Свободные жирные кислоты с короткой цепью и их рецепторы в микробиотической концепции развития бронхиальной астмы
- Авторы: Кытикова О.Ю.1, Денисенко Ю.К.1, Новгородцева Т.П.1, Антонюк М.В.1, Гвозденко Т.А.1
-
Учреждения:
- Научно-исследовательский институт медицинской климатологии и восстановительного лечения
- Выпуск: Том 77, № 2 (2022)
- Страницы: 131-142
- Раздел: АКТУАЛЬНЫЕ ВОПРОСЫ ПУЛЬМОНОЛОГИИ
- URL: https://ogarev-online.ru/vramn/article/view/125630
- DOI: https://doi.org/10.15690/vramn1608
- ID: 125630
Цитировать
Полный текст
Аннотация
Бронхиальная астма (БА) является хроническим, гетерогенным воспалительным заболеванием c высокой вариабельностью течения, вызванным триггерным влиянием генетических и экологических факторов. Гетерогенность БА указывает на вовлеченность в механизм воспаления дыхательных путей многих составляющих. В настоящее время изучается микробиотическая концепция патогенеза заболеваний респираторной системы, базирующаяся на существовании двусторонней взаимосвязи между микрофлорой легких и кишечника. Ключевым механизмом данных взаимоотношений являются свободные жирные кислоты (СЖК), выполняющие сигнальные и регуляторные функции в организме. CЖК со средней и длинной цепью синтезируются de novo или поступают в организм в результате потребления жиров, в то время как CЖК с короткой цепью образуются в кишечнике в результате частичного переваривания растворимой клетчатки. Механизм, связывающий CЖК и воспалительные реакции, включает активацию их рецепторов (free fatty acid receptor, FFAR), экспрессирующихся на клетках желудочно-кишечного и дыхательного тракта, а также на иммунных клетках. Если роль рецепторов СЖК со средней и длинной цепью (FFAR1, FFAR4) и их лигандов в патогенезе БА активно изучается, то значение рецепторов СЖК с короткой цепью (FFAR2 и FFAR3) только начинает привлекать внимание исследователей в связи с появлением многочисленных данных о взаимосвязи микробиома дыхательных путей и кишечника и его возможной роли в индукции бронхолегочных осложнений. Данный обзор включает современные знания о микробиотической концепции развития БА, основные сведения о номенклатуре, метаболизме и транспорте СЖК, значении их отдельных классов в регуляции иммунных процессов в норме и при бронхолегочной патологии. Систематизированы новейшие данные о рецепторах СЖК — FFAR, описаны особенности их активации и экспрессии, предполагаемая роль FFAR2 и FFAR3 в развитии и терапии БА. Обсуждается, что коррекция микробиоты кишечника может уменьшить активность хронического воспаления дыхательных путей при БА.
Полный текст
Открыть статью на сайте журналаОб авторах
Оксана Юрьевна Кытикова
Научно-исследовательский институт медицинской климатологии и восстановительного лечения
Email: kytikova@yandex.ru
ORCID iD: 0000-0001-5018-0271
SPIN-код: 3006-5614
д.м.н.
Россия, 675000, Благовещенск, ул. Калинина, д. 22
Юлия Константиновна Денисенко
Научно-исследовательский институт медицинской климатологии и восстановительного лечения
Email: karaman@inbox.ru
ORCID iD: 0000-0003-4130-8899
SPIN-код: 4997-3432
д.б.н.
Россия, 675000, Благовещенск, ул. Калинина, д. 22
Татьяна Павловна Новгородцева
Научно-исследовательский институт медицинской климатологии и восстановительного лечения
Email: nauka@niivl.ru
ORCID iD: 0000-0002-6058-201X
SPIN-код: 5888-6099
д.б.н., профессор
Россия, 675000, Благовещенск, ул. Калинина, д. 22
Марина Владимировна Антонюк
Научно-исследовательский институт медицинской климатологии и восстановительного лечения
Email: antonyukm@mail.ru
ORCID iD: 0000-0002-2492-3198
SPIN-код: 3446-4852
д.м.н., профессор
Россия, 675000, Благовещенск, ул. Калинина, д. 22
Татьяна Александровна Гвозденко
Научно-исследовательский институт медицинской климатологии и восстановительного лечения
Автор, ответственный за переписку.
