Region

Yulia B. Yurasova

National Medical Research Center for Traumatology and Orthopedics Named after N.N. Priorov

Email: yyrasova@gmail.com
ORCID iD: 0000-0001-8398-6829

MD, PhD, Assistant Professor

Russian Federation, 8 bld. 2, Trubetskaya str., 119991, Moscow

Vasily M. Grinin

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: grynin@mail.ru
ORCID iD: 0000-0002-2280-8559
SPIN-code: 9663-2378
Scopus Author ID: 7005966400
ResearcherId: U-7910-2019

MD, PhD, Professor

Russian Federation, 8 bld. 2, Trubetskaya str., 119991, Moscow

Igor V. Cherkesov

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Email: cherkesovi@gmail.com
ORCID iD: 0000-0002-4336-4459

MD, PhD

Russian Federation, 8 bld. 2, Trubetskaya str., 119991, Moscow

Vasily V. Korshunov

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Author for correspondence.
Email: korshunov140395@mail.ru
ORCID iD: 0000-0001-6497-0637

MD

Russian Federation, 8 bld. 2, Trubetskaya str., 119991, Moscow

References

  1. Dreyer CH, Rasmussen M, Pedersen RH, et al. Comparisons of Efficacy between Autograft and Allograft on Defect Repair In Vivo in Normal and Osteoporotic Rats. Biomed Res Int. 2020;2020:9358989. doi: https://doi.org/10.1155/2020/9358989
  2. Arrington ED, Smith WJ, Chambers HG, et al. Complications of iliac crest bone graft harvesting. Clin Orthop Relat Res. 1996;329: 300–309. doi: https://doi.org/10.1097/00003086-199608000-00037
  3. Brink O. The choice between allograft or demineralized bone matrix is not unambiguous in trauma surgery. Injury. 2021;52(Suppl2):S2–S28. doi: https://doi.org/10.1016/j.injury.2020.11.013
  4. Urist MR. Bone: Formation by Autoinduction // Science. 1965; 150(3698):893–899. doi: https://doi.org/10.1126/science.150.3698.893
  5. Majzoub J, Ravida A, Starch-Jensen T, et al. Del Amo F. The Influence of Different Grafting Materials on Alveolar Ridge Preservation: a Systematic Review. J Oral Maxillofac Res. 2019;10(3):e6. doi: https://doi.org/10.5037/jomr.2019.10306
  6. Urist MR, Strates BS. Bone morphogenetic protein. J Dent Res. 1971; 50(6):1392–1406. doi: https://doi.org/10.1177/00220345710500060601
  7. Ramly EP, Alfonso AR, Kantar RS, et al. Safety and Efficacy of Recombinant Human Bone Morphogenetic Protein-2 (rhBMP-2) in Craniofacial Surgery. Plast Reconstr Surg Glob Open. 2019;7(8):e2347. doi: https://doi.org/10.1097/GOX.0000000000002347
  8. Кириллова И.А. Деминерализованный костный трансплантат как стимулятор остеогенеза: Современные концепции // Хирургия позвоночника. — 2004. — № 3. — С. 105–110. [Kirillova IA. Demineralizovannyj kostnyj transplantat kak stimuljator osteogeneza: Sovremennye koncepcii. Hirurgija pozvonochnika. 2004;3:105–110. (In Russ.)]
  9. Zu Z, He L, Shang H, et al. Overexpression of Bone Morphogenetic Protein-1 Promotes Osteogenesis of Bone Marrow Mesenchimal Stem Cells In Vitro. Med Sci Monit. 2020;26:e920122-8 doi: https://doi.org/10.12659/MSM.920122
  10. Gandhi NS, Mancera RL. Prediction of heparin binding sites in bone morphogenetic proteins (BMPs). Biochim Biophys Acta. 2012;1824(12):1374–1381. doi: https://doi.org/10.1016/j.bbapap.2012.07.002
  11. Sampath TK, Vukicevic S. Biology of bone morphogenetic protein in bone repair and regeneration: A role for autologous blood coagulum as carrier. Bone. 2020;141:115602. doi: https://doi.org/10.1016/j.bone.2020.115602
  12. Nampo T, Watahiki J, Enomoto A, et al. A new method for alveolar bone repair using extracted teeth for the graft material. J Periodontol. 2010 ;81(9):1264–1272. doi: https://doi.org/10.1902/jop.2010.100016
