Diffusion-tensor magnetic resonance imaging in patients with consequences of obstetric brachial plexus palsy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Diffusion-tensor magnetic resonance imaging allows visualizing the conductive pathways of the brain and spinal cord and assessing their structure and integrity and has found wide application in practical medicine. Currently, brachial plexus diffusion-tensor magnetic resonance imaging is not a routine research technique, and very few studies have described its use in children and adolescents.

AIM: This study aimed to evaluate the possibility of brachial plexus diffusion-tensor magnetic resonance imaging application in pediatric patients with obstetric brachial plexus palsy sequelae and identify correlations between the diffusion-tensor magnetic resonance imaging parameters of brachial plexus and parameters of electrophysiological study of the upper extremities in these patients.

MATERIALS AND METHODS: A complex examination of 50 patients was performed. The main group included 30 patients aged 6–17 years, with contractures and secondary deformities of the bones of the shoulder girdle and upper limbs caused by unilateral obstetric brachial plexus palsy. The control group included 20 patients aged 7–17 (10.1 ± 2.1) years without clinical signs, and anamnestic data indicated the presence of damage to the brachial plexus and peripheral nerves of the upper limbs.

RESULTS: No significant differences in diffusion-tensor magnetic resonance imaging parameters of the right and left brachial plexus were found in the control group. Significant differences in fractional anisotropy of the C5–C8 tracts on the side of the damaged brachial plexus were detected compared with those on the side of the undamaged brachial plexus. On the side of the injured brachial plexus, nonlinear correlations were found between the fractional anisotropy of the tracts of the spinal nerve and its branches and the amplitude of sensory responses from the sensory nerve, which originated from the anterior branches of this spinal nerve, and between the volume of the branches of the tracts of the spinal nerve and the amplitude of соmpound motor responses from the muscles, which were innervated by the anterior branches of this spinal nerve.

CONCLUSIONS: Diffusion-tensor magnetic resonance imaging allows for the evaluation of the structural changes in the SNs that participate in the formation of the brachial plexus. The results can be used for further studies of diffusion-tensor magnetic resonance imaging of brachial plexuses in various pathologies in pediatric patients.

About the authors

Alina M. Khodorovskaya

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Author for correspondence.
Email: alinamyh@gmail.com
ORCID iD: 0000-0002-2772-6747
SPIN-code: 3348-8038
Russian Federation, Saint Petersburg

Aleksandr Yu. Efimtsev

Almazov National Medical Research Centre

Email: atralf@mail.ru
ORCID iD: 0000-0003-2249-1405
SPIN-code: 3459-2168

MD, PhD, Dr. Sci. (Med.)

Russian Federation, Saint Petersburg

Olga E. Agronovich

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: olga_agranovich@yahoo.com
ORCID iD: 0000-0002-6655-4108
SPIN-code: 4393-3694

MD, PhD, Dr. Sci. (Med.)

Russian Federation, Saint Petersburg

Margarita V. Savina

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: drevma@yandex.ru
ORCID iD: 0000-0001-8225-3885
SPIN-code: 5710-4790

MD, PhD, Cand. Sci. (Med.)

Russian Federation, Saint Petersburg

Vyacheslav I. Zorin

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: zoringlu@yandex.ru
ORCID iD: 0000-0002-9712-5509
SPIN-code: 4651-8232

MD, PhD, Cand. Sci. (Med.), Assistant Professor

Russian Federation, Saint Petersburg

Sergey A. Braylov

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: sergeybraylov@mail.ru
ORCID iD: 0000-0003-2372-9817
SPIN-code: 9369-6073

MD

Russian Federation, Saint Petersburg

Anastasiia I. Arakelian

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: a_bryanskaya@mail.ru
ORCID iD: 0000-0002-3998-4954
SPIN-code: 9224-5488

MD, PhD, Cand. Sci. (Med.)

Russian Federation, Saint Petersburg

Sergey A. Lukyanov

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: Sergey.lukyanov95@yandex.ru
ORCID iD: 0000-0002-8278-7032
SPIN-code: 3684-5167

MD, PhD, Cand. Sci. (Med.)

Russian Federation, Saint Petersburg

Aleksandr S. Grishchenkov

Almazov National Medical Research Centre; Sokolov’ North-Western Regional Scientific and Clinical Center

Email: gasradiology@gmail.ru
ORCID iD: 0000-0003-0910-6904
SPIN-code: 5654-0112

MD

Russian Federation, Saint Petersburg; Saint Petersburg

Yana A. Filin

Almazov National Medical Research Centre

Email: filin_yana@mail.ru
ORCID iD: 0009-0009-0778-6396

MD, resident

Russian Federation, Saint Petersburg

Daniil B. Vcherashniy

Ioffe Physical Technical Institute

Email: dan-v@yandex.ru
ORCID iD: 0000-0003-1658-789X
SPIN-code: 6139-7842

PhD, Cand. Sci. (Phys.-Math.)