Email: vfdnz@mail.ru
ORCID iD: 0000-0002-6413-9840
SPIN-код: 7869-1692
д.м.н., профессор
Россия, 675000, Благовещенск, ул. Калинина, д. 22Список литературы
- Global Initiative for Asthma (GINA). Global strategy for asthma management and prevention (2019). Available from: http://ginasthma.com
- Novakova P, Tiotiu A, Baiardini I, et al. Allergen immunotherapy in asthma: current evidence. J Asthma. 2021;58(2):223–230. doi: https://doi.org/10.1080/02770903.2019.1684517
- Delgado J, Dávila IJ, Domínguez-Ortega J. Severe Asthma Group (SEAIC). Clinical Recommendations for the Management of Biological Treatments in Severe Asthma Patients: A Consensus Statement. J Investig Allergol Clin Immunol. 2021;31(1):36–43. doi: https://doi.org/10.18176/jiaci.0638
- Monga N, Sethi GS, Kondepudi KK, et al. Lipid mediators and asthma: Scope of therapeutics. Biochem Pharmacol. 2020;179:113925. doi: https://doi.org/10.1016/j.bcp.2020.113925
- Alsharairi NA. The Role of Short-Chain Fatty Acids in the Interplay between a Very Low-Calorie Ketogenic Diet and the Infant Gut Microbiota and Its Therapeutic Implications for Reducing Asthma. Int J Mol Sci. 2020;21(24):9580. doi: https://doi.org/10.3390/ijms21249580
- Кытикова О.Ю., Антонюк М.В., Гвозденко Т.А., и др. Метаболические аспекты взаимосвязи ожирения и бронхиальной астмы // Ожирение и метаболизм. — 2018. — Т. 15. — № 4. — С. 9–14. [Kytikova OJu, Antonjuk MV, Gvozdenko TA, i dr. Metabolicheskie aspekty vzaimosvjazi ozhirenija i bronhial’noj astmy. Ozhirenie i metabolizm. 2018;15(4):9–14. (In Russ.)] doi: https://doi.org/10.14341/OMET9578
- Kim JS, Steffen BT, Podolanczuk AJ, et al. Associations of ω-3 Fatty Acids with Interstitial Lung Disease and Lung Imaging Abnormalities Among Adults. Am J Epidemiol. 2021;190(1):95–108. doi: https://doi.org/10.1093/aje/kwaa168
- Kimura I, Ichimura A, Ohue-Kitano R, et al. Free Fatty Acid Receptors in Health and Disease. Physiol Rev. 2020;100(1):171–210. doi: https://doi.org/10.1152/physrev.00041.2018
- Zhang L, Hames KC, Jensen MD. Regulation of direct adipose tissue free fatty acid storage during mixed meal ingestion and high free fatty acid concentration conditions. Am J Physiol Endocrinol Metab. 2021;320(2):E208–E218. doi: https://doi.org/10.1152/ajpendo.00408.2020
- Grundmann M, Bender E, Schamberger J, et al. Pharmacology of Free Fatty Acid Receptors and Their Allosteric Modulators. Int J Mol Sci. 2021;22(4):1763. doi: https://doi.org/10.3390/ijms22041763
- Jakubíк J, Randáková A, Chetverikov N, et al. The operational model of allosteric modulation of pharmacological agonism. Sci Rep. 2020;10(1):14421. doi: https://doi.org/10.1038/s41598-020-71228-y
- Haak AJ, Ducharme MT, Diaz Espinosa AM, et al. Targeting GPCR Signaling for Idiopathic Pulmonary Fibrosis Therapies. Trends Pharmacol Sci. 2020;41(3):172–182. doi: https://doi.org/10.1016/j.tips.2019.12.008
- Gusach A, Maslov I, Luginina A, et al. Beyond structure: emerging approaches to study GPCR dynamics. Curr Opin Struct Biol. 2020;63:18–25. doi: https://doi.org/10.1016/j.sbi.2020.03.004
- Xu S, Schwab A, Karmacharya N, et al. FFAR1 activation attenuates histamine-induced myosin light chain phosphorylation and cortical tension development in human airway smooth muscle cells. Respir Res. 2020;21(1):317. doi: https://doi.org/10.1186/s12931-020-01584-w
