Evaluation of the Effectiveness of Personalized Treatment of Trace Element and Vitamin Status in Men with Initial Stages of Androgenic Alopecia Treated with Conservative Therapy

Cover Page

Cite item

Full Text

Abstract

Background. Androgenic alopecia (AGA) is the most common form of pathological hair loss with multiple micronutrient disorders involvedin its occurrence and development.

Aim—to evaluatethe effectiveness of personalized treatment of micronutrient deficiencies in patients with early stages of AGA and conservative therapy using a vasodilator drug minoxidil based on evidence-based medicine.

Methods. A total 48 patients with stages I–IV of AGA (according to the Norwood–Hamilton scale) were recruited to experimental prospective clinical study evaluating the effectiveness of pharmaceutical forms of trace elements and vitamins. The primary diagnosis of micronutrient deficiency was carried out by comparing laboratory parameters of patients with AGA and 25 healthy volunteers. After that, conservative treatment with 5% topical minoxidilin AGA patients was enriched with 2-month personalized systemic supplementation of pharmaceutical forms of trace elements and vitamins. At the end of the study, the correspondence between changes in trace elements and vitamins content in the plasma and the trichogram parameters before and after conservative therapy was assessed.

Results. The majority (96%) of the examined patients with AGA were characterized by mono- or polynutrient deficiencies. Personalized correction made it possible to restore the content of Se, Mg, Fe and vitamin E to the baseline levels and to achieve a significant increase in Zn, vitamin D and folic acid plasma content. The relationship between changes in the level of micronutrients and trichogram parameters was recorded only for Se (decrease in anagen hairs: r = –0.43; p = 0.037; decrease in hair density: r = –0.45; p = 0.028) and folic acid (an increase in anagen hairs: r = 0.41; p = 0.024); the positive effect of vitamin E on hair density was also detected.

Conclusion. The results of the study allow to recommend a personalized treatment of folic acid and vitamin E deficiencies, with possible refusal to use the Se-containing drugs in conservative therapy of patients with the early stages of AGA.

About the authors

Irina N. Kondrakhina

State Research Center of Dermatovenereology and Cosmetology

Author for correspondence.
Email: kondrakhina77@gmail.com
ORCID iD: 0000-0003-3662-9954
SPIN-code: 8721-9424

MD, PhD

Russian Federation, 3c6, Korolenko str., Moscow, 107076

Alexander M. Zatevalov

G.N. Gabrichevsky Research Institute for Epidemiology and Microbiology

Email: zatevalov@mail.ru
ORCID iD: 0000-0002-1460-4361
SPIN-code: 3718-6127

PhD in Biology

Russian Federation, Moscow

Eugenia R. Gatiatulina

All-Russian Research Institute of Medicinal and Aromatic Plants

Email: gatiatulinaer@gmail.com
ORCID iD: 0000-0002-6360-2194
SPIN-code: 5392-5170

MD, PhD

Russian Federation, Moscow

Alexandr A. Nikonorov

State Research Center of Dermatovenereology and Cosmetology

Email: nikonorov_all@mail.ru
ORCID iD: 0000-0001-7214-8176
SPIN-code: 3859-7081
Scopus Author ID: 6701729328