  13. Кириллова И.А., Николаев С.В., Подорожная В.Т., и др. Матрикс из кости человека как основа тканеинженерной конструкции // Актуальные вопросы тканевой и клеточной трансплантологии: сб. науч. трудов. — Астрахань, 2017. — С. 47–50. [Kirillova IA, Nikolaev SV, Podorozhnaja VT, i dr. Matriks iz kosti cheloveka kak osnova tkaneinzhenernoj konstrukcii. Aktual’nye voprosy tkanevoj i kletochnoj transplantologii. Sb. nauchnyh trudov. Astrahan’; 2017. S. 47–45. (In Russ.)]
  14. Masters LB, Melloning JT, Brunsvold MA, et al. A clinical evaluation of demineralized freeze-dried bone allograft in combination with tetracycline in the treatment of periodontal osseous defects. J Periodontol. 1996;67(8):770–781. doi: https://doi.org/10.1902/jop.1996.67.8.770
  15. Панкратов А.С., Древаль А.А., Пылаев А.С., и др. Использование остеопластических материалов при лечении нагноившейся костной раны нижней челюсти в эксперименте // Российский стоматологический журнал. — 2000. — № 5. — С. 4–6. [Pankratov AS, Dreval’ AA, Pylaev AS, i dr. Ispol’zovanie osteoplasticheskih materialov pri lechenii nagnoivshejsja kostnoj rany nizhnej cheljusti v jeksperimente. Rossijskij stomatologicheskij zhurnal. 2000;5:4–6. (In Russ.)]
  16. Francis CS, Mobin SS, Lypka MA, et al. rhBMP-2 with a demineralized bone matrix scaffold versus autologous iliac crest bone graft for alveolar cleft reconstruction. Plast Reconstr Surg. 2013;131(5):1107–1115. doi: https://doi.org/10.1097/PRS.0b013e3182865dfb
  17. Han B., Tang B., Nimni M.E. Quntative and sensitive in vitro assay for osteinductive activity of demineralized bone matrix. J Orthop Res. 2003;21(4):648–654. doi: https://doi.org/10.1016/S0736-0266(03)00005-6
  18. Pieske O, Wittmann A, Zaspel J, et al. Autologous bone graft versus demineralized bone matrix in internal fixation of ununited long bones. J Trauma Manag Outcomes. 2009;3:11. doi: https://doi.org/10.1186/1752-2897-3-11
  19. Committee on Research, Science and Therapy of the American Academy of Periodontology. Tissue banking of bone allografts used in periodontal regeneration. J Periodontol. 2001;72(6):834–838. doi: https://doi.org/10.1902/jop.2001.72.6.834
  20. Veronesi F, Maglio M, Brogini S, et al. In vivo studies on osteoinduction: A systematic review on animal models, implant site, and type and postimplantation investigation. J Biomed Mater Res A. 2020;108(9):1834–1866. doi: https://doi.org/10.1002/jbm.a.36949
  21. Савельев В.И., Хлебович Н.В. Первый опыт оценки индуктивных свойств костных трансплантатов, деминерализованных ортофосфорной кислотой // Деминерализованный костный трансплантат и его применение: сб. научн. трудов НИИТО им. Вредена. — СПб., 1993. — С. 125–129. [Savel’ev VI, Hlebovich NV. Pervyj opyt ocenki induktivnyh svojstv kostnyh transplantatov, demineralizovannyh ortofosfornoj kislotoj. Demineralizovannyj kostnyj transplantat i ego primenenie. Sb. nauchn. trudov NIITO im. Vredena. Saint Petesburg; 1993. S.125–129. (In Russ.)]
  22. Лекишвили М.В. Современная российская технология изготовления деминерализованных костных аллоимплантатов, ее комплексная оценка // Технологии живых систем. — 2005. — Т. 121. — № 2. — С. 41–42. [Lekishvili MV. Sovremennaja rossijskaja tehnologija izgotovlenija demineralizovannyh kostnyh alloimplantatov, ee kompleksnaja ocenka. Tehnologii zhivyh sistem. 2005;121(2):41–42. (In Russ.)]
  23. Tang G., Liu Zh., Liu Yi, et al. Recent Trends in the Development of Bone Regenerative Biomaterials. Front Cell Dev Biol. 2021;9:665813. doi: https://doi.org/10.3389/fcell.2021.665813
  24. Воробьев К.А., Божкова С.А., Тихилов Р.М., и др. Современные способы обработки и стерилизации костных тканей // Травматология и ортопедия России. — 2017. — Т. 23. — № 3. — С. 134–147. [Vorob’ev KA, Bozhkova SA, Tihilov RM, et al. Sovremennye sposoby obrabotki i sterilizacii kostnyh tkanej. Travmatologija i Ortopedija Rossii. 2017;23(3):134–147. (In Russ.)] doi: https://doi.org/10.21823/2311-2905-2017-23-3-134-147