- Rutting S, Xenaki D, Malouf M, et al. Short-chain fatty acids increase TNFα-induced inflammation in primary human lung mesenchymal cells through the activation of p38 MAPK. Am J Physiol Lung Cell Mol Physiol. 2019;316(1):L157–L174. doi: https://doi.org/10.1152/ajplung.00306.2018
- Hu Y, Kang Y, Liu X, et al. Distinct lung microbial community states in patients with pulmonary tuberculosis. Sci China Life Sci. 2020;63(10):1522–1533. doi: https://doi.org/10.1007/s11427-019-1614-0
- Zheng Y, Fang Z, Xue Y, et al. Specific gut microbiome signature predicts the early-stage lung cancer. Gut Microbes. 2020:11(4):1030–1042. doi: https://doi.org/10.1080/19490976.2020.1737487
- Ekanayake A, Madegedara D, Chandrasekharan V, et al. Respiratory Bacterial Microbiota and Individual Bacterial Variability in Lung Cancer and Bronchiectasis Patients. Indian J Microbiol. 2020;60(2):196–205. doi: https://doi.org/10.1007/s12088-019-00850-w
- Cuthbertson L, Walker AW, Oliver AE, et al. Lung function and microbiota diversity in cystic fibrosis. Microbiome. 2020;8(1):45. doi: https://doi.org/10.1186/s40168-020-00810-3
- Dickson RP, Harari S, Kolb M. Making the case for causality: what role do lung microbiota play in idiopathic pulmonary fibrosis? Eur Respir J. 2020;55(4):2000318. doi: https://doi.org/10.1183/13993003.00318-2020
- Durack J, Christian LS, Nariya S, et al. Distinct associations of sputum and oral microbiota with atopic, immunologic, and clinical features in mild asthma. J Allergy Clin Immunol. 2020;146(5):1016–1026. doi: https://doi.org/10.1016/j.jaci.2020.03.028
- Fu X, Li Y, Meng Y, et al. Associations between respiratory infections and bacterial microbiome in student dormitories in Northern China. Indoor Air. 2020:30(5);816–826. doi: https://doi.org/10.1111/ina.12677
- Proctor L. What’s next for the human microbiome? Nature. 2019; 569(7758):623–625. doi: https://doi.org/10.1038/d41586-019-01654-0
- Enaud R, Prevel R, Ciarlo E, et al. The Gut-Lung Axis in Health and Respiratory Diseases: A Place for Inter-Organ and Inter-Kingdom Crosstalks. Front Cell Infect Microbiol. 2020;10:9. doi: https://doi.org/10.3389/fcimb.2020.00009
- Arrieta M-C, Arévalo A, Stiemsma L, et al. Associations between infant fungal and bacterial dysbiosis and childhood atopic wheeze in a nonindustrialized setting. J Allergy Clin Immunol. 2018;142(2):424–434.e10. doi: https://doi.org/0.1016/j.jaci.2017.08.041
- Skalski JH, Limon JJ, Sharma P, et al. Expansion of commensal fungus Wallemia mellicola in the gastrointestinal mycobiota enhances the severity of allergic airway disease in mice. PLoS Pathog. 2018;14(9):e1007260. doi: https://doi.org/10.1371/journal.ppat.1007260
- Bachem A, Makhlouf C, Binger KJ, et al. Microbiota-Derived Short-Chain Fatty Acids Promote the Memory Potential of Antigen-Activated CD8+ T Cells. Immunity. 2019;51(2):285–297.e5. doi: https://doi.org/10.1016/j.immuni.2019.06.002
- Barcik W, Boutin RCT, Sokolowska M, et al. The Role of Lung and Gut Microbiota in the Pathology of Asthma. Immunity. 2020;52(2):241–255. doi: https://doi.org/10.1016/j.immuni.2020.01.007
- Du X, Wei J, Tian D, et al. miR-182-5p contributes to intestinal injury in a murine model of Staphylococcus aureus pneumonia-induced sepsis via targeting surfactant protein D. J Cell Physiol. 2019;235(1):563–572. doi: https://doi.org/10.1002/jcp.28995
