Современный подход к диагностике и лечению детей с несовершенным остеогенезом

Обложка

Цитировать

Аннотация

Несовершенный остеогенез — наследственная дисплазия соединительной ткани, для которой характерны хрупкость костей и деформации конечностей. Помимо основного аутосомно-доминантного пути наследования обнаружены аутосомно-рецессивные и Х-связанные формы. В 85 % случаев мутации возникают в генах COL1A1 и COL1A2, что приводит к количественным и качественным изменениям синтеза коллагена 1-го типа. В остальных случая заболевание развивается в результате мутации в генах белков, участвующих в посттрансляционной модификации, присоединении шаперона, фолдинге и сшивании коллагена. Выявление новых механизмов развития несовершенного остеогенеза привело к расширению классификации Sillence, созданию генетической классификации, включающей все известные типы несовершенного остеогенеза, которых на данный момент насчитывается восемнадцать. Лечение пациентов с НО остается симптоматическим и является сложной задачей, требующей комплексного мультидисциплинарного подхода. Основное направление лекарственной терапии заключается в применении бисфосфонатов, которые повышают минеральную плотность кости. В данной статье представлены и другие группы препаратов, эффективность которых пока изучается. Хирургическое лечение переломов и деформаций конечностей улучшает качество жизни пациентов, хотя и сопровождается частыми осложнениями. Остается множество вопросов относительно выбора между телескопическими и нетелескопическими фиксаторами. Реабилитационная терапия играет огромную роль в восстановлении двигательной активности пациентов после переломов и операций.

Об авторах

Михаил Евгеньевич Бурцев

Европейская клиника спортивной травматологии и ортопедии (ECSTO); ФГАОУ ВО «Российский университет дружбы народов»

Автор, ответственный за переписку.
Email: drburtsev91@gmail.com
ORCID iD: 0000-0003-1614-1695
SPIN-код: 6268-0522

травматолог-ортопед; аспирант кафедры травматологии и ортопедии

Россия, 129110, г. Москва, Орловский пер., д.7; 117198, Москва, ул. Миклухо-Маклая, 6    

Александр Владимирович Фролов

Европейская клиника спортивной травматологии и ортопедии (ECSTO); ФГАОУ ВО «Российский университет дружбы народов»

Email: drburtsev91@gmail.com

заведующий отделением травматологии; канд. мед. наук, доцент кафедры травматологии и ортопедии

Россия, 129110, г. Москва, Орловский пер., д.7; 117198, Москва, ул. Миклухо-Маклая, 6    

Алексей Николаевич Логвинов

Европейская клиника спортивной травматологии и ортопедии (ECSTO); ФГАОУ ВО «Российский университет дружбы народов»

Email: drburtsev91@gmail.com

травматолог-ортопед; аспирант кафедры травматологии и ортопедии

Россия, 129110, г. Москва, Орловский пер., д.7; 117198, Москва, ул. Миклухо-Маклая, 6    

Дмитрий Олегович Ильин

Европейская клиника спортивной травматологии и ортопедии (ECSTO)

Email: drburtsev91@gmail.com

канд. мед. наук, травматолог-ортопед

Россия, 129110, г. Москва, Орловский пер., д.7

Андрей Вадимович Королев

Европейская клиника спортивной травматологии и ортопедии (ECSTO); ФГАОУ ВО «Российский университет дружбы народов»

Email: drburtsev91@gmail.com

медицинский директор; д-р мед. наук, профессор кафедры

Россия, 129110, г. Москва, Орловский пер., д.7; 117198, Москва, ул. Миклухо-Маклая, 6    

