Diffusion-tensor magnetic resonance imaging in patients with consequences of obstetric brachial plexus palsy
- Authors: Khodorovskaya A.M.1, Efimtsev A.Y.2, Agronovich O.E.1, Savina M.V.1, Zorin V.I.1, Braylov S.A.1, Arakelian A.I.1, Lukyanov S.A.1, Grishchenkov A.S.2,3, Filin Y.A.2, Vcherashniy D.B.4, Morozova V.V.1
-
Affiliations:
- H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
- Almazov National Medical Research Centre
- Sokolov’ North-Western Regional Scientific and Clinical Center
- Ioffe Physical Technical Institute
- Issue: Vol 12, No 2 (2024)
- Pages: 185-196
- Section: Clinical studies
- URL: https://ogarev-online.ru/turner/article/view/265160
- DOI: https://doi.org/10.17816/PTORS630087
- ID: 265160
Cite item
Abstract
BACKGROUND: Diffusion-tensor magnetic resonance imaging allows visualizing the conductive pathways of the brain and spinal cord and assessing their structure and integrity and has found wide application in practical medicine. Currently, brachial plexus diffusion-tensor magnetic resonance imaging is not a routine research technique, and very few studies have described its use in children and adolescents.
AIM: This study aimed to evaluate the possibility of brachial plexus diffusion-tensor magnetic resonance imaging application in pediatric patients with obstetric brachial plexus palsy sequelae and identify correlations between the diffusion-tensor magnetic resonance imaging parameters of brachial plexus and parameters of electrophysiological study of the upper extremities in these patients.
MATERIALS AND METHODS: A complex examination of 50 patients was performed. The main group included 30 patients aged 6–17 years, with contractures and secondary deformities of the bones of the shoulder girdle and upper limbs caused by unilateral obstetric brachial plexus palsy. The control group included 20 patients aged 7–17 (10.1 ± 2.1) years without clinical signs, and anamnestic data indicated the presence of damage to the brachial plexus and peripheral nerves of the upper limbs.
RESULTS: No significant differences in diffusion-tensor magnetic resonance imaging parameters of the right and left brachial plexus were found in the control group. Significant differences in fractional anisotropy of the C5–C8 tracts on the side of the damaged brachial plexus were detected compared with those on the side of the undamaged brachial plexus. On the side of the injured brachial plexus, nonlinear correlations were found between the fractional anisotropy of the tracts of the spinal nerve and its branches and the amplitude of sensory responses from the sensory nerve, which originated from the anterior branches of this spinal nerve, and between the volume of the branches of the tracts of the spinal nerve and the amplitude of соmpound motor responses from the muscles, which were innervated by the anterior branches of this spinal nerve.
CONCLUSIONS: Diffusion-tensor magnetic resonance imaging allows for the evaluation of the structural changes in the SNs that participate in the formation of the brachial plexus. The results can be used for further studies of diffusion-tensor magnetic resonance imaging of brachial plexuses in various pathologies in pediatric patients.
Full Text
##article.viewOnOriginalSite##About the authors
Alina M. Khodorovskaya
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Author for correspondence.
Email: alinamyh@gmail.com
ORCID iD: 0000-0002-2772-6747
SPIN-code: 3348-8038
Russian Federation, Saint Petersburg
Aleksandr Yu. Efimtsev
Almazov National Medical Research Centre
Email: atralf@mail.ru
ORCID iD: 0000-0003-2249-1405
SPIN-code: 3459-2168
MD, PhD, Dr. Sci. (Med.)
Russian Federation, Saint PetersburgOlga E. Agronovich
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: olga_agranovich@yahoo.com
ORCID iD: 0000-0002-6655-4108
SPIN-code: 4393-3694
MD, PhD, Dr. Sci. (Med.)
Russian Federation, Saint PetersburgMargarita V. Savina
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: drevma@yandex.ru
ORCID iD: 0000-0001-8225-3885
SPIN-code: 5710-4790
MD, PhD, Cand. Sci. (Med.)
