选择性免疫抑制剂托法替尼在伴有骨关节炎表现的多发性骨骺发育不良患儿中的应用经验。临床病例描述
- 作者: Kozhevnikov A.N.1, Melchenko E.V.1, Shabaldin N.A.2, Kenis V.M.1
-
隶属关系:
- H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery
- Kemerovo State Medical University
- 期: 卷 13, 编号 4 (2025)
- 页面: 440-451
- 栏目: Clinical cases
- URL: https://ogarev-online.ru/turner/article/view/375531
- DOI: https://doi.org/10.17816/PTORS688792
- EDN: https://elibrary.ru/PJPVMK
- ID: 375531
如何引用文章
详细
多发性骨骺发育不良是一组骨关节系统疾病,其遗传学基础具有多样性,遗传方式及临床表现差异显著。该类疾病常见且不良的结局之一是在骨关节炎背景下发生髋关节骨关节炎,并伴随股骨头脱位。发性骨骺发育不良患儿的骨关节炎在临床及影像学表现上常可模拟幼年特发性关节炎的病程。非甾体抗炎药被认为在病理发生机制上具有合理性,但并非始终有效。目前,免疫抑制治疗对多发性骨骺发育不良患儿骨关节炎病程的影响尚缺乏研究。本文报道1例11岁多发性骨骺发育不良4型患儿成功应用选择性免疫抑制剂托法替尼的临床病例。该疾病以骨关节炎为主要表现,并形成右侧股骨头脱位。未获得支持幼年特发性关节炎病程的相关证据。长期应用非甾体抗炎药未取得预期疗效。给予托法替尼(Janus激酶抑制剂)治疗,剂量为10 mg/日,分2次口服,并联合机械治疗后,患儿骨关节炎症状得到缓解,并对股骨头脱位进展起到预防作用。众所周知,Janus激酶抑制剂属于靶向合成型基础抗炎药物。该类抑制剂在疗效上与传统用于治疗幼年特发性关节炎的基因工程生物制剂相当。该类药物通过选择性阻断促炎性细胞因子的信号传导通路发挥抗炎作用。选择性Janus激酶抑制剂在风湿病学中的应用经验,为其在伴有骨关节炎表现的骨骼发育不良患儿中的使用提供了理论依据。多发性骨骺发育不良4型是一种进展过程中不可避免导致髋关节骨关节炎及股骨头脱位的骨骼发育不良。在伴有骨关节炎表现的此类骨骼发育不良患儿中,应用Janus激酶抑制剂可能是合理且具有良好前景的。
作者简介
Aleksey Kozhevnikov
H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery
编辑信件的主要联系方式.
Email: infant_doc@mail.ru
ORCID iD: 0000-0003-0509-6198
SPIN 代码: 1230-6803
MD, Cand. Sci. (Medicine)
俄罗斯联邦, Saint PetersburgEvgenii Melchenko
H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery
Email: emelchenko@gmail.com
ORCID iD: 0000-0003-1139-5573
SPIN 代码: 1552-8550
MD, Cand. Sci (Medicine)
俄罗斯联邦, Saint PetersburgNikita Shabaldin
Kemerovo State Medical University
Email: shabaldin.nk@yandex.ru
ORCID iD: 0000-0001-8628-5649
SPIN 代码: 6283-2581
MD, Cand. Sci. (Medicine), Assistant Professor
俄罗斯联邦, KemerovoVladimir Kenis
H. Turner National Medical Research Center for Children’s Orthopedics and Trauma Surgery
Email: kenis@mail.ru
ORCID iD: 0000-0002-7651-8485
SPIN 代码: 5597-8832
MD, Dr. Sci. (Medicine), Professor
俄罗斯联邦, Saint Petersburg参考
- Dennis EP, Greenhalgh-Maychell PL, Briggs MD. Multiple epiphyseal dysplasia and related disorders: molecular genetics, disease mechanisms, and therapeutic avenues. Dev Dyn. 2021;250(3):345–359. doi: 10.1002/dvdy.221 EDN: XWPWES
- Markova TV, Kenis VM, Nikitin SS, et al. Differential diagnosis of myopathy and multiple epiphyseal dysplasia caused by mutations in the COMP gene in children. Neuromuscular Diseases. 2022;12(2):37–46. doi: 10.17650/2222-8721-2022-12-2-37-46 EDN: EFYMPU
- Swaroop S, Srivastava P, Diwakar K, et al. An interesting case of multiple epiphyseal dysplasia masquerading as myopathy in a Southeast Asian girl. Cureus. 2025;17(2):e78400. doi: 10.7759/cureus.78400 EDN: YNYVQM
- Briggs MD, Wright MJ, Mortier GR. Multiple epiphyseal dysplasia, autosomal dominant. [updated 2024 Jul 4]. In: GeneReviews® [Internet]. Adam MP, Feldman J, Mirzaa GM, et al., editors. Seattle: University of Washington; 2003. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1123/
- Seo SG, Song HR, Kim HW, et al. Comparison of orthopaedic manifestations of multiple epiphyseal dysplasia caused by MATN3 versus COMP mutations: a case control study. BMC Musculoskelet Disord. 2014;15:84. doi: 10.1186/1471-2474-15-84 EDN: UUWMWC
- Liu HY, Xiao JF, Huang J, et al. Diagnosis with multiple epiphyseal dysplasia using whole-exome sequencing in a Chinese family. Chin Med J (Engl). 2017;130(1):104–107. doi: 10.4103/0366-6999.196568