Список литературы

  1. Marini JC, Forlino A, Bachinger HP, et al. Osteogenesis imperfecta. Nat Rev Dis Primers. 2017;3:17052. https://doi.org/10.1038/nrdp.2017.52.
  2. Sillence DO, Rimoin DL, Danks DM. Clinical variability in osteogenesis imperfecta-variable expressivity or genetic heterogeneity. Birth Defects Orig Artic Ser. 1979;15(5B):113-129.
  3. Forlino A, Cabral WA, Barnes AM, Marini JC. New perspectives on osteogenesis imperfecta. Nat Rev Endocrinol. 2011;7(9):540-557. https://doi.org/10.1038/nrendo.2011.81.
  4. McAllion SJ, Paterson CR. Causes of death in osteogenesis imperfecta. J Clin Pathol. 1996;49(8):627-630. https://doi.org/10.1136/jcp.49.8.627.
  5. Van Dijk FS, Sillence DO. Osteogenesis imperfecta: clinical diagnosis, nomenclature and severity assessment. Am J Med Genet A. 2014;164A(6):1470-1481. https://doi.org/10.1002/ajmg.a.36545.
  6. Marini JC, Forlino A, Cabral WA, et al. Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans. Hum Mutat. 2007;28(3):209-221. https://doi.org/10.1002/humu.20429.
  7. Rauch F, Glorieux FH. Osteogenesis imperfecta. Lancet. 2004;363(9418):1377-1385. https://doi.org/10.1016/s0140-6736(04)16051-0.
  8. Ishikawa Y, Bachinger HP. A molecular ensemble in the rER for procollagen maturation. Biochim Biophys Acta. 2013;1833(11):2479-2491. https://doi.org/10.1016/j.bbamcr.2013.04.008.
  9. Bacon S, Crowley R. Developments in rare bone diseases and mineral disorders. Ther Adv Chronic Dis. 2018;9(1):51-60. https://doi.org/10.1177/ 2040622317739538.
  10. Rauch F, Moffatt P, Cheung M, et al. Osteogenesis imperfecta type V: marked phenotypic variability despite the presence of the IFITM5 c.-14C>T mutation in all patients. J Med Genet. 2013;50(1):21-24. https://doi.org/10.1136/jmedgenet-2012-101307.
  11. Semler O, Garbes L, Keupp K, et al. A mutation in the 5’-UTR of IFITM5 creates an in-frame start codon and causes autosomal-dominant osteogenesis imperfecta type V with hyperplastic callus. Am J Hum Genet. 2012;91(2):349-357. https://doi.org/10.1016/j.ajhg.2012.06.011.
  12. Morello R, Bertin TK, Chen Y, et al. CRTAP is required for prolyl 3- hydroxylation and mutations cause recessive osteogenesis imperfecta. Cell. 2006;127(2):291-304. https://doi.org/10.1016/j.cell.2006.08.039.
  13. Sillence DO, Senn A, Danks DM. Genetic heterogeneity in osteogenesis imperfecta. J Med Genet. 1979;16(2):101-116. https://doi.org/10.1136/jmg.16.2.101.
  14. Thomas IH, DiMeglio LA. Advances in the Classification and Treatment of Osteogenesis Imperfecta. Curr Osteoporos Rep. 2016;14(1):1-9. https://doi.org/10.1007/s11914-016-0299-y.
  15. Bonafe L, Cormier-Daire V, Hall C, et al. Nosology and classification of genetic skeletal disorders: 2015 revision. Am J Med Genet A. 2015;167A(12):2869-2892. https://doi.org/10.1002/ajmg.a.37365.
  16. Warman ML, Cormier-Daire V, Hall C, et al. Nosology and classification of genetic skeletal disorders: 2010 revision. Am J Med Genet A. 2011;155A(5):943-968. https://doi.org/10.1002/ajmg.a.33909.
  17. Trejo P, Rauch F. Osteogenesis imperfecta in children and adolescents-new developments in diagnosis and treatment. Osteoporos Int. 2016;27(12):3427-3437. https://doi.org/10.1007/s00198-016-3723-3.
  18. Zarate YA, Clingenpeel R, Sellars EA, et al. COL1A1 and COL1A2 sequencing results in cohort of patients undergoing evaluation for potential child abuse. Am J Med Genet A. 2016;170(7):1858-1862. https://doi.org/10.1002/ajmg.a.37664.
  19. Hoyer-Kuhn H, Netzer C, Koerber F, et al. Two years’ experience with denosumab for children with osteogenesis imperfecta type VI. Orphanet J Rare Dis. 2014;9:145. https://doi.org/10.1186/s13023-014-0145-1.
  20. Sule G, Campeau PM, Zhang VW, et al. Next-generation sequencing for disorders of low and high bone mineral density. Osteoporos Int. 2013;24(8):2253-2259. https://doi.org/10.1007/s00198-013-2290-0.