Russian Federation, Saint PetersburgVyacheslav I. Zorin
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: zoringlu@yandex.ru
ORCID iD: 0000-0002-9712-5509
SPIN-code: 4651-8232
MD, PhD, Cand. Sci. (Med.), Assistant Professor
Russian Federation, Saint PetersburgSergey A. Braylov
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: sergeybraylov@mail.ru
ORCID iD: 0000-0003-2372-9817
SPIN-code: 9369-6073
MD
Russian Federation, Saint PetersburgAnastasiia I. Arakelian
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: a_bryanskaya@mail.ru
ORCID iD: 0000-0002-3998-4954
SPIN-code: 9224-5488
MD, PhD, Cand. Sci. (Med.)
Russian Federation, Saint PetersburgSergey A. Lukyanov
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: Sergey.lukyanov95@yandex.ru
ORCID iD: 0000-0002-8278-7032
SPIN-code: 3684-5167
MD, PhD, Cand. Sci. (Med.)
Russian Federation, Saint PetersburgAleksandr S. Grishchenkov
Almazov National Medical Research Centre; Sokolov’ North-Western Regional Scientific and Clinical Center
Email: gasradiology@gmail.ru
ORCID iD: 0000-0003-0910-6904
SPIN-code: 5654-0112
MD
Russian Federation, Saint Petersburg; Saint PetersburgYana A. Filin
Almazov National Medical Research Centre
Email: filin_yana@mail.ru
ORCID iD: 0009-0009-0778-6396
MD, resident
Russian Federation, Saint PetersburgDaniil B. Vcherashniy
Ioffe Physical Technical Institute
Email: dan-v@yandex.ru
ORCID iD: 0000-0003-1658-789X
SPIN-code: 6139-7842
PhD, Cand. Sci. (Phys.-Math.)
Russian Federation, Saint PetersburgViktoria V. Morozova
H. Turner National Medical Research Center for Сhildren’s Orthopedics and Trauma Surgery
Email: frostigersieg@gmail.com
ORCID iD: 0009-0007-5961-2641
MD
Russian Federation, Saint PetersburgReferences
- Lalka A, Gralla J, Sibbel SE. Brachial plexus birth injury: epidemiology and birth weight impact on risk factors. J Pediatr Orthop. 2020;40(6):e460–e465. doi: 10.1097/BPO.0000000000001447
- Leblebicioğlu G, Pondaag W. Brachial plexus birth injury: advances and controversies. J Hand Surg Eur Vol. 2024;49(6):747–757. doi: 10.1177/17531934241231173
- Ojumah N, Ramdhan RC, Wilson C, et al. Neurological neonatal birth injuries: a literature review. Cureus. 2017;9(12). doi: 10.7759/cureus.1938
- Thatte MR, Hiremath A, Nayak N, et al. Obstetric brachial plexus palsy. Diagnosis and management strategy. J Peripheral Nerve Surg. 2017;1(1):2–9.
- Moulinier C, Bellity L, Saghbiny E, et al. Correlation between histopathological nerve assessment and clinical recovery in brachial plexus birth injuries. J Hand Surg Eur Vol. 2024;49(5):583–590. doi: 10.1177/17531934231200378
- Socolovsky M, Costales JR, Paez MD, et al. Obstetric brachial plexus palsy: reviewing the literature comparing the results of primary versus secondary surgery. Childs Nerv Syst. 2016;32(3):415–425. doi: 10.1007/s00381-015-2971-4
- Pondaag W, Malessy MJA. Evidence that nerve surgery improves functional outcome for obstetric brachial plexus injury. J Hand Surg Eur Vol. 2021;46(3):229–236. doi: 10.1177/1753193420934676
- Agranovich OE, Ikoeva GA, Gabbasova EL, et al. Differential diagnosis of flaccid palsy of the upper extremities in children first months after birth (literature review). Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2021;9(1):115–126. EDN: JNYVFW doi: 10.17816/PTORS18645
- Orozco V, Balasubramanian S, Singh A. A systematic review of the electrodiagnostic assessment of neonatal brachial plexus. Neurol Neurobiol (Tallinn). 2020;3(2). doi: 10.31487/j.nnb.2020.02.12
- Woźniak J, Kędzia A, Dudek K. Variability of the trunks and divisions of the brachial plexus in human fetuses. Adv Clin Exp Med. 2013;22(3):309–318.
