Current approach to diagnosis and treatment of children with osteogenesis imperfecta
- Authors: Burtsev M.E.1,2, Frolov A.V.1,2, Logvinov A.N.1,2, Ilyin D.O.1, Korolev A.V.1,2
-
Affiliations:
- European Clinic of Sports Traumatology and Orthopaedics (ECSTO)
- Peoples’ Friendship University of Russia
- Issue: Vol 7, No 2 (2019)
- Pages: 87-102
- Section: Review
- URL: https://ogarev-online.ru/turner/article/view/10780
- DOI: https://doi.org/10.17816/PTORS7287-102
- ID: 10780
Cite item
Abstract
Osteogenesis imperfecta (OI) is a heritable bone dysplasia characterized by bone fragility and long bone deformities. Approximately 85% of OI cases are caused by dominant autosomal mutations in the type I collagen coding genes (COL1A1 and COL1A2), which affect the quantity or structure of collagen. The remaining percentage of cases is caused by mutation in the proteins responsible for posttranslational modification, processing and crosslinking of collagen, bone mineralization, and osteoblast differentiation. In the past decade, new recessive, dominant, and X-linked inheritance. As a result, new types of OI were added to the Sillence classification, and a new genetic classification consisting of XVIII types is formed. Treatment of patients with OI is a complex task which requires a multidisciplinary care. Pharmacological treatment is based on bisphosphonate treatment, which increases the bone mineral density. In this article, we will describe other approaches in which the effectiveness is studied. Surgical treatment of the fractures and deformities of the extremities showed a positive effect on the patients’ quality of life, despite existing complications. There are a lot of debates about the choice between telescopic and non-telescopic fixators. Rehabilitation plays huge role in the recovery process after fracture and surgeries.
Osteogenesis imperfecta (OI) is a heritable bone dysplasia characterized by bone fragility and long bone deformities. Approximately 85% of OI cases are caused by dominant autosomal mutations in the type I collagen coding genes (COL1A1 and COL1A2), which affect the quantity or structure of collagen. The remaining percentage of cases is caused by mutation in the proteins responsible for posttranslational modification, processing and crosslinking of collagen, bone mineralization, and osteoblast differentiation. In the past decade, new recessive, dominant, and X-linked inheritance. As a result, new types of OI were added to the Sillence classification, and a new genetic classification consisting of XVIII types is formed. Treatment of patients with OI is a complex task which requires a multidisciplinary care. Pharmacological treatment is based on bisphosphonate treatment, which increases the bone mineral density. In this article, we will describe other approaches in which the effectiveness is studied. Surgical treatment of the fractures and deformities of the extremities showed a positive effect on the patients’ quality of life, despite existing complications. There are a lot of debates about the choice between telescopic and non-telescopic fixators. Rehabilitation plays huge role in the recovery process after fracture and surgeries.
Full Text
##article.viewOnOriginalSite##About the authors
Mikhail E. Burtsev
European Clinic of Sports Traumatology and Orthopaedics (ECSTO); Peoples’ Friendship University of Russia
Author for correspondence.
Email: drburtsev91@gmail.com
ORCID iD: 0000-0003-1614-1695
SPIN-code: 6268-0522
Orthopaedic Trauma Surgeon; MD, PhD Student in Department of Traumatology and Orthopaedics
Russian Federation, 7, Orlovsky per., Moscow, 129110; 6, Miklukho-Maklaya street, Moscow, 117198Aleksandr V. Frolov
European Clinic of Sports Traumatology and Orthopaedics (ECSTO); Peoples’ Friendship University of Russia
Email: drburtsev91@gmail.com
Orthopaedic Trauma Surgeon, Chief of Trauma Department; MD, PhD, Assistant Professor in Department of Traumatology, Orthopaedics
Russian Federation, 7, Orlovsky per., Moscow, 129110; 6, Miklukho-Maklaya street, Moscow, 117198Aleksei N. Logvinov
European Clinic of Sports Traumatology and Orthopaedics (ECSTO); Peoples’ Friendship University of Russia
Email: drburtsev91@gmail.com
MD, Orthopaedic Trauma Surgeon; PhD Student in Department of Traumatology and Orthopaedics
Russian Federation, 7, Orlovsky per., Moscow, 129110; 6, Miklukho-Maklaya street, Moscow, 117198Dmitry O. Ilyin
European Clinic of Sports Traumatology and Orthopaedics (ECSTO)
Email: drburtsev91@gmail.com
MD, PhD, Orthopaedic Trauma Surgeon
Russian Federation, 7, Orlovsky per., Moscow, 129110Andrey V. Korolev
European Clinic of Sports Traumatology and Orthopaedics (ECSTO); Peoples’ Friendship University of Russia
Email: drburtsev91@gmail.com
Orthopaedic Trauma Surgeon, Chief Doctor and Medical Director; MD, PhD, D.Sc., Professor in Department of Traumatology and Orthopaedics
Russian Federation, 7, Orlovsky per., Moscow, 129110; 6, Miklukho-Maklaya street, Moscow, 117198References
- Marini JC, Forlino A, Bachinger HP, et al. Osteogenesis imperfecta. Nat Rev Dis Primers. 2017;3:17052. https://doi.org/10.1038/nrdp.2017.52.