Russian Federation, Saint Petersburg

Viktoria V. Morozova

H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery

Email: frostigersieg@gmail.com
ORCID iD: 0009-0007-5961-2641

MD

Russian Federation, Saint Petersburg

References

  1. Lalka A, Gralla J, Sibbel SE. Brachial plexus birth injury: epidemiology and birth weight impact on risk factors. J Pediatr Orthop. 2020;40(6):e460–e465. doi: 10.1097/BPO.0000000000001447
  2. Leblebicioğlu G, Pondaag W. Brachial plexus birth injury: advances and controversies. J Hand Surg Eur Vol. 2024;49(6):747–757. doi: 10.1177/17531934241231173
  3. Ojumah N, Ramdhan RC, Wilson C, et al. Neurological neonatal birth injuries: a literature review. Cureus. 2017;9(12). doi: 10.7759/cureus.1938
  4. Thatte MR, Hiremath A, Nayak N, et al. Obstetric brachial plexus palsy. Diagnosis and management strategy. J Peripheral Nerve Surg. 2017;1(1):2–9.
  5. Moulinier C, Bellity L, Saghbiny E, et al. Correlation between histopathological nerve assessment and clinical recovery in brachial plexus birth injuries. J Hand Surg Eur Vol. 2024;49(5):583–590. doi: 10.1177/17531934231200378
  6. Socolovsky M, Costales JR, Paez MD, et al. Obstetric brachial plexus palsy: reviewing the literature comparing the results of primary versus secondary surgery. Childs Nerv Syst. 2016;32(3):415–425. doi: 10.1007/s00381-015-2971-4
  7. Pondaag W, Malessy MJA. Evidence that nerve surgery improves functional outcome for obstetric brachial plexus injury. J Hand Surg Eur Vol. 2021;46(3):229–236. doi: 10.1177/1753193420934676
  8. Agranovich OE, Ikoeva GA, Gabbasova EL, et al. Differential diagnosis of flaccid palsy of the upper extremities in children first months after birth (literature review). Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2021;9(1):115–126. EDN: JNYVFW doi: 10.17816/PTORS18645
  9. Orozco V, Balasubramanian S, Singh A. A systematic review of the electrodiagnostic assessment of neonatal brachial plexus. Neurol Neurobiol (Tallinn). 2020;3(2). doi: 10.31487/j.nnb.2020.02.12
  10. Woźniak J, Kędzia A, Dudek K. Variability of the trunks and divisions of the brachial plexus in human fetuses. Adv Clin Exp Med. 2013;22(3):309–318.
  11. Matejčík V, Haviarová Z, Šteňo A, et al. Intraspinal intradural variations of nerve roots. Surg Radiol Anat. 2017;39(12):1385–1395. doi: 10.1007/s00276-017-1903-2
  12. Gilcrease-Garcia BM, Deshmukh SD, Parsons MS. Anatomy, Imaging, and Pathologic Conditions of the Brachial Plexus. Radiographics. 2020;40(6):1686–1714. doi: 10.1148/rg.2020200012
  13. Lao Q, Jia Y, Zhao K, et al. Value of high-resolution MRI in the diagnosis of brachial plexus injury in infants and young children. Int J Gen Med. 2022;15:5673–5680. doi: 10.2147/IJGM.S362738
  14. Mallouhi A, Marik W, Prayer D, et al. 3T MR tomography of the brachial plexus: structural and microstructural evaluation. Eur J Radiol. 2012;81(9):2231–2245. doi: 10.1016/j.ejrad.2011.05.021
  15. Martín Noguerol T, Barousse R. Update in the evaluation of peripheral nerves by MRI, from morphological to functional neurography. Actualización en la valoración de los nervios periféricos mediante resonancia magnética: de la neurografía morfológica a la funcional. Radiologia (Engl Ed). 2020;62(2):90–101. doi: 10.1016/j.rx.2019.06.005
  16. Gasparotti R, Lodoli G, Meoded A, et al. Feasibility of diffusion tensor tractography of brachial plexus injuries at 1.5 T. Invest Radiol. 2013;48(2):104–112. doi: 10.1097/rli.0b013e3182775267
  17. Preston DC, Shapiro BE. Electromyography and neuromuscular disorders: clinical-electrophysiologic-ultrasound correlations. Elsevier Health Sciences; 2020.
  18. Eppenberger P, Andreisek G, Chhabra A. Magnetic resonance neurography: diffusion tensor imaging and future directions. Neuroimaging Clin N Am. 2014;24(1):245-256. doi: 10.1016/j.nic.2013.03.031