- Markova T, Kenis V, Melchenko E, et al. Clinical and genetic characteristics of multiple epiphyseal dysplasia type 4. Genes (Basel). 2022;13(9):1512. doi: 10.3390/genes13091512 EDN: CVTKYM
- Sakamoto Y, Yamamoto T, Kajino Y, et al. Multiple epiphyseal dysplasia mimicking osteoarthritis due to acetabular dysplasia: a report of a familial case with a COMP mutation. J Orthop Sci. 2017;22(5):967–971. doi: 10.1016/j.jos.2016.01.010
- Osipova DV, Markova TV, Kenis VM, et al. Differential diagnosis of juvenile idiopathic arthritis and multiple epiphyseal dysplasia: experience of multidisciplinary interaction. Rheumatology Science and Practice. 2023;61(5):608–617. doi: 10.47360/1995-4484-2023-608-617 EDN: MHUSOY
- Kozhevnikov AN, Pozdeeva NA, Melchenko EV, et al. Recessive multiple epiphyseal dysplasia in differential diagnosis of juvenile arthritis. Pediatr Rheumatol Online J. 2018;16(Suppl 2):61. doi: 10.1186/s12969-018-0265-6 EDN: RMHJTC
- Ravelli A, Martini A. Juvenile idiopathic arthritis. Lancet. 2007;369(9563):767–778. doi: 10.1016/S0140-6736(07)60363-8 EDN: MKWHUD
- Giancane G, Consolaro A, Lanni S, et al. Juvenile idiopathic arthritis: diagnosis and treatment. Rheumatol Ther. 2016;3(2):187–207. doi: 10.1007/s40744-016-0040-4 EDN: YGSPXE
- Ringold S, Angeles-Han ST, Beukelman T, et al. 2019 American College of Rheumatology/Arthritis Foundation guideline for the treatment of juvenile idiopathic arthritis: therapeutic approaches for non-systemic polyarthritis, sacroiliitis, and enthesitis. Arthritis Care Res (Hoboken). 2019;71(6):717–734. doi: 10.1002/acr.23870 EDN: UKDZNY
- Kozhevnikov AN, Pozdeeva NA, Konev MA, et al. Juvenile arthritis: clinical manifestations and differential diagnosis. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2014;2(4):66–73. doi: 10.17816/PTORS2466-73 EDN: TGIWBD
- Vorontsova IG, Shchagina OA, Korostin DO, et al. Clinical case of COL2A1-associated progressive pseudorheumatoid dysplasia. Pediatria n.a. G.N. Speransky. 2024;103(3):190–198. doi: 10.24110/0031-403X-2024-103-3-190-198 EDN: KRBXZU
- Daşar T, İmren G, Yıldız AE, et al. Recognizing multiple epiphyseal dysplasia in children presenting with joint pain: a commonly overlooked skeletal dysplasia. Eur J Pediatr. 2025;184(6):350. doi: 10.1007/s00431-025-06176-8
- Legare JM, Basel D. What the pediatric endocrinologist needs to know about skeletal dysplasia, a primer. Front Pediatr. 2023;11:1229666. doi: 10.3389/fped.2023.1229666 EDN: IHZVFG
- Alexeeva EI. Juvenile idiopathic arthritis: clinical picture, diagnosis, treatment. Current Pediatrics. 2015;14(1):78–94. doi: 10.15690/vsp.v14i1.1266 EDN: TIHOVF
- Unger S, Superti-Furga A. SLC26A2-related multiple epiphyseal dysplasia. [updated 2023 Jan 19]. In: GeneReviews®. [Internet]. Adam MP, Feldman J, Mirzaa GM, et al., editors. Seattle: University of Washington; 2002. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1306/
- Dahlqvist J, Orlén H, Matsson H, et al. Multiple epiphyseal dysplasia. Acta Orthop. 2009;80(6):711–715. doi: 10.3109/17453670903473032
- Kizilkaya V, Engin S, Tunc A, et al. Multiple epiphyseal dysplasia tip 5: case report a rare skeletal dysplasıa presenting with repetitive joint pain in children. Int J Surg Case Rep. 2023;106:108179. doi: 10.1016/j.ijscr.2023.108179 EDN: TBZZIK
- Lecci S, Miles CG, Briggs MD, et al. A COL9A3 EXON 3 skipping mouse as novel model for multiple epiphyseal dysplasia and early-onset osteoarthritis. Osteoarthritis Cartilage. 2018;26:S100.