- Sillence DO, Rimoin DL, Danks DM. Clinical variability in osteogenesis imperfecta-variable expressivity or genetic heterogeneity. Birth Defects Orig Artic Ser. 1979;15(5B):113-129.
- Forlino A, Cabral WA, Barnes AM, Marini JC. New perspectives on osteogenesis imperfecta. Nat Rev Endocrinol. 2011;7(9):540-557. https://doi.org/10.1038/nrendo.2011.81.
- McAllion SJ, Paterson CR. Causes of death in osteogenesis imperfecta. J Clin Pathol. 1996;49(8):627-630. https://doi.org/10.1136/jcp.49.8.627.
- Van Dijk FS, Sillence DO. Osteogenesis imperfecta: clinical diagnosis, nomenclature and severity assessment. Am J Med Genet A. 2014;164A(6):1470-1481. https://doi.org/10.1002/ajmg.a.36545.
- Marini JC, Forlino A, Cabral WA, et al. Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans. Hum Mutat. 2007;28(3):209-221. https://doi.org/10.1002/humu.20429.
- Rauch F, Glorieux FH. Osteogenesis imperfecta. Lancet. 2004;363(9418):1377-1385. https://doi.org/10.1016/s0140-6736(04)16051-0.
- Ishikawa Y, Bachinger HP. A molecular ensemble in the rER for procollagen maturation. Biochim Biophys Acta. 2013;1833(11):2479-2491. https://doi.org/10.1016/j.bbamcr.2013.04.008.
- Bacon S, Crowley R. Developments in rare bone diseases and mineral disorders. Ther Adv Chronic Dis. 2018;9(1):51-60. https://doi.org/10.1177/ 2040622317739538.
- Rauch F, Moffatt P, Cheung M, et al. Osteogenesis imperfecta type V: marked phenotypic variability despite the presence of the IFITM5 c.-14C>T mutation in all patients. J Med Genet. 2013;50(1):21-24. https://doi.org/10.1136/jmedgenet-2012-101307.
- Semler O, Garbes L, Keupp K, et al. A mutation in the 5’-UTR of IFITM5 creates an in-frame start codon and causes autosomal-dominant osteogenesis imperfecta type V with hyperplastic callus. Am J Hum Genet. 2012;91(2):349-357. https://doi.org/10.1016/j.ajhg.2012.06.011.
- Morello R, Bertin TK, Chen Y, et al. CRTAP is required for prolyl 3- hydroxylation and mutations cause recessive osteogenesis imperfecta. Cell. 2006;127(2):291-304. https://doi.org/10.1016/j.cell.2006.08.039.
- Sillence DO, Senn A, Danks DM. Genetic heterogeneity in osteogenesis imperfecta. J Med Genet. 1979;16(2):101-116. https://doi.org/10.1136/jmg.16.2.101.
- Thomas IH, DiMeglio LA. Advances in the Classification and Treatment of Osteogenesis Imperfecta. Curr Osteoporos Rep. 2016;14(1):1-9. https://doi.org/10.1007/s11914-016-0299-y.
- Bonafe L, Cormier-Daire V, Hall C, et al. Nosology and classification of genetic skeletal disorders: 2015 revision. Am J Med Genet A. 2015;167A(12):2869-2892. https://doi.org/10.1002/ajmg.a.37365.
- Warman ML, Cormier-Daire V, Hall C, et al. Nosology and classification of genetic skeletal disorders: 2010 revision. Am J Med Genet A. 2011;155A(5):943-968. https://doi.org/10.1002/ajmg.a.33909.
- Trejo P, Rauch F. Osteogenesis imperfecta in children and adolescents-new developments in diagnosis and treatment. Osteoporos Int. 2016;27(12):3427-3437. https://doi.org/10.1007/s00198-016-3723-3.