MD, PhD, Professor

Russian Federation, 3c6, Korolenko str., Moscow, 107076

Dmitry G. Deryabin

State Research Center of Dermatovenereology and Cosmetology

Email: dgderyabin@yandex.ru
ORCID iD: 0000-0002-2495-6694
SPIN-code: 8243-2537

MD, PhD, Professor

Russian Federation, 3c6, Korolenko str., Moscow, 107076

Alexey A. Kubanov

State Research Center of Dermatovenereology and Cosmetology

Email: kubanov@list.ru
ORCID iD: 0000-0002-7625-0503
SPIN-code: 8771-4990

MD, PhD, Professor, Corresponding Member of the RAS

Russian Federation, 3c6, Korolenko str., Moscow, 107076

References

  1. Yap CX, Sidorenko J, Wu Y, et al. Dissection of genetic variation and evidence for pleiotropy in male pattern baldness. Nat Commun. 2018;9(1):5407. doi: https://doi.org/10.1038/s41467-018-07862-y
  2. Heilmann-Heimbach S, Hochfeld LM, Henne SK, Nöthen MM. Hormonal regulation in male androgenetic alopecia-Sex hormones and beyond: Evidence from recent genetic studies. Exp Dermatol. 2020;29(9):818–827. doi: https://doi.org/10.1111/exd.14130
  3. Guo EL, Katta R. Diet and hair loss: Effects of nutrient deficiency and supplement use. Dermatol Pract Concept. 2017;7(1):1–10. doi: https://doi.org/10.5826/dpc.0701a01
  4. Iyanda AA. Serum elements status of androgenetic alopecia subjects exposed to cigarette smoke or alcohol. Journal of Emerging Trends in Engineering and Applied. Sciences. 2012;3(4):702–707.
  5. Bayer M., Gahrtz M., Voss W, et al. The Effect of a Food Supplement and a Hair Lotion on the Progression of Androgenetic Alopecia. J Cosmet Dermatol Sci Appl. 2019;9(4):292–304. doi: https://doi.org/10.4236/jcdsa.2019.94026
  6. Fortes C, Mastroeni S, Mannooranparampil T, et al. Mediterranean diet: Fresh herbs and fresh vegetables decrease the risk of androgenetic alopecia in males. Arch Dermatol Res. 2018;310(1):71–76. doi: https://doi.org/10.1007/s00403-017-1799-z
  7. Almohanna HM, Ahmed AA, Tsatalis JP, et al. The role of vitamins and minerals in hair loss: A review. Dermatol Ther (Heidelb). 2019;9(1):51–70. doi: https://doi.org/10.1007/s13555-018-0278-6
  8. Кондрахина И.Н., Вербенко Д.А., Затевалов А.М., и др. Значение генетических и негенетических факторов в возникновении и развитии андрогенной алопеции у мужчин: многопараметрический анализ // Вестник РАМН. — 2019. — Т. 74. — № 3. — С. 167–175. [Kondrakhina IN, Verbenko DA, Zatevalov AM, et al. The value of genetic and non-genetic factors in the occurrence and development of androgenetic alopecia in men: multifactor analysis. Annals of the Russian Academy of Medical Sciences. 2019;74(3):167–175. (In Russ.)]. doi: https://doi.org/10.15690/vramn1141
  9. Cheung EJ, Sink JR, English Iii JC. Vitamin and Mineral Deficiencies in Patients with Telogen Effluvium: A Retrospective Cross-Sectional Study. J Drugs Dermatol. 2016;15(10):1235–1237.
  10. Suchonwanit P, Thammarucha S, Leerunyakul K. Minoxidil and its use in hair disorders: A review. Drug Des Devel Ther. 2019;13:2777–2786. doi: https://doi.org/10.2147/DDDT.S2149072019
  11. Rajendrasingh RR. Nutritional correction for hair loss, thinning of hair, and achieving new hair regrowth. In: Practical Aspects of Hair Transplantation in Asians. Tokyo: Springer; 2018. P. 667–685.
  12. Kondrakhina IN, Verbenko DA, Zatevalov AM, et al. A Cross-sectional Study of Plasma Trace Elements and Vitamins Content in Androgenetic Alopecia in Men. Biol Trace Elem Res. 2021;199(9):3232–3241. doi: 10.1007/s12011-020-02468-2
  13. Nimrouzi M, Ruyvaran M, Zamani A, et al. Oil and extract of safflower seed improve fructose induced metabolic syndrome through modulating the homeostasis of trace elements, TNF-α and fatty acids metabolism. J Ethnopharmacol. 2020;254:112721. doi: https://doi.org/10.1016/j.jep.2020.112721