  25. Burton B, Gaspar A, Josey D, et al. Bone embrittlement and collagen modifications due to high-dose gamma-irradiation sterilization. Bone. 2014;61:71–78. doi: https://doi.org/10.1016/j.bone.2014.01.006
  26. Akkus O, Belaney R.Y., Das P. Free radical scavening alleviates the biomechanical impairment of gamma radiation sterilized bone tissue. J Orthop Res. 2005;23(4):838–845. doi: https://doi.org/10.1016/j.orthres.2005.01.007
  27. Сенотов А.С., Кирсанова П.О., Просвирин А.А., и др. Разработка методов повышения биосовместимости остеопластических биоматериалов для реконструктивной хирургии // Актуальные вопросы тканевой и клеточной трансплантологии: сб. науч. трудов. — Астрахань, 2017. — С. 24–26. [Senotov AS, Kirsanova PO, Prosvirin AA, et al. Razrabotka metodov povyshenija biosovmestimosti osteoplasticheskih biomaterialov dlja rekonstruktivnoj hirurgii. Aktual’nye voprosy tkanevoj i kletochnoj transplantologii. Sb. nauchnyh trudov. Astrahan’; 2017. S. 24–26. (In Russ.)]
  28. Rasch A, Naujokat H, Wang F, et al. Evaluation of bone allograft processing methods: Impact on decellularization efficacy, biocompatibility and mesenchymal stem cell functionality. PLoS One. 2019;14(6):e0218404. doi: https://doi.org/10.1371/journal.pone.0218404
  29. Денисов-Никольский Ю.И., Матвейчук И.В., Розанов В.В. Инновационные подходы к структурно-функциональному анализу костной ткани для решения фундаментальных и прикладных задач в биоимплантологии и биоматериаловедении // Вопросы биологической, медицинской и фармацевтической химии. — 2012. — № 1. — С. 223–228. [Denisov-Nikol’skij JuI, Matvejchuk IV, Rozanov VV. Innovacionnye podhody k strukturno-funkcional’nomu analizu kostnoj tkani dlja reshenija fundamental’nyh i prikladnyh zadach v bioimplantologii i biomaterialovedenii. Voprosy Biologicheskoj, Medicinskoj i Farmacevticheskoj Himii. 2012;1:223–228. (In Russ.)]
  30. Лекишвили М.В., Матвейчук И.В., Розанов В.В., и др. Научно-методические основы оптимизации технологии изготовления костных имплантатов // Актуальные вопросы тканевой и клеточной трансплантологии: сб. науч. трудов. — Астрахань, 2017. — С. 5–7. [Lekishvili MV, Matvejchuk IV, Rozanov VV, i dr. Nauchno-metodicheskie osnovy optimizacii tehnologii izgotovlenija kostnyh implantatov Aktual’nye voprosy tkanevoj i kletochnoj transplantologii. Sb. nauchnyh trudov. Astrahan’; 2017. S. 5–7. (In Russ.)]
  31. Muthukumaran N, Ma S, Reddi AH. Dose-dependence of and threshold for optimal bone induction by collagenous bone matrix and osteogenin-enriched fraction. Coll Relat Res. 1988;8(5):433–441. doi: https://doi.org/10.1016/S0174-173X(88)80016-5
  32. Piattelli A, Scarano A, Corigliano M, et al. Comparison of bone regeneration with the use of mineralized and demineralized freeze-dried bone allografts: a histological and histochemical study in man. Biomaterials. 1996;17(11):1127–1231. doi: https://doi.org/10.1016/0142-9612(96)85915-1
  33. Lee DW, Koo KT, Seol YJ, et al. Bone regeneration effects of human allogenous bone substitutes: a preliminary study. J Periodontal Implant Sci. 2010;40(3):132–138. doi: https://doi.org/10.5051/jpis.2010.40.3.132
  34. Yang S, Lan L, Miron RJ, et al. Variability in Particle Degradation of Four Commonly Employed Dental Bone Grafts. Clin Implant Dent Relat Res. 2015;17(5):996–1003. doi: https://doi.org/10.1111/cid.12196
  35. Landesman R, Reddi AH. In vivo analysis of the half-life of the osteoinductive potential of demineralized bone matrix using diffusion chambers. Calcif Tissue Int. 1989;45(6):348–353. doi: https://doi.org/10.1007/BF02556005