- Sallustio F, Curci C, Stasi A, et al. Role of Toll-Like Receptors in Actuating Stem/Progenitor Cell Repair Mechanisms: Different Functions in Different Cells. Stem Cells Int. 2019;6795845. doi: https://doi.org/10.1155/2019/6795845
- Larabi A, Barnich N, Nguyen HTT. New insights into the interplay between autophagy, gut microbiota and inflammatory responses in IBD. Autophagy. 2020;16(1):38–51. doi: https://doi.org/10.1080/15548627.2019.1635384
- Burgueño JF, Abreu MT. Epithelial Toll-like receptors and their role in gut homeostasis and disease. Nat Rev Gastroenterol Hepatol. 2020;17(5):263–278. doi: https://doi.org/10.1038/s41575-019-0261-4
- Kytikova OY, Perelman JM, Novgorodtseva TP, et al. Peroxisome Proliferator-Activated Receptors as a Therapeutic Target in Asthma. PPAR Res. 2020;2020:8906968. doi: https://doi.org/10.1155/2020/8906968
- Sender R, Fuchs S, Milo R, et al. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biology. 2016; 14(8):e1002533. doi: https://doi.org/10.1371/journal.pbio.1002533
- Sundström K, Mishra PP, Pyysalo MJ, et al. Similarity of salivary microbiome in parents and adult children. PeerJ. 2020;8:e8799. doi: https://doi.org/10.7717/peerj.8799
- Villette R, Kc P, Beliard S, et al. Unraveling Host-Gut Microbiota Dialogue and Its Impact on Cholesterol Levels. Front Pharmacol. 2020;11:278. doi: https://doi.org/10.3389/fphar.2020.00278
- Otto M. Staphylococci in the human microbiome: the role of host and interbacterial interactions. Curr Opin Microbiol. 2020;53:71–77. doi: https://doi.org/10.1016/j.mib.2020.03.003
- McAleer JP, Kolls JK. Contributions of the intestinal microbiome in lung immunity. Eur J Immunol. 2018;48(1):39–49. doi: https://doi.org/10.1002/eji.201646721
- Vandenborght LE, Enaud R, Coron N, et al. From culturomics to metagenomics: the mycobiome in chronic respiratory diseases. The Lung Microbiome (Norwich: European Respiratory Society). 2019;88–118. doi: https://doi.org/10.1183/2312508X.10015918
- Dujardin CE, Mars RAT, Manemann SM, et al. Impact of air quality on the gastrointestinal microbiome: A review. Environ Res. 2020;186:109485. doi: https://doi.org/10.1016/j.envres.2020.109485
- Wang CS, Wang J, Zhang X, et al. Is the consumption of fast foods associated with asthma or other allergic diseases? Respirology. 2018;23(10):901–913. doi: https://doi.org/10.1111/resp.13339
- Zając-Gawlak I, Kłapcińska B, Kroemeke A, et al. Associations of visceral fat area and physical activity levels with the risk of metabolic syndrome in postmenopausal women. Biogerontology. 2017;18(3):357–366. doi: https://doi.org/10.1007/s10522-017-9693-9
- Einarsson GG, Zhao J, LiPuma JJ, et al. Community analysis and co-occurrence patterns in airway microbial communities during health and disease. ERJ Open Res. 2019;5(3):00128-2017. doi: https://doi.org/10.1183/23120541.00128-2017
- Soret P, Vandenborght LE, Francis F, et al. Respiratory mycobiome and suggestion of inter-kingdom network during acute pulmonary exacerbation in cystic fibrosis. Sci Rep. 2020;10(1):3589. doi: https://doi.org/10.1038/s41598-020-60015-4
- Grier A, McDavid A, Wang B, et al. Neonatal gut and respiratory microbiota: coordinated development through time and space. Microbiome. 2018;6(1):193. doi: https://doi.org/10.1186/s40168-018-0566-5