  21. Bardai G, Moffatt P, Glorieux FH, Rauch F. DNA sequence analysis in 598 individuals with a clinical diagnosis of osteogenesis imperfecta: diagnostic yield and mutation spectrum. Osteoporos Int. 2016;27(12):3607-3613. https://doi.org/10.1007/s00198-016-3709-1.
  22. Игнатович О.Н., Намазова-Баранова Л.С., Маргиева Т.В., и др. Несовершенный остеогенез: особенности диагностики // Педиатрическая фармакология. – 2018. – T. 15. – № 3. – С. 224–232. [Ignatovich ON, Namazova-Baranova LS, Margieva TV, et al. Osteogenesis imperfecta: diagnostic feature. Pediatric pharmacology. 2018;15(3):224-232. (In Russ.)]. https://doi.org/10.15690/pf.v15i3.1902.
  23. Tournis S, Dede AD. Osteogenesis imperfecta — A clinical update. Metabolism. 2018;80:27-37. https://doi.org/10.1016/j.metabol.2017.06.001.
  24. Biggin A, Munns CF. Osteogenesis imperfecta: diagnosis and treatment. Curr Osteoporos Rep. 2014;12(3):279-288. https://doi.org/10.1007/s11914-014-0225-0.
  25. Marr C, Seasman A, Bishop N. Managing the patient with osteogenesis imperfecta: a multidisciplinary approach. J Multidiscip Healthc. 2017;10:145-155. https://doi.org/10.2147/JMDH.S113483.
  26. Montpetit K, Palomo T, Glorieux FH, et al. Multidisciplinary treatment of severe osteogenesis imperfecta: functional outcomes at skeletal maturity. Arch Phys Med Rehabil. 2015;96(10):1834-1839. https://doi.org/10.1016/j.apmr.2015.06.006.
  27. Morello R. Osteogenesis imperfecta and therapeutics. Matrix Biol. 2018;71-72:294-312. https://doi.org/10.1016/j.matbio.2018.03.010.
  28. Щеплягина Л.А., Полякова Е.Ю., Белова Н.А. Несовершенный остеогенез у детей: известные и неизвестные факты // Лечение и профилактика. – 2017. – № 1. – С. 5–11. [Shcheplyagina LA, Polyakova EY, Belova NA. The imperfect osteogenesis in children: the well-known and unknown factors. Lechenie i profilaktika. 2017;1(21):5-11. (In Russ.)]
  29. Glorieux FH, Bishop NJ, Plotkin H, et al. Cyclic administration of pamidronate in children with severe osteogenesis imperfecta. N Engl J Med. 1998;339(14):947-952. https://doi.org/10.1056/NEJM199810013391402.
  30. Edouard T, Glorieux FH, Rauch F. Predictors and correlates of vitamin D status in children and adolescents with osteogenesis imperfecta. J Clin Endocrinol Metab. 2011;96(10):3193-3198. https://doi.org/10.1210/jc.2011-1480.
  31. Pepin MG, Byers PH. What every clinical geneticist should know about testing for osteogenesis imperfecta in suspected child abuse cases. Am J Med Genet C Semin Med Genet. 2015;169(4):307-313. https://doi.org/10.1002/ajmg.c.31459.
  32. Gatti D, Antoniazzi F, Prizzi R, et al. Intravenous neridronate in children with osteogenesis imperfecta: a randomized controlled study. J Bone Miner Res. 2005;20(5):758-763. https://doi.org/10.1359/JBMR.041232.
  33. Shi CG, Zhang Y, Yuan W. Efficacy of bisphosphonates on bone mineral density and fracture rate in patients with osteogenesis imperfecta: a systematic review and meta-analysis. Am J Ther. 2016;23(3):e894-904. https://doi.org/10.1097/MJT.0000000000000236.
  34. Костик М.М., Чикова И.А., Бучинская Н.В., и др. Опыт терапии бисфосфонатами детей с несовершенным остеогенезом // Лечение и профилактика. – 2014. – № 3. – С. 13–20. [Kostik MM, Chikova IA, Buchinskaya NV, et al. The experience of bisphosphonates therapy of children with osteogenesis imperfecta. Lechenie i profilaktika. 2014;(3):13-20. (In Russ.)]
  35. Marom R, Lee YC, Grafe I, Lee B. Pharmacological and biological therapeutic strategies for osteogenesis imperfecta. Am J Med Genet C Semin Med Genet. 2016;172(4):367-383. https://doi.org/10.1002/ajmg.c.31532.
  36. Sato A, Ouellet J, Muneta T, et al. Scoliosis in osteogenesis imperfecta caused by COL1A1/COL1A2 mutations — genotype-phenotype correlations and effect of bisphosphonate treatment. Bone. 2016;86:53-57. https://doi.org/10.1016/j.bone.2016.02.018.
