Features of the microenvironment of oncourological tumors

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The interaction of tumor cells, especially if they are stem or resting, with myeloid and lymphoid components, as well as extracellular matrix producers, leads to the formation of a pathological microenvironment that causes resistance to many systemic treatment options. The aim of the work is to present modern literature and own data concerning the features of the composition and structure of the microenvironment in tumors of the kidney, prostate and bladder. The article presents data on the composition and interaction of various subpopulations of cells in the tumor microenvironment, as well as on the role of stem tumor cells in its formation. Defects of signaling pathways of stem tumor cells are described, as well as the mechanism of interaction between the tumor and the immune system in the process of carcinogenesis. Approaches to the assessment of the type of microenvironment for the purpose of individualization of treatment are analyzed in detail. The authors present their own data on the nature of the distribution of subpopulations of lymphocytes and suppressor cells of myeloid origin in patients with metastatic forms of tumors of the genitourinary tract. The variants of using data on the structure of the microenvironment in order to optimize treatment tactics in cancer patients are indicated.

About the authors

Oleg E. Molchanov

A.M. Granov Russian Research Center of Radiology and Surgical Technologies

Author for correspondence.
Email: molchanovo@mail.ru
ORCID iD: 0000-0003-3882-1720
SPIN-code: 5557-6468
Scopus Author ID: 25637650600
ResearcherId: AAX-2364-2020

Dr. Sci. (Med.), Head of Department of Fundamental Investigations

Russian Federation, Pesochnyi village, Saint Petersburg

Dmitriy N. Maistrenko

A.M. Granov Russian Research Center of Radiology and Surgical Technologies

Email: may64@mail.ru
ORCID iD: 0000-0001-8174-7461
SPIN-code: 7363-4840
Scopus Author ID: 57193120885
ResearcherId: AAA-9446-2020

Dr. Sci. (Med.), Director

Russian Federation, Pesochnyi village, Saint Petersburg

Dmitriy A. Granov

A.M. Granov Russian Research Center of Radiology and Surgical Technologies

Email: da_granov@rrcrst.ru
ORCID iD: 0000-0002-8746-8452
SPIN-code: 5256-2744

Dr. Sci. (Med.), Professor, Academician of the Russian Academy of Sciences, Scientific Adviser

Russian Federation, Pesochnyi village, Saint Petersburg

Igor Yu. Lisitsin

A.M. Granov Russian Research Center of Radiology and Surgical Technologies

Email: urologlis@mail.ru

Cand. Sci. (Med.), Urologist, Head of the Outpatient Consultation Center

Russian Federation, Pesochnyi village, Saint Petersburg

Alexandr A. Romanov

A.M. Granov Russian Research Center of Radiology and Surgical Technologies; Sortavala Central District Hospital

Email: tiffozi@mail.ru

Research Associate; Chief Physician

Russian Federation, Pesochnyi village, Saint Petersburg; Sortavala Republic of Karelia