- Jameson KG, Olson CA, Kazmi SA, et al. Toward Understanding Microbiome-Neuronal Signaling. Mol Cell. 2020;78(4):577–583. doi: https://doi.org/10.1016/j.molcel.2020.03.006
- Chen HJ, Gur TL. Intrauterine Microbiota: Missing, or the Missing Link? Trends Neurosci. 2019;42(6):402–413. doi: https://doi.org/10.1016/j.tins.2019.03.008
- Pammi M, Lal CV, Wagner BD, et al. Airway Microbiome and Development of Bronchopulmonary Dysplasia in Preterm Infants: A Systematic Review. J Pediatr. 2019;204:126–133.е2. doi: https://doi.org/10.1016/j.jpeds.2018.08.042
- Piersigilli F, Van Grambezen B, Hocq C, et al. Nutrients and Microbiota in Lung Diseases of Prematurity: The Placenta-Gut-Lung Triangle. Nutrients. 2020;12(2):469. doi: https://doi.org/10.3390/nu12020469
- Nandakumar V, Aly H. Microbiota and chronic lung disease in preterm infants. Where is the truth? J Perinatol. 2020;40(7):983–984. doi: https://doi.org/10.1038/s41372-020-0666-5
- Huang Y, Mao K, Chen X, et al. S1P-dependent interorgan trafficking of group 2 innate lymphoid cells supports host defense. Science. 2018;359(6371):114–119. doi: https://doi.org/0.1126/science.aam5809
- Martin CR, Osadchiy V, Kalani A, et al.The Brain-Gut-Microbiome Axis. Cell Mol Gastroenterol Hepatol. 2018;6(2):133–148. doi: https://doi.org/10.1016/j.jcmgh.2018.04.003
- Halnes I, Baines KJ, Berthon BS, et al. Soluble Fibre Meal Challenge Reduces Airway Inflammation and Expression of GPR43 and GPR41 in Asthma. Nutrients. 2017;9(1):57. doi: https://doi.org/10.3390/nu9010057
- Cho IJ, Choi KR, Lee SY. Microbial production of fatty acids and derivative chemicals. Curr Opin Biotechnol. 2020;65:129–141. doi: https://doi.org/10.1016/j.copbio.2020.02.006
- Astrup A, Magkos F, Bier DM, et al. Saturated Fats and Health: A Reassessment and Proposal for Food-Based Recommendations: JACC State-of-the-Art Review. J Am Coll Cardiol. 2020;76(7):844–857. doi: https://doi.org/10.1016/j.jacc.2020.05.077
- Chen J, Liu H. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int J Mol Sci. 2020;21(16):5695. doi: https://doi.org/10.3390/ijms21165695
- Christie WW, Harwood JL. Oxidation of polyunsaturated fatty acids to produce lipid mediators. Essays Biochem. 2020;64(3):401–421. doi: https://doi.org/10.1042/EBC20190082
- Frampton J, Murphy KG, Frost G, et al. Short-chain fatty acids as potential regulators of skeletal muscle metabolism and function. Nat Metab. 2020;2(9):840–848. doi: https://doi.org/10.1038/s42255-020-0188-7
- Son SE, Kim NJ, Im DS. Development of Free Fatty Acid Receptor 4 (FFA4/GPR120) Agonists in Health Science. Biomol Ther (Seoul). 2021;29(1):22–30. doi: https://doi.org/10.4062/biomolther.2020.213
- Teng D, Chen J, Li D, et al. Computational Insights into Molecular Activation and Positive Cooperative Mechanisms of FFAR1 Modulators. J Chem Inf Model. 2020;60(6):3214–3230. doi: https://doi.org/10.1021/acs.jcim.0c00030
- Machate DJ, Figueiredo PS, Marcelino G, et al. Fatty Acid Diets: Regulation of Gut Microbiota Composition and Obesity and Its Related Metabolic Dysbiosis. Int J Mol Sci. 2020;21(11):4093. doi: https://doi.org/10.3390/ijms21114093
- He J, Zhang P, Shen L, et al. Short-Chain Fatty Acids and Their Association with Signalling Pathways in Inflammation, Glucose and Lipid Metabolism. Int J Mol Sci. 2020;21(17):6356. doi: https://doi.org/10.3390/ijms21176356