  37. Hald JD, Evangelou E, Langdahl BL, Ralston SH. Bisphosphonates for the prevention of fractures in osteogenesis imperfecta: meta-analysis of placebo-controlled trials. J Bone Miner Res. 2015;30(5):929-933. https://doi.org/10.1002/jbmr.2410.
  38. Rijks EB, Bongers BC, Vlemmix MJ, et al. Efficacy and safety of bisphosphonate therapy in children with osteogenesis imperfecta: a systematic review. Horm Res Paediatr. 2015;84(1):26-42. https://doi.org/10.1159/000381713.
  39. Яхяева Г.Т., Намазова-Баранова Л.С., Маргиева Т.В. Опыт применения памидроновой кислоты в терапии у детей с несовершенным остеогенезом // Российский педиатрический журнал. – 2016. – Т. 19. – № 5. – С. 282–287. [Yakhyaeva GT, Namazova-Baranova LS, Margieva TV. Experience of the application of pamidronic acid in the therapy in children with osteogenesis imperfecta. Russian journal of pediatrics. 2016;19(5):282-287. (In Russ.)]. https://doi.org/10.18821/1560-9561-2016-19(5)-282-287.
  40. Munns CF, Rauch F, Zeitlin L, et al. Delayed osteotomy but not fracture healing in pediatric osteogenesis imperfecta patients receiving pamidronate. J Bone Miner Res. 2004;19(11):1779-1786. https://doi.org/10.1359/JBMR.040814.
  41. Anam EA, Rauch F, Glorieux FH, et al. Osteotomy healing in children with osteogenesis imperfecta receiving bisphosphonate treatment. J Bone Miner Res. 2015;30(8):1362-1368. https://doi.org/10.1002/jbmr.2486.
  42. Dwan K, Phillipi CA, Steiner RD, Basel D. Bisphosphonate therapy for osteogenesis imperfecta. Cochrane Database Syst Rev. 2014(7):CD005088. https://doi.org/10.1002/14651858.CD005088.pub3.
  43. Semler O, Netzer C, Hoyer-Kuhn H, et al. First use of the RANKL antibody denosumab in osteogenesis imperfecta type VI. J Musculoskelet Neuronal Interact. 2012;12(3):183-188.
  44. Hoyer-Kuhn H, Franklin J, Allo G, et al. Safety and efficacy of denosumab in children with osteogenesis imperfect — a first prospective trial. J Musculoskelet Neuronal Interact. 2016;16(1):24-32. PMC5089451 conflict of interest relevant to this article.
  45. Antoniazzi F, Monti E, Venturi G, et al. GH in combination with bisphosphonate treatment in osteogenesis imperfecta. Eur J Endocrinol. 2010;163(3):479-487. https://doi.org/10.1530/EJE-10-0208.
  46. Lindsay R, Krege JH, Marin F, et al. Teriparatide for osteoporosis: importance of the full course. Osteoporos Int. 2016;27(8):2395-2410. https://doi.org/10.1007/s00198-016-3534-6.
  47. Sinder BP, Salemi JD, Ominsky MS, et al. Rapidly growing Brtl/+ mouse model of osteogenesis imperfecta improves bone mass and strength with sclerostin antibody treatment. Bone. 2015;71:115-123. https://doi.org/10.1016/j.bone.2014.10.012.
  48. Grafe I, Yang T, Alexander S, et al. Excessive transforming growth factor-beta signaling is a common mechanism in osteogenesis imperfecta. Nat Med. 2014;20(6):670-675. https://doi.org/10.1038/nm.3544.
  49. Сергеев В.С., Тихоненко Т.И., Буклаев Д.С., и др. Клеточная терапия несовершенного остеогенеза // Гены & клетки. – 2016. – Т. 11. – № 4. – С. 22–33. [Sergeev VS, Tikhonenko TI, Buklaev DS, et al. Cell therapy of osteogenesis imperfecta. Genes and cells. 2016;11(4):22-23. (In Russ.)]
  50. Fassier F, Esposito P, Sponseller P, et al. Multicenter radiological assessment of the Fassier-Duval femoral rodding. In: Proceedings of the Annual meeting of the Pediatric Orthopaedic Society of North America (POSNA); 2006 May 2-6; San Diego, California.
  51. Wilkinson JM, Scott BW, Clarke AM, Bell MJ. Surgical stabilisation of the lower limb in osteogenesis imperfecta using the Sheffield telescopic intramedullary rod system. J Bone Joint Surg Br. 1998;80-B(6):999-1004. https://doi.org/10.1302/0301-620x.80b6.0800999.
  52. Esposito P, Plotkin H. Surgical treatment of osteogenesis imperfecta: current concepts. Curr Opin Pediatr. 2008;20(1):52-57. https://doi.org/10.1097/MOP.0b013e3282f35f03.
  53. el-Sobky MA, Hanna AA, Basha NE, et al. Surgery versus surgery plus pamidronate in the management of osteogenesis imperfecta patients: a comparative study. J Pediatr Orthop B. 2006;15(3):222-228. https://doi.org/10.1097/01.bpb.0000192058.98484.5b.