References

  1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer J Clin. 2021;71(3):209–249. doi: 10.3322/caac.21660
  2. Kaprin AD, Starinskii VV, Shahzadova AO, et al, editors. Sostoyanie onkologicheskoj pomoshchi naseleniyu Rossii v 2019 godu. Moscow: MNIOI im. P.A. Gercena — filial FGBU “NMIC radiologii” Minzdrava Rossii, 2020. 239 p. (In Russ.)
  3. Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21(3):309–322. doi: 10.1016/j.ccr.2012.02.022
  4. Yang L, Lin PS. Mechanisms that drive inflammatory tumor microenvironment, tumor heterogeneity, and metastatic progression. Semin Cancer Biol. 2017;47:185–195. doi: 10.1016/j.semcancer.2017.08.001
  5. Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu Rev Immunol. 2004;22(1):329–360. doi: 10.1146/annurev.immunol.22.012703.104803
  6. Deshmukh A, Deshpande K, Arfuso F, et al. Cancer stem cell metabolism: a potential target for cancer therapy. Mol Cancer. 2016;15(1):69. doi: 10.1186/s12943-016-0555-x
  7. Buoncervello M, Gabriele L, Toschi E. The Janus face of tumor microenvironment targeted by immunotherapy. Int J Mol Sci. 2019;20(17):4320. doi: 10.3390/ijms20174320
  8. Jarosz-Biej M, Smolarczyk R, Cihon T, Kulach N. Tumor microenvironment as a “Game Changer” in cancer radiotherapy. Int J Mol Sci. 2019;20(13):3212. doi: 10.3390/ijms20133212
  9. Giusturini G, Pavesi A, Adriani G. Nanoparticle-based therapies for turning cold tumors hot: how to treat an immunosuppressive tumor microenvironement. Front Bioeng Biotechnol. 2021;9:89245 doi: 10.3389/fbioe.2021.689245
  10. Mier JW. The tumor microenvironement in renal cell cancer. Curr Opin Oncol. 2019;31(3):194–199. doi: 10.1097/cco.0000000000000512
  11. Movassaghi M, Chung R, Anderson CB, et al. Overcoming immune resistance in prostate cancer: challenges and advances. Cancers. 2021;13(19):4757. doi: 10.3390/cancers13194757
  12. Vitkin N, Nersesian S, Siemens DR, Koti M. The tumor immune contexture of prostate cancer. Front Immunol. 2019;10:603. doi: 10.3389/fimmu.2019.00603
  13. Annels NE, Simpson GR, Pandha H. Modifying the non-muscle invasive bladder cancer immune microenvironment for optimal therapeutic response. Front Oncol. 2020;10:175. doi: 10.3389/fonc.2020.00175
  14. Joseph M, Enting D. Immune responses in bladder cancer — role of immune cell populations, prognostic factors and therapeutic implications. Front Oncol. 2019;9:1270. doi: 10.3389/fonc.2019.01270
  15. Talukdar S, Bhoopathi P, Emdad L, et al. Dormancy and cancer stem cells: an enigma for cancer therapeutic targeting. Adv Cancer Res. 2019;141:43–84. doi: 10.1016/bs.acr.2018.12.002
  16. Katoh M, Katoh M. Precision medicine for human cancers with Notch signaling dysregulation (Review). Int J Mol Med. 2020;45(2):279–297. doi: 10.3892/ijmm.2019.4418
  17. Zhang Y, Wang X. Targeting the Wnt/β-catenin signaling pathway in cancer. J Hematol Oncol. 2020;13(1):165. doi: 10.1186/s13045-020-00990-3
  18. Garbalo GB, Honorato JR, de Lopes GP, de Sampaio e Spohr TCL. A highlight on Sonic hedgehog pathway. Cell Commun Signal. 2018;16:11. doi: 10.1186/s12964-018-0220-7
  19. Battle E, Massaque J. Transforming grown factor-β signaling in immunity and cancer. Immunity. 2019;50(4):924–940. doi: 10.1016/j.immuni.2019.03.024
  20. Owen KL, Brockwel NK, Parker BS. JAK-STAT Signaling: a double-edged sword of immune regulation and cancer progression. Cancers. 2019;11(12):2002. doi: 10.3390/cancers11122002
  21. Yang L, Zhang Y. Tumor-associated macrophages: from basic research to clinical application. J Hematol Oncol. 2017;10(1):58. doi: 10.1186/s13045-017-0430-2