  19. Takahara T, Hendrikse J, Yamashita T, et al. Diffusion-weighted MR neurography of the brachial plexus: feasibility study. Radiology. 2008;249(2):653–660. doi: 10.1148/radiol.2492071826
  20. Tagliafico A, Calabrese M, Puntoni M, et al. Brachial plexus MR imaging: accuracy and reproducibility of DTI-derived measurements and fibre tractography at 3.0-T. Eur Radiol. 2011;21(8):1764–1771. doi: 10.1007/s00330-011-2100-z
  21. Ho MJ, Manoliu A, Kuhn FP, et al. Evaluation of reproducibility of diffusion tensor imaging in the brachial plexus at 3.0 T. Invest Radiol. 2017;52(8):482–487. doi: 10.1097/RLI.0000000000000363
  22. Oudeman J, Verhamme C, Engbersen MP, et al. Diffusion tensor MRI of the healthy brachial plexus. PLoS One. 2018;13(5). doi: 10.1371/journal.pone.0196975
  23. Su X, Kong X, Liu D, et al. Multimodal magnetic resonance imaging of peripheral nerves: Establishment and validation of brachial and lumbosacral plexi measurements in 163 healthy subjects. Eur J Radiol. 2019;117:41–48. doi: 10.1016/j.ejrad.2019.05.017
  24. Wade RG, Whittam A, Teh I, Andersson G, et al. Diffusion tensor imaging of the roots of the brachial plexus: a systematic review and meta-analysis of normative values. Clin Transl Imaging. 2020;8(6):419–431. doi: 10.1007/s40336-020-00393-x
  25. van der Jagt PK, Dik P, Froeling M, et al. Architectural configuration and microstructural properties of the sacral plexus: a diffusion tensor MRI and fiber tractography study. Neuroimage. 2012;62(3):1792–1799. doi: 10.1016/j.neuroimage.2012.06.001
  26. Kronlage M, Schwehr V, Schwarz D, et al. Peripheral nerve diffusion tensor imaging (DTI): normal values and demographic determinants in a cohort of 60 healthy individuals. Eur Radiol. 2018;28(5):1801–1808. doi: 10.1007/s00330-017-5134-z
  27. Tanitame K, Iwakado Y, Akiyama Y, et al. Effect of age on the fractional anisotropy (FA) value of peripheral nerves and clinical significance of the age-corrected FA value for evaluating polyneuropathies. Neuroradiology. 2012;54(8):815–821. doi: 10.1007/s00234-011-0981-9
  28. Wade RG, Tanner SF, Teh I, et al. Diffusion tensor imaging for diagnosing root avulsions in traumatic adult brachial plexus injuries: a proof-of-concept study. Front Surg. 2020;7:19. doi: 10.3389/fsurg.2020.00019
  29. Farrell JA, Landman BA, Jones CK, et al. Effects of signal-to-noise ratio on the accuracy and reproducibility of diffusion tensor imaging-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5 T. J Magn Reson Imaging. 2007;26(3):756–767. doi: 10.1002/jmri.21053
  30. Helmer KG, Chou MC, Preciado RI, et al. Multi-site study of diffusion metric variability: effects of site, vendor, field strength, and echo time on regions-of-interest and histogram-bin analyses. Proc SPIE Int Soc Opt Eng. 2016;9788. doi: 10.1117/12.2217445
  31. Vos SB, Jones DK, Viergever MA, Leemans A. Partial volume effect as a hidden covariate in DTI analyses. Neuroimage. 2011;55(4):1566–1576. doi: 10.1016/j.neuroimage.2011.01.048
  32. Johansen-Berg H, Behrens TE, editors. Diffusion MRI: from quantitative measurement to in vivo neuroanatomy. Academic Press; 2013. doi: 10.1016/B978-0-12-374709-9.X0001-6
  33. Cao J, He B, Wang S, et al. Diffusion tensor imaging of tibial and common peroneal nerves in patients with Guillain-Barre syndrome: a feasibility study. J Magn Reson Imaging. 2019;49(5):1356–1364. doi: 10.1002/jmri.26324
  34. Cheng H, Lan H, Bao Y, et al Application of magnetic resonance diffusion tensor imaging in diagnosis of lumbosacral nerve root compression. Curr Med Imaging. 2024;20. doi: 10.2174/1573405620666230612122725