- Moreira LA, Carvalho DR, Santos SCL, et al. Czech dysplasia mimicking rheumatoid arthritis: case series and literature review. Mod Rheumatol. 2024;34(4):705–710. doi: 10.1093/mr/road070 EDN: MUFTNL
- Riaz M, Khoso Z, Rai VR, et al. A rare skeletal dysplasia-close mimicker of juvenile idiopathic arthritis-progressive pseudorheumatoid dysplasia. J Ayub Med Coll Abbottabad. 2022;34(Suppl 1)(4):S1050–S1052. doi: 10.55519/JAMC-04-S4-10897 EDN: JKSKOO
- Miyamae T, Akatsu M, Ichikawa N, et al. Destructive juvenile idiopathic arthritis: do not overlook rare genetic skeletal disorders - authors’ reply. Lancet Rheumatol. 2021;3(6):e405. doi: 10.1016/S2665-9913(21)00110-7 EDN: RZRHIE
- Nikishina IP, Arsenyeva SV, Matkava VG, et al. Successful experience of tofacitinib treatment in patients with fibrodysplasia ossificans progressiva. Pediatr Rheumatol Online J. 2023;21(1):92. doi: 10.1186/s12969-023-00856-1 EDN: BTVXKY
- Buchinskaya NV, Isupova EA, Vechkasova AO, et al. Evaluation of etanercept (a tumor necrosis factor alpha inhibitor) as an effective treatment for joint disease in mucopolysaccharidosis type I. A case report with whole-body magnetic resonance imaging. Front Med (Lausanne). 2024;10:1252704. doi: 10.3389/fmed.2023.1252704 EDN: VWKMER
- Haviv R, Moshe V, De Benedetti F, et al. Is fibrodysplasia ossificans progressiva an interleukin-1 driven auto-inflammatory syndrome? Pediatr Rheumatol Online J. 2019;17(1):84. doi: 10.1186/s12969-019-0386-6 EDN: HVXRET
- Kolondaev AF, Rodionova SS. Fibrodysplasia ossificans progressiva (clinical observation with a brief review of the literature). N.N. Priorov Journal of Traumatology and Orthopedics. 2024;31(2):203–216. doi: 10.17816/vto623695 EDN: KSZFXC
- Nasonov EL. Janus kinase inhibitors in immunoinflammatory rheumatic diseases. Terapevticheskii Arkhiv. 2022;94(5):605–609. (In Russ.) doi: 10.26442/00403660.2022.05.201501 EDN: BJQJFP
- Kostik MM, Ivanov DO, Dubko MF, et al. Guide to Pediatrics: Guide. Volume 12. Pediatric Rheumatology. Saint Petersburg: Saint Petersburg State Pediatric Medical University of the Ministry of Health of the Russian Federation; 2024. 504 p. ISBN: 978-5-907870-35-2 (In Russ.)
- Melki I, Frémond ML. JAK inhibition in juvenile idiopathic arthritis (JIA): better understanding of a promising therapy for refractory cases. J Clin Med. 2023;12(14):4695. doi: 10.3390/jcm12144695 EDN: SBZAPR
- Belov BS, Muravyeva NV, Tarasova GM, et al. Use of Janus kinase inhibitors in the treatment of immunoinflammatory rheumatic diseases: safety issues. Medical Council. 2021;(2):76–84. doi: 10.21518/2079-701X-2021-2-76-84 EDN: YYHDZT
- Chikhoune L, Poggi C, Moreau J, et al. JAK inhibitors (JAKI): mechanisms of action and perspectives in systemic and autoimmune diseases. Rev Med Interne. 2025;46(2):89–106. doi: 10.1016/j.revmed.2024.10.452 EDN: VFWYPK
- Doktorova SA, Rafalskiy VV, Grabovetskaya YY, et al. JAK-inhibitors: clinical pharmacology and application perspectives. Reviews on Clinical Pharmacology and Drug Therapy. 2023;20(4):421–434. doi: 10.17816/RCF204421-434 EDN: QVMOZN
补充文件