  14. Tao L, Zheng Y, Shen Z, et al. Psychological stress-induced lower serum zinc and zinc redistribution in rats. Biol Trace Elem Res. 2013;155:65–71. doi: https://doi.org/10.1007/s12011-013-9762-0
  15. Xu L, Zhang Sh, Chen Wei et al. Trace elements differences in the depression sensitive and resilient rat models. Biochem Biophys Res Commun. 2020;529(2):204–209. doi: https://doi.org/10.1016/j.bbrc.2020.05.228
  16. Kil MS, Kim CW, Kim SS. Analysis of Serum Zinc and Copper Concentrations in Hair Loss. Ann Dermatol. 2013;25(4):405–409. doi: https://doi.org/10.5021/ad.2013.25.4.405
  17. El-Esawy FM, Hussein MS, Mansour AI. Serum Biotin and Zinc in Male Androgenetic Alopecia. J Cosmet Dermatol. 2019;18:1546–1549. doi: https://doi.org/10.1111/jocd.12865
  18. Kondrakhina IN, Verbenko DA, Zatevalov AM, et al. Plasma Zinc Levels in Males with Androgenetic Alopecia as Possible Predictors of the Subsequent Conservative Therapy’s Effectiveness. Diagnostics (Basel). 2020;10(5):336. doi: https://doi.org/10.3390/diagnostics10050336
  19. Skalnaya MG. Copper deficiency a new reason of androgenetic alopecia? In: Atroshi F. (ed.). Pharmacology and nutritional intervention in the treatment of disease. Ch. 17. Bookson Demand; 2014. P. 337–348. doi: https://doi.org/10.5772/58416
  20. Steinbrenner H. Interference of selenium and selenoproteins with the insulin-regulated carbohydrate and lipid metabolism. Free Radic Biol Med. 2013;65:1538–1547. doi: https://doi.org/10.1016/j.freeradbiomed.2013.07.016
  21. Zhou JC, Zhou J, Su L, et al. Selenium and diabetes. In: Selenium. Michalke B. (ed.). Springer: Cham, Switzerland; 2018. P. 317–344.
  22. Vinceti M, Mandrioli J, Borella P, et al. Selenium neurotoxicity in humans: Bridging laboratory and epidemiologic studies. Toxicol Lett. 2014;230(2):295–303. doi: https://doi.org/10.1016/j.toxlet.2013.11.016
  23. Vinceti M, Filippini T, Rothman KJ. Selenium exposure and the risk of type 2 diabetes: A systematic review and meta-analysis. Eur J Epidemiol. 2018;33(9):789–810. doi: https://doi.org/10.1007/s10654-018-0422-8
  24. Rayman MP. Selenium intake, status, and health: A complex relationship. Hormones (Athens). 2020;19(1):9–14. doi: https://doi.org/10.1007/s42000-019-00125-5
  25. Minutoli L, Bitto A, Squadrito F. et al. Serenoa Repens, lycopene and selenium: a triple therapeutic approach to manage benign prostatic hyperplasia. Curr Med Chem. 2013;20(10):1306–1312. doi: https://doi.org/10.2174/0929867311320100007
  26. Stanhewicz AE, Kenney WL. Role of folic acid in nitric oxide bioavailability and vascular endothelial function. Nutr Rev. 2017;75(1):61–70. doi: https://doi.org/10.1093/nutrit/nuw053
  27. Nesari A, Taghi Mansouri M, Javad Khodayar M, et al. Preadministration of high-dose alpha-tocopherol improved memory impairment and mitochondrial dysfunction induced by proteasome inhibition in rat hippocampus. Nutr Neurosci. 2021;24(2):119–129. doi: https://doi.org/10.1080/1028415X.2019.1601888
  28. Sadiq M, Akram NA, Ashraf M, et al. Alpha-Tocopherol-Induced Regulation of Growth and Metabolism in Plants under Non-Stress and Stress Conditions. J Plant Growth Regul. 2019;38:1325–1340. doi: https://doi.org/10.1007/s00344-019-09936-7
  29. Upton JH, Hannen RF, Bahta AW, et al. Oxidative Stress-Associated Senescence in Dermal Papilla Cells of Men with Androgenetic Alopecia. J Invest Dermatol. 2015;135(5):1244–1252. doi: https://doi.org/10.1038/jid.2015.28

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1

Download (338KB)
3. Fig. 2

Download (227KB)
4. Fig. 3

Download (234KB)

Copyright (c) 2021 "Paediatrician" Publishers LLC

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».