- Zarate YA, Clingenpeel R, Sellars EA, et al. COL1A1 and COL1A2 sequencing results in cohort of patients undergoing evaluation for potential child abuse. Am J Med Genet A. 2016;170(7):1858-1862. https://doi.org/10.1002/ajmg.a.37664.
- Hoyer-Kuhn H, Netzer C, Koerber F, et al. Two years’ experience with denosumab for children with osteogenesis imperfecta type VI. Orphanet J Rare Dis. 2014;9:145. https://doi.org/10.1186/s13023-014-0145-1.
- Sule G, Campeau PM, Zhang VW, et al. Next-generation sequencing for disorders of low and high bone mineral density. Osteoporos Int. 2013;24(8):2253-2259. https://doi.org/10.1007/s00198-013-2290-0.
- Bardai G, Moffatt P, Glorieux FH, Rauch F. DNA sequence analysis in 598 individuals with a clinical diagnosis of osteogenesis imperfecta: diagnostic yield and mutation spectrum. Osteoporos Int. 2016;27(12):3607-3613. https://doi.org/10.1007/s00198-016-3709-1.
- Игнатович О.Н., Намазова-Баранова Л.С., Маргиева Т.В., и др. Несовершенный остеогенез: особенности диагностики // Педиатрическая фармакология. – 2018. – T. 15. – № 3. – С. 224–232. [Ignatovich ON, Namazova-Baranova LS, Margieva TV, et al. Osteogenesis imperfecta: diagnostic feature. Pediatric pharmacology. 2018;15(3):224-232. (In Russ.)]. https://doi.org/10.15690/pf.v15i3.1902.
- Tournis S, Dede AD. Osteogenesis imperfecta — A clinical update. Metabolism. 2018;80:27-37. https://doi.org/10.1016/j.metabol.2017.06.001.
- Biggin A, Munns CF. Osteogenesis imperfecta: diagnosis and treatment. Curr Osteoporos Rep. 2014;12(3):279-288. https://doi.org/10.1007/s11914-014-0225-0.
- Marr C, Seasman A, Bishop N. Managing the patient with osteogenesis imperfecta: a multidisciplinary approach. J Multidiscip Healthc. 2017;10:145-155. https://doi.org/10.2147/JMDH.S113483.
- Montpetit K, Palomo T, Glorieux FH, et al. Multidisciplinary treatment of severe osteogenesis imperfecta: functional outcomes at skeletal maturity. Arch Phys Med Rehabil. 2015;96(10):1834-1839. https://doi.org/10.1016/j.apmr.2015.06.006.
- Morello R. Osteogenesis imperfecta and therapeutics. Matrix Biol. 2018;71-72:294-312. https://doi.org/10.1016/j.matbio.2018.03.010.
- Щеплягина Л.А., Полякова Е.Ю., Белова Н.А. Несовершенный остеогенез у детей: известные и неизвестные факты // Лечение и профилактика. – 2017. – № 1. – С. 5–11. [Shcheplyagina LA, Polyakova EY, Belova NA. The imperfect osteogenesis in children: the well-known and unknown factors. Lechenie i profilaktika. 2017;1(21):5-11. (In Russ.)]
- Glorieux FH, Bishop NJ, Plotkin H, et al. Cyclic administration of pamidronate in children with severe osteogenesis imperfecta. N Engl J Med. 1998;339(14):947-952. https://doi.org/10.1056/NEJM199810013391402.
- Edouard T, Glorieux FH, Rauch F. Predictors and correlates of vitamin D status in children and adolescents with osteogenesis imperfecta. J Clin Endocrinol Metab. 2011;96(10):3193-3198. https://doi.org/10.1210/jc.2011-1480.
- Pepin MG, Byers PH. What every clinical geneticist should know about testing for osteogenesis imperfecta in suspected child abuse cases. Am J Med Genet C Semin Med Genet. 2015;169(4):307-313. https://doi.org/10.1002/ajmg.c.31459.
- Gatti D, Antoniazzi F, Prizzi R, et al. Intravenous neridronate in children with osteogenesis imperfecta: a randomized controlled study. J Bone Miner Res. 2005;20(5):758-763. https://doi.org/10.1359/JBMR.041232.
- Shi CG, Zhang Y, Yuan W. Efficacy of bisphosphonates on bone mineral density and fracture rate in patients with osteogenesis imperfecta: a systematic review and meta-analysis. Am J Ther. 2016;23(3):e894-904. https://doi.org/10.1097/MJT.0000000000000236.