  54. Ruck J, Dahan-Oliel N, Montpetit K, et al. Fassier-Duval femoral rodding in children with osteogenesis imperfecta receiving bisphosphonates: functional outcomes at one year. J Child Orthop. 2011;5(3):217-224. https://doi.org/10.1007/s11832-011-0341-7.
  55. Sofield HA, Millar A. Fragmentation, realignment, and intramedullary rod fixation of deformities of the long bones in children: a ten year appraisal. J Bone Joint Surg. 1959;41(8):1371-1391.
  56. Bailey RW, Dubow HI. Studies of longitudinal bone growth resulting in an extensible nail. Surg Forum. 1963;14:455-458.
  57. Fassier F, Duval P. New concept for telescoping rodding in osteogenesis imperfecta: preliminary results. In: Proceedings of the Annual meeting of the Pediatric Orthopaedic Society of North America (POSNA); 2001 May 2-5; Cancun, Mexico.
  58. Cho TJ, Choi IH, Chung CY, et al. Interlocking telescopic rod for patients with osteogenesis imperfecta. J Bone Joint Surg Am. 2007;89(5):1028-1035. https://doi.org/10.2106/JBJS.F.00814.
  59. Li YH, Chow W, Leong JC. The Sofield-Millar operation in osteogenesis imperfecta. A modified technique. J Bone Joint Surg Br. 2000;82(1):11-16. https://doi.org/10.1302/0301-620X.82B1.0820011.
  60. Enright WJ, Noonan KJ. Bone plating in patients with type III osteogenesis imperfecta: results and complications. Iowa Orthop J. 2006;26:37-40.
  61. Cho TJ, Lee K, Oh CW, et al. Locking plate placement with unicortical screw fixation adjunctive to intramedullary rodding in long bones of patients with osteogenesis imperfecta. J Bone Joint Surg Am. 2015;97(9):733-737. https://doi.org/10.2106/JBJS.N.01185.
  62. Мингазов Э.Р., Попков А.В., Кононович Н.А., и др. Результаты применения интрамедуллярного трансфизарного эластичного армирования у пациентов с тяжелыми формами несовершенного остеогенеза // Гений ортопедии. – 2016. – № 4. – C. 6–16. [Mingazov ER, Popkov AV, Kononovich NA, et al. Results of using transphyseal elastic intramedullary nailing in patients with severe types of osteogenesis imperfecta. Genij ortopedii. 2016;(4):6-16. (In Russ.)]. https://doi.org/10.18019/1028-4427-2016-4-6-16.
  63. Gamble JG, Rinsky LA, Strudwick J, Bleck EE. Non-union of fractures in children who have osteogenesis imperfecta. J Bone Joint Surg Am. 1988;70(3):439-443.
  64. Ashby E, Montpetit K, Hamdy RC, Fassier F. Functional outcome of humeral rodding in children with osteogenesis imperfecta. J Pediatr Orthop. 2018;38(1):49-53. https://doi.org/10.1097/BPO.0000000000000729.
  65. Hoyer-Kuhn H, Semler O, Stark C, et al. A specialized rehabilitation approach improves mobility in children with osteogenesis imperfecta. J Musculoskelet Neuronal Interact. 2014;14(4):445-453.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Гипертрофическая мозоль после хирургического лечения пациента с V типом несовершенного остеогенеза

Скачать (42KB)
3. Рис. 2. Линии скрлероза костной ткани после лечения бисфосфонатами

Скачать (147KB)
4. Рис. 3. Деформации нижних конечностей при несовершенном остеогенезе

Скачать (141KB)
5. Рис. 4. Коррекция многоплоскостных деформаций нижних конечностей, интрамедуллярная фиксация штифтом Fassier-Duval [57]

Скачать (137KB)
6. Рис. 5. Интрамедуллярная фиксация штифтом Sheffield, деформация солидной части штифта (а) [51]; рассоединение телескопического штифта (б); миграция дистального конца телескопического стержня (в); миграция Т-образного наконечника штифта Bailey-Dubow (г) [56]

Скачать (118KB)
7. Рис. 6. Прорезывание стержня через передний кортикальный слой кости (а); переимплантный перелом (б); рост кости за пределы шинированной зоны (в); переимплантный перелом после остеосинтеза пластиной (г)

Скачать (146KB)

© Бурцев М.Е., Фролов А.В., Логвинов А.Н., Ильин Д.О., Королев А.В., 2019

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».