  36. Thrailkill K, Cockrell G, Simpson P, et al. Physiological matrix metalloproteinase (MMP) concentrations: comparison of serum and plasma specimens. Clin Chem Lab Med. 2006;44(4):503–504. doi: https://doi.org/10.1515/CCLM.2006.090
  37. Wood RA, Mealey BL. Histologic comparison of healing after tooth extraction with ridge preservation using mineralized versus demineralized freeze-dried bone allograft. J Periodontol. 2012;83(3):329–336. doi: https://doi.org/10.1902/jop.2011.110270
  38. Stumbras A, Kuliesius P, Januzis G, et al. Alveolar Ridge Preservation after Tooth Extraction Using Different Bone Graft Materials and Autologous Platelet Concentrates: a Systematic Review. J Oral Maxillofac Res. 2019;10(1):e2. doi: https://doi.org/10.5037/jomr.2019.10102
  39. Patel A, Greenwell H, Hill M, et al. Ridge Augmentation Comparing an Allograft Plus Autogenous Bone Chips to an Osteoinductive Demineralized Bone Matrix: A Clinical and Histologic Study in Humans. Implant Dent. 2019;28(6):613–620. doi: https://doi.org/10.1097/ID.0000000000000925
  40. Anavi Lev K, Chaushu L, Schwarz F, et al. Bone-implant-contact and new formation around implants placed in FDB blocks compared to placement at the adjunction of particulate FDB. Clin Implant Dent Relat Res. 202;22(1):21–28. doi: https://doi.org/10.1111/cid.12856
  41. Mattioli-Belmonte M, Montemurro F, Licini C, et al. Cell-Free Demineralized Bone Matrix for Mesenchymal Stem Cells Survival and Colonization. Materials (Basel). 2019;12(9):1360. doi: https://doi.org/10.3390/ma12091360
  42. Reynolds MA, Bowers GM. Fate of demineralized freeze-dried bone allografts in human intrabony defects. J Periodontol. 1996;67(2):150–157. doi: https://doi.org/10.1902/jop.1996.67.2.150
  43. Zhang H, Yang L, Yang XG, et al. Demineralized Bone Matrix Carriers and their Clinical Applications: An Overview. Orthop Surg. 2019;11(5):725–737. doi: https://doi.org/10.1111/os.12509
  44. Cheng TL, Leblanc E, Kalinina A, et al. A Bioactive Coating Enhances Bone Allografts in Rat Models of Formation and Critical Defect Repair. J Orthop Res. 2019;37(11):2278–2286. doi: https://doi.org/10.1002/jor.24409
  45. Obregon-Miano F, Fathi A, Rathsam C, et al. Injectable porcine bone demineralized and digested extracellular matrix-PEGDA hydrogel blend for regeneration. J Mater Sci Mater Med. 2020;31(2):21. doi: https://doi.org/10.1007/s10856-019-6354-3
  46. Kim S, Fan J, Lee CS, et al. Heparinized chitosan stabilizes the bioactivity of BMP-2 and potentiates the osteogenic efficacy of demineralized bone matrix. J Biol Eng. 2020;14:6. doi: https://doi.org/10.1186/s13036-020-0231-y
  47. Литвинов Ю.Ю. Получение костных имплантатов и имплантационных препаратов с антимикробными свойствами на основе стерильного деминерализованного костного матрикса // Вопросы биологической, медицинской и фармацевтической химии. — 2019. — Т. 22. — № 3. — С. 21–30. [Litvinov YuYu. Poluchenie kostnyh implantatov i implantacionnyh preparatov s antimikrobnymi svojstvami na osnove steril’nogo demineralizovannogo kostnogo matriksa. Voprosy Biologicheskoj, Medicinskoj i Farmacevticheskoj Himii. 2019;22(3):21–30. (In Russ.)] doi: https://doi.org/10.29296/25877313-2019-03-04
  48. Simonffy L, Minya F, Trimmel B, et al. Albumin-Impregnated Allograft Filling of Surgical Extraction Sockets Achieves Better BoneRemodeling Than Filling with Either Blood Clot or Bovine Xenograft. Int J Oral Maxillofac Implants. 2020;35(2):297–304. doi: https://doi.org/10.11607/jomi.7554