- Костик М.М., Чикова И.А., Бучинская Н.В., и др. Опыт терапии бисфосфонатами детей с несовершенным остеогенезом // Лечение и профилактика. – 2014. – № 3. – С. 13–20. [Kostik MM, Chikova IA, Buchinskaya NV, et al. The experience of bisphosphonates therapy of children with osteogenesis imperfecta. Lechenie i profilaktika. 2014;(3):13-20. (In Russ.)]
- Marom R, Lee YC, Grafe I, Lee B. Pharmacological and biological therapeutic strategies for osteogenesis imperfecta. Am J Med Genet C Semin Med Genet. 2016;172(4):367-383. https://doi.org/10.1002/ajmg.c.31532.
- Sato A, Ouellet J, Muneta T, et al. Scoliosis in osteogenesis imperfecta caused by COL1A1/COL1A2 mutations — genotype-phenotype correlations and effect of bisphosphonate treatment. Bone. 2016;86:53-57. https://doi.org/10.1016/j.bone.2016.02.018.
- Hald JD, Evangelou E, Langdahl BL, Ralston SH. Bisphosphonates for the prevention of fractures in osteogenesis imperfecta: meta-analysis of placebo-controlled trials. J Bone Miner Res. 2015;30(5):929-933. https://doi.org/10.1002/jbmr.2410.
- Rijks EB, Bongers BC, Vlemmix MJ, et al. Efficacy and safety of bisphosphonate therapy in children with osteogenesis imperfecta: a systematic review. Horm Res Paediatr. 2015;84(1):26-42. https://doi.org/10.1159/000381713.
- Яхяева Г.Т., Намазова-Баранова Л.С., Маргиева Т.В. Опыт применения памидроновой кислоты в терапии у детей с несовершенным остеогенезом // Российский педиатрический журнал. – 2016. – Т. 19. – № 5. – С. 282–287. [Yakhyaeva GT, Namazova-Baranova LS, Margieva TV. Experience of the application of pamidronic acid in the therapy in children with osteogenesis imperfecta. Russian journal of pediatrics. 2016;19(5):282-287. (In Russ.)]. https://doi.org/10.18821/1560-9561-2016-19(5)-282-287.
- Munns CF, Rauch F, Zeitlin L, et al. Delayed osteotomy but not fracture healing in pediatric osteogenesis imperfecta patients receiving pamidronate. J Bone Miner Res. 2004;19(11):1779-1786. https://doi.org/10.1359/JBMR.040814.
- Anam EA, Rauch F, Glorieux FH, et al. Osteotomy healing in children with osteogenesis imperfecta receiving bisphosphonate treatment. J Bone Miner Res. 2015;30(8):1362-1368. https://doi.org/10.1002/jbmr.2486.
- Dwan K, Phillipi CA, Steiner RD, Basel D. Bisphosphonate therapy for osteogenesis imperfecta. Cochrane Database Syst Rev. 2014(7):CD005088. https://doi.org/10.1002/14651858.CD005088.pub3.
- Semler O, Netzer C, Hoyer-Kuhn H, et al. First use of the RANKL antibody denosumab in osteogenesis imperfecta type VI. J Musculoskelet Neuronal Interact. 2012;12(3):183-188.
- Hoyer-Kuhn H, Franklin J, Allo G, et al. Safety and efficacy of denosumab in children with osteogenesis imperfect — a first prospective trial. J Musculoskelet Neuronal Interact. 2016;16(1):24-32. PMC5089451 conflict of interest relevant to this article.
- Antoniazzi F, Monti E, Venturi G, et al. GH in combination with bisphosphonate treatment in osteogenesis imperfecta. Eur J Endocrinol. 2010;163(3):479-487. https://doi.org/10.1530/EJE-10-0208.
- Lindsay R, Krege JH, Marin F, et al. Teriparatide for osteoporosis: importance of the full course. Osteoporos Int. 2016;27(8):2395-2410. https://doi.org/10.1007/s00198-016-3534-6.
- Sinder BP, Salemi JD, Ominsky MS, et al. Rapidly growing Brtl/+ mouse model of osteogenesis imperfecta improves bone mass and strength with sclerostin antibody treatment. Bone. 2015;71:115-123. https://doi.org/10.1016/j.bone.2014.10.012.
- Grafe I, Yang T, Alexander S, et al. Excessive transforming growth factor-beta signaling is a common mechanism in osteogenesis imperfecta. Nat Med. 2014;20(6):670-675. https://doi.org/10.1038/nm.3544.