  22. Conejo-Garcia JR, Rutkowski MR, Cubillos-Ruiz JR. State-of-the-art of regulatory dendritic cells in cancer. Pharmacol Ther. 2016;164:97–104. doi: 10.1016/j.pharmthera.2016.04.003
  23. Collin M, Bigley V. Human dendritic cell subsets: an apdate. Immunology. 2013;154(1):3–20. doi: 10.1111/imm.12888
  24. Fridlender ZG, Sun G, Kim S, et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell. 2009;16(3):183–194. doi: 10.1016/j.ccr.2009.06.017
  25. Stabile H, Fionda C, Gismondi A, Santoni A. Role of distinct natural killer cell subsets in anticancer response. Front Immunol. 2017;8:293. doi: 10.3389/fimmu.2017.00293
  26. Cicco PD, Ercolano G, Lanaro A. The new era of cancer immunotherapy: targeting myeloid-derived suppressor cells to overcome immune evasion. Front Immunol. 2020;11:1680. doi: 10.3389/fimmu.2020.01680
  27. Ducimetiere L, Vermeer M, Tugues S. The interplay between innate lymphoid cells and the tumor microenvironment. Front Immunol. 2019;10:2895. doi: 10.3389/fimmu.2019.02895
  28. Hung C-H, Chen F-M, Lin Y-C, et al. Altered monocyte differentiation and macrophage polarization patterns in patients with breast cancer. BMC Cancer. 2018;18(1):366. doi: 10.1186/s12885-018-4284-y
  29. Locati M, Curtale G, Mantovani A. Diversity, Mechanisms and significance of macrophage plasticity. Annu Rev Pathol: Mechanisms of Disease. 2020;15:123–147. doi: 10.1146/annurev-pathmechdis-012418-012718
  30. Wculek SK, Cueto FJ, Mujal AM, et al. Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol. 2019;20(1): 7–24. doi: 10.1038/s41577-019-0210-z
  31. Sakaguchi S, Sakaguchi N, Asano M, et al Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995; 155(3):1151–1164. doi: 10.4049/jimmunol.155.3.1151
  32. Chiossone L, Dumas PY, Vienne M, Vivier E. Natural killer cells and other innate lymphoid cells in cancer. Nat Rev Immunol. 2018;18(11):671–688. doi: 10.1038/s41577-018-0061-z
  33. Ostroumov D, Fekete-Drimusz N, Saborowski M, et al. CD4 and CD8 T lymphocyte interplay in controlling tumor growth. Cell Mol Life Sci. 2018;75(4):689–713. doi: 10.1007/s00018-017-2686-7
  34. Ye J, Su X, Hsueh EC, et al. Human tumor-infiltrating Th17 cells have the capacity to differentiate into IFN-γ+ and FOXP3+ T cells with potent suppressive function. Eur J Immunol. 2011;41(4):936–951. doi: 10.1002/eji.201040682
  35. Kuen DS, Kim BS, Chung Y. IL-17 — producing cells in tumor immunity: friends or foes? Immune Network. 2020;20(1):e6. doi: 10.4110/in.2020.20.e6
  36. Wu Z, Zheng Y, Han Y, et al. CD3+CD4+CD8– (double-negative) T cells in inflammation, immune disorders and cancer. Front Immunol. 2022;13:816005. doi: 10.3389/fimmu.2022.816005
  37. Catakovic K, Klieser E, Neureiter D, Geisberger R. T cell exhaustion: from pathophysiological basics to tumor immunotherapy. Cell Commun Signal. 2017;15:1. doi: 10.1186/s12964-016-0160-z
  38. Michaud D, Steward CR, Mirlekar B, Pylayeva-Gupta Y. Regulatory B cells in cancer. Immunol Rev. 2020;299(1):74–92. doi: 10.1111/imr.12939
  39. Bruchard M, Ghiringhelli F. Deciphering the roles of innate lymphoid cells in cancer. Front Immunol. 2019;10:656. doi: 10.3389/fimmu.2019.00656
  40. DeBerardinis RJ. Tumor microenvironment, metabolism, and immunotherapy. N Eng J Med. 2020;382(9):869–871. doi: 10.1056/nejmcibr1914890
  41. Lin L, Hu X, Zhang H, Hu H. Tertiary lymphoid organs in cancer immunology: mechanisms and the new strategies for immunotherapy. Front Immunol. 2019;10:1398. doi: 10.3389/fimmu.2019.01398
  42. Yu X, Zhang Z, Wang Z, et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in breast cancer: a systematic review and meta-analysis. Clin Transl Oncol. 2016;18(5):497–506. doi: 10.1007/s12094-015-1391-y