  35. Kakuda T, Fukuda H, Tanitame K, et al. Diffusion tensor imaging of peripheral nerve in patients with chronic inflammatory demyelinating polyradiculoneuropathy: a feasibility study. Neuroradiology. 2011;53(12):955–960. doi: 10.1007/s00234-010-0833-z
  36. Pridmore MD, Glassman GE, Pollins AC, et al. Initial findings in traumatic peripheral nerve injury and repair with diffusion tensor imaging. Ann Clin Transl Neurol. 2021;8(2):332–347. doi: 10.1002/acn3.51270
  37. Simon NG, Kliot M. Diffusion weighted MRI and tractography for evaluating peripheral nerve degeneration and regeneration. Neural Regen Res. 2014;9(24):2122–2124. doi: 10.4103/1673-5374.147941
  38. Chen L, Gao SC, Gu YD, et al. Histopathologic study of the neuroma-in-continuity in obstetric brachial plexus palsy. Plast Reconstr Surg. 2008;121(6):2046–2054. doi: 10.1097/PRS.0b013e3181706e7e
  39. Manzanera Esteve IV, Farinas AF, Pollins AC, et al. Probabilistic assessment of nerve regeneration with diffusion MRI in rat models of peripheral nerve trauma. Sci Rep. 2019;9(1). doi: 10.1038/s41598-019-56215-2
  40. Heckel A., Weiler M., Xia A., et al. Peripheral nerve diffusion tensor imaging: assessment of axon and myelin sheath integrity. PLoS One. 2015;10(6). doi: 10.1371/journal.pone.0130833
  41. Scarfone H, McComas AJ, Pape K, et al. Denervation and reinnervation in congenital brachial palsy. Muscle Nerve. 1999;22(5):600–607. doi: 10.1002/(sici)1097-4598(199905)22:5<600::aid-mus8>3.0.co;2-b
  42. Payen M, Didier M, Vialle R, et al. MRI of brachial plexus using diffusion tensor imaging: a pilot study for the use of resolve sequence surgical and radiologic anatomy. Surg Radiol Anat. 2023;45(12):1567–1577. doi: 10.1007/s00276-023-03255-z
  43. Zhivolupov SA, Gnevyshev EN, Rashidov NA, et al. Neuroplastic patterns of functions restoration in case of traumatic neuropathies and plexopathies. Bulletin of the Russian Military Medical Academy. 2015;(1):81–90. EDN: TMXBMH
  44. Adidharma W, Khouri AN, Lee JC, et al. Sensory nerve regeneration and reinnervation in muscle following peripheral nerve injury. Muscle Nerve. 2022;66(4):384–396. doi: 10.1002/mus.27661
  45. Brunetti O, Carretta M, Magni F, et al. Role of the interval between axotomy and nerve suture on the success of muscle reinnervation: an experimental study in the rabbit. Exp Neurol. 1985;90(2):308–321. doi: 10.1016/0014-4886(85)90021-4
  46. Ferrante MA. Brachial plexopathies: classification, causes, and consequences. Muscle Nerve. 2004;30(5):547–568. doi: 10.1002/mus.20131

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Patient K., 11 years old. Three-dimensional reconstruction of spinal nerve tracts. Erb’s paresis on the left. The absence of SN C7 is indicated by an arrow

Download (71KB)
3. Fig. 2. Fractional anisotropy of the С5–Th1 spinal nerve tracts. C — control group; M — main group (on the side of the damaged brachial plexus); * statistically significant differences (p < 0.05)

Download (64KB)
4. Fig. 3. The volume of branches of the spinal nerve tracts on the sides of the damaged (M) and intact brachial plexus (C). * Presence of statistically significant differences between the volume of branches of the SN tracts of the damaged and intact brachial plexus

Download (58KB)
5. Fig. 4. Patient V., 15 years old. Three-dimensional reconstruction of SN tracts C5–C8. Damage to the left brachial plexus. Decreased volume of C5–C8 tract branches and trunks. SN Th1 is not constructed

Download (67KB)
6. Fig. 5. Patient M., 7 years old. Three-dimensional reconstruction of brachial plexus tracts. Erb’s paresis on the left. Increased volume of branches of the SN tracts C5–C7

Download (81KB)

Copyright (c) 2024 Эко-Вектор

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».