  49. Sethi AK, Kar IB, Mohanty T, et al. Use of plasma-enriched demineralized freeze-dried bone matrix in postsurgical jaw defects. Natl J Maxillofac Surg. 2018;9(2):174–183. doi: https://doi.org/10.4103/njms.NJMS_33_18
  50. Gurinsky BS, Mills MP, Mellonig JT Clinical evaluation of demineralized freeze-dried bone allograft and enamel matrix derivative versus enamel derivative alone for the treatment of periodontal osseous defects in humans. J Periodontol. 2004;75(10):1309–1318. doi: https://doi.org/10.1902/jop.2004.75.10.1309
  51. Рагинов И.С., Егоров В.И., Валиуллин Л.Р., и др. Влияние производных пиримидина на регенерацию костной ткани // Актуальные вопросы тканевой и клеточной трансплантологии: сб. науч. трудов. — Астрахань, 2017. — С. 161–162. [Raginov IS, Egorov VI, Valiullin LR, i dr. Vlijanie proizvodnyh pirimidina na regeneraciju kostnoj tkani. Aktual’nye voprosy tkanevoj i kletochnoj transplantologii. Sb. nauchnyh trudov. Astrahan’, 2017. S. 161–162. (In Russ.)]
  52. Bae EB, Park KH, Shim JH, et al. Efficacy of rhBMP-2 Loaded PCL/β-TCP/bdECM Scaffold Fabricated by 3D Printing Technology on Regeneration. Biomed Res Int. 2018;2018:2876135. doi: https://doi.org/10.1155/2018/2876135
  53. Liang F, Yen SL, Imahiyerobo T, et al. Three-Dimensional Cone Beam Computed Tomography Volumetric Outcomes of rhBMP-2/ Demineralized Bone Matrix versus Iliac Crest Bone Graft for Alveolar Cleft Reconstruction. Plast Reconstr Surg. 2017;140(4):767–774. doi: https://doi.org/10.1097/PRS.0000000000003686
  54. Ryabov A, Likishvili M, Yurasova J, et al. Local Application of Bisphosphonates: A Literature Review. Tissue Science & Engineering. 2016;7:2. doi: https://doi.org/10.4172/2157-7552.1000172
  55. Finkemeier CG. Bone-grafting and bone-graft substitutes. J Bone Joint Surg Am. 2002;84(3):454–464. doi: https://doi.org/10.2106/00004623-200203000-00020
  56. Лекишвили М.В., Рябов А.Ю., Панкратов А.С., и др. Использование частично деминерализованного аллогенного имплантата свода черепа для возмещения дефектов костей средней и верхней зон лица // Голова и шея (Head & Neck). — 2018. — № 1. — С. 29–34. [Lekishvili MV, Rjabov AJu, Pankratov AS, i dr. Ispol’zovanie chastichno demineralizovannogo allogennogo implantata svoda cherepa dlja vozmeshhenija defektov kostej srednej i verhnej zon lica. Golova i sheja (Head & Neck). 2018;1:29–34. (In Russ.)]
  57. Cavallo M, Maglio M, Parrilli A, et al. Vascular Supply and BMC for the Improvement of Allograft in Bone Defects: A Comparative In Vivo Study. J Surg Res. 2020;252:1–8. doi: https://doi.org/10.1016/j.jss.2020.02.015
  58. Li Q, Zhang W, Zhou G, et al. Demineralized bone matrix-based microcarrier scaffold favors vascularized large boneregeneration in vivo in a rat model. J Biomater Appl. 2018;33(2):182–195. doi: https://doi.org/10.1177/088532821878437
  59. Xie H, Wang Zh, Zhang L, et al. Extracellular Vesicle-functionalized Decalcified Bone Matrix Scaffolds with Enhanced Pro-angiogenic and Pro-bone Regeneration Activities. Sci Rep. 2017;7:45622 doi: https://doi.org/10.1038/srep45622
  60. Al-Moraissi EA, Alkhutari AS, Abotaleb B, et al. Do osteoconductive bone substitutes result in similar bone regeneration for maxillary sinus augmentation when compared to osteogenic and osteoinductive bone grafts? A systematic review and frequentist network meta-analysis. Int J Oral Maxillofac Surg. 2020;49(1):107–120. doi: https://doi.org/10.1016/j.ijom.2019.05.004

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Technological stages of manufacturing demineralized bone matrix

Download (184KB)
3. Fig. 2. Forms of demineralized bone matrix used in clinical practice

Download (116KB)

Copyright (c) 2022 "Paediatrician" Publishers LLC

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».