- Ye Z, Wang S, Zhang C, et al. Coordinated Modulation of Energy Metabolism and Inflammation by Branched-Chain Amino Acids and Fatty Acids. Front Endocrinol (Lausanne). 2020;11:617. doi: https://doi.org/10.3389/fendo.2020.00617
- Qiu X, Xie X, Meesapyodsuk D. Molecular mechanisms for biosynthesis and assembly of nutritionally important very long chain polyunsaturated fatty acids in microorganisms. Prog Lipid Res. 2020;79:101047. doi: https://doi.org/10.1016/j.plipres.2020.101047
- Cui J, Chen H, Tang X, et al. Δ6 fatty acid desaturases in polyunsaturated fatty acid biosynthesis: insights into the evolution, function with substrate specificities and biotechnological use. Appl Microbiol Biotechnol. 2020;104(23):9947–9963. doi: https://doi.org/10.1007/s00253-020-10958-5
- Saini RK, Keum YS. Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance. A review. Life Sci. 2018;203:255–267. doi: https://doi.org/10.1016/j.lfs.2018.04.049
- Franck M, de Toro-Martín J, Guénard F, et al. Prevention of Potential Adverse Metabolic Effects of a Supplementation with Omega-3 Fatty Acids Using a Genetic Score Approach. Lifestyle Genom. 2020;13(1):32–42. doi: https://doi.org/10.1159/000504022
- Brayner B, Kaur G, Keske MA, et al. FADS Polymorphism, Omega-3 Fatty Acids and Diabetes Risk: A Systematic Review. Nutrients. 2018;10(6):758. doi: https://doi.org/10.3390/nu10060758
- Holota Y, Dovbynchuk T, Kaji I, et al. The long-term consequences of antibiotic therapy: Role of colonic short-chain fatty acids (SCFA) system and intestinal barrier integrity. PLoS One. 2019;14(8):e0220642. doi: https://doi.org/10.1371/journal.pone.0220642
- Markowiak-Kopeć P, Śliżewska K. The Effect of Probiotics on the Production of Short-Chain Fatty Acids by Human Intestinal Microbiome. Nutrients. 2020;12(4):1107. doi: https://doi.org/10.3390/nu12041107
- Silva YP, Bernardi A, Frozza RL. The Role of Short-Chain Fatty Acids from Gut Microbiota in Gut-Brain Communication. Front Endocrinol (Lausanne). 2020;11:25. doi: https://doi.org/10.3389/fendo.2020.00025
- Krieger JP. Intestinal glucagon-like peptide-1 effects on food intake: Physiological relevance and emerging mechanisms. Peptides. 2020;131:170342. doi: https://doi.org/10.1016/j.peptides.2020.170342
- Lupien-Meilleur J, Andrich DE, Quinn S, et al. Interplay between Gut Microbiota and Gastrointestinal Peptides: Potential Outcomes on the Regulation of Glucose Control. Can J Diabetes. 2020;44(4):359–367. doi: https://doi.org/10.1016/j.jcjd.2019.10.006
- Holst JJ, Rosenkilde MM. GIP as a Therapeutic Target in Diabetes and Obesity: Insight From Incretin Co-agonists. J Clin Endocrinol Metab. 2020;105(8):e2710–е2716. doi: https://doi.org/10.1210/clinem/dgaa327
- Reimann F, Diakogiannaki E, Moss CE, et al. Cellular mechanisms governing glucose-dependent insulinotropic polypeptide secretion. Peptides. 2020;125:170206. doi: https://doi.org/10.1016/j.peptides.2019.170206
- Sivaprakasam S, Bhutia YD, Yang S, et al. Short-Chain Fatty Acid Transporters: Role in Colonic Homeostasis. Compr Physiol. 2017;8(1):299–314. doi: https://doi.org/10.1002/cphy.c170014
- Congreve M, de Graaf C, Swain NA, et al. Impact of GPCR Structures on Drug Discovery. Cell. 2020;181(1):81–91. doi: https://doi.org/10.1016/j.cell.2020.03.003
- Pujol JB, Christinat N, Ratinaud Y, et al. Coordination of GPR40 and Ketogenesis Signaling by Medium Chain Fatty Acids Regulates Beta Cell Function. Nutrients. 2018;10(4):473. doi: https://doi.org/10.3390/nu10040473