  43. Galon J, Mlecnik B, Bindea G, et al. Towards the introduction of the “immunoscore” in the classification of malignant tumors. J Pathol. 2014;232(2):199–209. doi: 10.1002/path.4287
  44. Galon J, Bruni D. Approaches to treat immune hot, altered and cold tumors with combination immunotherapies. Nat Rev Drug Discov. 2019;18(3):197–218. doi: 10.1038/s41573-018-0007-y
  45. Vuong L, Kotecha RR, Voss MH, Hakimi AA. Tumor microenvironment dynamics in clear cell renal cell carcinoma. Cancer Discov. 2019;9(10):1349–1357. doi: 10.1158/2159-8290.cd-19-0499
  46. Lin E, Liu X, Liu Y, et al. Roles of the dynamic tumor immune microenvironment in the individualized treatment of advanced clear cell renal cell carcinoma. Front Immunol. 2021;12:653358. doi: 10.3389/fimmu.2021.653358
  47. Adekoya TO, Richardson RM. Cytokines and chemokines as mediators of prostate cancer metastasis. Int J Mol Sci. 2020;21(12):4449. doi: 10.3390/ijms21124449
  48. Ge R, Wang Z, Cheng L. Tumor microenvironment heterogeneity an important mediator of prostate cancer progression and therapeutic resistance. Precis Oncol. 2022;6:31. doi: 10.1038/s41698-022-00272-w
  49. Song D, Powles T, Shi L, et al. Bladder cancer, a unique model to understand cancer immunity and develop immunotherapy approaches. J Pathol. 2019;249(2):151–165. doi: 10.1002/path.5306
  50. van Dijk N, Gil-Jimenez A, Silina K, et al. The tumor immune landscape and architecture of tertiary lymphoid structures in urothelial cancer. Front Immunol. 2021;12:793964. doi: 10.3389/fimmu.2021.793964
  51. Jian Y, Yang K, Sun X, et al. Current advance of immune evasion mechanisms and emerging immunotherapies in renal cell carcinoma. Front Immunol. 2021;12:639636. doi: 10.3389/fimmu.2021.639636
  52. Mennito A, Huber V, Ratta R, et al. Angiogenesis and immunity in renal carcinoma: can we turn an unhappy relationship into a happy marriage? J Clin Med. 2020;9(4):930. doi: 10.3390/jcm9040930
  53. Shi J, Wang K, Xiong Z, et al. Impact of inflammation and immunotherapy in renal cell carcinoma (review). Oncol Letters. 2020;20(5):1. doi: 10.3892/ol.2020.12135
  54. Stultz J, Fong L. How to turn up the heat on the cold immune microenvironment of metastatic prostate cancer. Prostate Cancer Prostatic Diseas. 2021;24(3):151–165. doi: 10.1038/s41391-021-00340-5
  55. Jansen CS, Prokhnevska N, Kissick HT. The requirement for immune infiltration and organization in the tumor microenvironment for successful immunotherapy in prostate cancer. Urol Oncol Semin Original Investig. 2019;37(8):543–555. doi: 10.1016/j.urolonc.2018.10.011
  56. Matos A, Carvalho M, Bicho M, Ribeiro R. Arginine and arginases modulate metabolism, tumor microenvironment and prostate cancer progression. Nutrients. 2021;13(12):4503. doi: 10.3390/nu13124503
  57. van Dijk N, Funt SA, Blank CU, et al. The cancer immunogram as a framework for personalized immunotherapy in urothelial cancer. Eur Urol. 2019;7(53):435–444. doi: 10.1016/j.eururo.2018.09.022
  58. Nassif EF, Thibault C, Oudard S, Galon G. Precision immunity: immunoscore and neoadjuvant treatment in bladder cancer. Oncoimmunology. 2021;10(1):1888488. doi: 10.1080/2162402x.2021.1888488
  59. Bonaventura P, Shekarian T, Alkazer V, et al. Cold tumors: a therapeutic challenge for immunotherapy. Front Immunol. 2019;10:168. doi: 10.3389/fimmu.2019.00168

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Molchanov O.E., Maistrenko D.N., Granov D.A., Lisitsin I.Y., Romanov A.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».