- Сергеев В.С., Тихоненко Т.И., Буклаев Д.С., и др. Клеточная терапия несовершенного остеогенеза // Гены & клетки. – 2016. – Т. 11. – № 4. – С. 22–33. [Sergeev VS, Tikhonenko TI, Buklaev DS, et al. Cell therapy of osteogenesis imperfecta. Genes and cells. 2016;11(4):22-23. (In Russ.)]
- Fassier F, Esposito P, Sponseller P, et al. Multicenter radiological assessment of the Fassier-Duval femoral rodding. In: Proceedings of the Annual meeting of the Pediatric Orthopaedic Society of North America (POSNA); 2006 May 2-6; San Diego, California.
- Wilkinson JM, Scott BW, Clarke AM, Bell MJ. Surgical stabilisation of the lower limb in osteogenesis imperfecta using the Sheffield telescopic intramedullary rod system. J Bone Joint Surg Br. 1998;80-B(6):999-1004. https://doi.org/10.1302/0301-620x.80b6.0800999.
- Esposito P, Plotkin H. Surgical treatment of osteogenesis imperfecta: current concepts. Curr Opin Pediatr. 2008;20(1):52-57. https://doi.org/10.1097/MOP.0b013e3282f35f03.
- el-Sobky MA, Hanna AA, Basha NE, et al. Surgery versus surgery plus pamidronate in the management of osteogenesis imperfecta patients: a comparative study. J Pediatr Orthop B. 2006;15(3):222-228. https://doi.org/10.1097/01.bpb.0000192058.98484.5b.
- Ruck J, Dahan-Oliel N, Montpetit K, et al. Fassier-Duval femoral rodding in children with osteogenesis imperfecta receiving bisphosphonates: functional outcomes at one year. J Child Orthop. 2011;5(3):217-224. https://doi.org/10.1007/s11832-011-0341-7.
- Sofield HA, Millar A. Fragmentation, realignment, and intramedullary rod fixation of deformities of the long bones in children: a ten year appraisal. J Bone Joint Surg. 1959;41(8):1371-1391.
- Bailey RW, Dubow HI. Studies of longitudinal bone growth resulting in an extensible nail. Surg Forum. 1963;14:455-458.
- Fassier F, Duval P. New concept for telescoping rodding in osteogenesis imperfecta: preliminary results. In: Proceedings of the Annual meeting of the Pediatric Orthopaedic Society of North America (POSNA); 2001 May 2-5; Cancun, Mexico.
- Cho TJ, Choi IH, Chung CY, et al. Interlocking telescopic rod for patients with osteogenesis imperfecta. J Bone Joint Surg Am. 2007;89(5):1028-1035. https://doi.org/10.2106/JBJS.F.00814.
- Li YH, Chow W, Leong JC. The Sofield-Millar operation in osteogenesis imperfecta. A modified technique. J Bone Joint Surg Br. 2000;82(1):11-16. https://doi.org/10.1302/0301-620X.82B1.0820011.
- Enright WJ, Noonan KJ. Bone plating in patients with type III osteogenesis imperfecta: results and complications. Iowa Orthop J. 2006;26:37-40.
- Cho TJ, Lee K, Oh CW, et al. Locking plate placement with unicortical screw fixation adjunctive to intramedullary rodding in long bones of patients with osteogenesis imperfecta. J Bone Joint Surg Am. 2015;97(9):733-737. https://doi.org/10.2106/JBJS.N.01185.
- Мингазов Э.Р., Попков А.В., Кононович Н.А., и др. Результаты применения интрамедуллярного трансфизарного эластичного армирования у пациентов с тяжелыми формами несовершенного остеогенеза // Гений ортопедии. – 2016. – № 4. – C. 6–16. [Mingazov ER, Popkov AV, Kononovich NA, et al. Results of using transphyseal elastic intramedullary nailing in patients with severe types of osteogenesis imperfecta. Genij ortopedii. 2016;(4):6-16. (In Russ.)]. https://doi.org/10.18019/1028-4427-2016-4-6-16.
- Gamble JG, Rinsky LA, Strudwick J, Bleck EE. Non-union of fractures in children who have osteogenesis imperfecta. J Bone Joint Surg Am. 1988;70(3):439-443.
- Ashby E, Montpetit K, Hamdy RC, Fassier F. Functional outcome of humeral rodding in children with osteogenesis imperfecta. J Pediatr Orthop. 2018;38(1):49-53. https://doi.org/10.1097/BPO.0000000000000729.
- Hoyer-Kuhn H, Semler O, Stark C, et al. A specialized rehabilitation approach improves mobility in children with osteogenesis imperfecta. J Musculoskelet Neuronal Interact. 2014;14(4):445-453.
Supplementary files