- Matoba A, Matsuyama N, Shibata S, et al. The free fatty acid receptor 1 promotes airway smooth muscle cell proliferation through MEK/ERK and PI3K/Akt signaling pathways. Am J Physiol Lung Cell Mol Physiol. 2018;314(3):L333–L348. doi: https://doi.org/10.1152/ajplung.00129.2017
- Mielenz M. Invited review: nutrient-sensing receptors for free fatty acids and hydroxycarboxylic acids in farm animals. Animal. 2017;11(6):1008–1016. doi: https://doi.org/10.1017/S175173111600238X
- Eckalbar WL, Erle DJ. Singling out Th2 cells in eosinophilic esophagitis. J Clin Invest. 2019;129(5):1830–1832. doi: https://doi.org/10.1172/JCI128479
- Imoto Y, Kato A, Takabayashi T, et al. Short-chain fatty acids induce tissue plasminogen activator in airway epithelial cells via GPR41&43. Clin Exp Allergy. 2018;48(5):544–554. doi: https://doi.org/10.1111/cea.13119
- Mizuta K, Sasaki H, Zhang Y, et al. The short-chain free fatty acid receptor FFAR3 is expressed and potentiates contraction in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol. 2020; 318(6):L1248–L1260. doi: https://doi.org/10.1152/ajplung.00357.2019
- Li NX, Brown S, Kowalski T, et al. GPR119 agonism increases glucagon secretion during insulin-induced hypoglycemia. Diabetes. 2018;67(7):1401–1413. doi: https://doi.org/10.2337/db18-0031
- Chen J, Sang Z, Li L, et al. Discovery of 5-methyl-2-(4-((4-(methylsulfonyl)benzyl)oxy)phenyl)-4-(piperazin-1-yl)pyrimidine derivatives as novel GRP119 agonists for the treatment of diabetes and obesity. Mol Divers. 2017;21(3):637–654. doi: https://doi.org/10.1007/s11030-017-9755-6
- Chen LH, Zhang Q, Xie X, et al. Modulation of the G-Protein-Coupled Receptor 84 (GPR84) by Agonists and Antagonists. J Med Chem. 2020;63(24):15399–15409. doi: https://doi.org/10.1021/acs.jmedchem.0c01378
- Milligan G. G protein-coupled receptors not currently in the spotlight: free fatty acid receptor 2 and GPR35. Br J Pharmacol. 2018;175(13):2543–2553. doi: https://doi.org/10.1111/bph.14042
- Priyadarshini M, Navarro G, Layden BT. Gut Microbiota: FFAR Reaching Effects on Islets. Endocrinology. 2018;159(6):2495–2505. doi: https://doi.org/10.1210/en.2018-00296
- Bolognini D, Dedeo D, Milligan G. Metabolic and inflammatory functions of short-chain fatty acid receptors. Curr Opin Endocr Metab Res. 2021;16:1–9. doi: https://doi.org/10.1016/j.coemr.2020.06.005
- Ang Z, Xiong D, Wu M, et al. FFAR2–FFAR3 receptor heteromerization modulates short-chain fatty acid sensing. FASEB J. 2018;32(1):289–303. doi: https://doi.org/10.1096/fj.201700252RR
- Wu W, Sun M, Chen F, et al. Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43. Mucosal Immunol. 2017;10(4):946–956. doi: https://doi.org/10.1038/mi.2016.114
- Dumas A, Bernard L, Poquet Y, et al. The role of the lung microbiota and the gut-lung axis in respiratory infectious diseases. Cell Microbiol. 2018;20(12):e12966. doi: https://doi.org/10.1111/cmi.12966
- Wang G, Jiang L, Wang J, et al. The G Protein-Coupled Receptor FFAR2 Promotes Internalization during Influenza a Virus Entry. J Virol. 2020;94(2): e01707–19. doi: https://doi.org/10.1128/JVI.01707-19
- Galvao I, Tavares LP, Correa RO, et al. The metabolic sensor GPR43 receptor plays a role in the control of Klebsiella pneumoniae infection in the lung. Front Immunol. 2018;9:142. doi: https://doi.org/10.3389/fimmu.2018.00142
- Cait A, Hughes MR, Antignano F, et al. Microbiome-driven allergic lung inflammation is ameliorated by short-chain fatty acids. Mucosal. Immunol. 2018;11(3):785–795. doi: https://doi.org/10.1038/mi.2017.75
- Dang AT, Marsland BJ. Microbes, metabolites, and the gut-lung axis. Mucosal Immunol. 2019;12(4):843–850. doi: https://doi.org/10.1038/s41385-019-0160-6
- Kordjazy N. Role of toll-like receptors in inflammatory bowel disease. Pharmacol. Res. 2018;129:204–215. doi: https://doi.org/10.1016/j.phrs.2017.11.017
- Faraj TA, Stover C, Erridge C. Dietary Toll-Like Receptor Stimulants Promote Hepatic Inflammation and Impair Reverse Cholesterol Transport in Mice via Macrophage-Dependent Interleukin-1 Production. Front Immunol. 2019;10:1404. doi: https://doi.org/10.3389/fimmu.2019.01404
- Invernizzi R, Lloyd CM, Molyneaux PL. Respiratory microbiome and epithelial interactions shape immunity in the lungs. Immunology. 2020;160(2);171–182. doi: https://doi.org/10.1111/imm.13195
- Lv J, Yu Q, Lv J, et al. Airway epithelial TSLP production of TLR2 drives type 2 immunity in allergic airway inflammation. Eur J Immunol. 2018;48(11):1838–1850. doi: https://doi.org/10.1002/eji.201847663
- Сhristou EAA, Giardino G, Stefanaki E, et al. Asthma: An Undermined State of Immunodeficiency. Int Rev Immunol. 2019;38(2):70–78. doi: https://doi.org/10.1080/08830185.2019.1588267
- Zakeri A, Russo M. Dual Role of Toll-like Receptors in Human and Experimental Asthma Models. Front Immunol. 2018;9:1027. doi: https://doi.org/10.3389/fimmu.2018.01027
- Li Y, Deng SL, Lian ZX, et al. Roles of Toll-Like Receptors in Nitroxidative Stress in Mammals. Cells. 2019;8(6):576. doi: https://doi.org/10.3390/cells8060576
- Nkosi V, Rathogwa-Takalani F, Voyi K. The Frequency of Fast Food Consumption in Relation to Wheeze and Asthma among Adolescents in Gauteng and North West Provinces, South Africa. Int J Environ Res Public Health. 2020;17(6). doi: https://doi.org/10.3390/ijerph17061994
- Kytikova OY, Novgorodtseva TP, Antonyuk MV, et al. Molecular targets of fatty acid ethanolamides in asthma. Medicina (Kaunas). 2019:55(4):87. doi: https://doi.org/10.3390/medicina55040087
- Zhang D, Li S, Wang N, et al. The Cross-Talk Between Gut Microbiota and Lungs in Common Lung Diseases. Front Microbiol. 2020;11:301. doi: https://doi.org/10.3389/fmicb.2020.00301
- West CE, Dzidic M, Prescott SL, et al. Bugging allergy; role of pre-, pro- and synbiotics in allergy prevention. Allergol Int. 2017;66(4):529–538. doi: https://doi.org/10.1016/j.alit.2017.08.001
- Kim SW, Kim S, Son M, et al. Melatonin controls microbiota in colitis by goblet cell differentiation and antimicrobial peptide production through Toll-like receptor 4 signalling. Sci Rep. 2020;10(1):2232. doi: https://doi.org/10.1038/s41598-020-59314-7
- Verstegen REM, Kostadinova AI, Merenciana Z, et al. Dietary Fibers: Effects, Underlying Mechanisms and Possible Role in Allergic Asthma Management. Nutrients. 2021;13(11):4153. doi: https://doi.org/10.3390/nu13114153
- Zou XL, Wu JJ, Ye HX, et al. Associations between Gut Microbiota and Asthma Endotypes: A Cross-Sectional Study in South China Based on Patients with Newly Diagnosed Asthma. J Asthma Allergy. 2021;14:981–992. doi: https://doi.org/10.2147/JAA.S320088
Дополнительные файлы