- Matejčík V, Haviarová Z, Šteňo A, et al. Intraspinal intradural variations of nerve roots. Surg Radiol Anat. 2017;39(12):1385–1395. doi: 10.1007/s00276-017-1903-2
- Gilcrease-Garcia BM, Deshmukh SD, Parsons MS. Anatomy, Imaging, and Pathologic Conditions of the Brachial Plexus. Radiographics. 2020;40(6):1686–1714. doi: 10.1148/rg.2020200012
- Lao Q, Jia Y, Zhao K, et al. Value of high-resolution MRI in the diagnosis of brachial plexus injury in infants and young children. Int J Gen Med. 2022;15:5673–5680. doi: 10.2147/IJGM.S362738
- Mallouhi A, Marik W, Prayer D, et al. 3T MR tomography of the brachial plexus: structural and microstructural evaluation. Eur J Radiol. 2012;81(9):2231–2245. doi: 10.1016/j.ejrad.2011.05.021
- Martín Noguerol T, Barousse R. Update in the evaluation of peripheral nerves by MRI, from morphological to functional neurography. Actualización en la valoración de los nervios periféricos mediante resonancia magnética: de la neurografía morfológica a la funcional. Radiologia (Engl Ed). 2020;62(2):90–101. doi: 10.1016/j.rx.2019.06.005
- Gasparotti R, Lodoli G, Meoded A, et al. Feasibility of diffusion tensor tractography of brachial plexus injuries at 1.5 T. Invest Radiol. 2013;48(2):104–112. doi: 10.1097/rli.0b013e3182775267
- Preston DC, Shapiro BE. Electromyography and neuromuscular disorders: clinical-electrophysiologic-ultrasound correlations. Elsevier Health Sciences; 2020.
- Eppenberger P, Andreisek G, Chhabra A. Magnetic resonance neurography: diffusion tensor imaging and future directions. Neuroimaging Clin N Am. 2014;24(1):245-256. doi: 10.1016/j.nic.2013.03.031
- Takahara T, Hendrikse J, Yamashita T, et al. Diffusion-weighted MR neurography of the brachial plexus: feasibility study. Radiology. 2008;249(2):653–660. doi: 10.1148/radiol.2492071826
- Tagliafico A, Calabrese M, Puntoni M, et al. Brachial plexus MR imaging: accuracy and reproducibility of DTI-derived measurements and fibre tractography at 3.0-T. Eur Radiol. 2011;21(8):1764–1771. doi: 10.1007/s00330-011-2100-z
- Ho MJ, Manoliu A, Kuhn FP, et al. Evaluation of reproducibility of diffusion tensor imaging in the brachial plexus at 3.0 T. Invest Radiol. 2017;52(8):482–487. doi: 10.1097/RLI.0000000000000363
- Oudeman J, Verhamme C, Engbersen MP, et al. Diffusion tensor MRI of the healthy brachial plexus. PLoS One. 2018;13(5). doi: 10.1371/journal.pone.0196975
- Su X, Kong X, Liu D, et al. Multimodal magnetic resonance imaging of peripheral nerves: Establishment and validation of brachial and lumbosacral plexi measurements in 163 healthy subjects. Eur J Radiol. 2019;117:41–48. doi: 10.1016/j.ejrad.2019.05.017
- Wade RG, Whittam A, Teh I, Andersson G, et al. Diffusion tensor imaging of the roots of the brachial plexus: a systematic review and meta-analysis of normative values. Clin Transl Imaging. 2020;8(6):419–431. doi: 10.1007/s40336-020-00393-x
- van der Jagt PK, Dik P, Froeling M, et al. Architectural configuration and microstructural properties of the sacral plexus: a diffusion tensor MRI and fiber tractography study. Neuroimage. 2012;62(3):1792–1799. doi: 10.1016/j.neuroimage.2012.06.001
- Kronlage M, Schwehr V, Schwarz D, et al. Peripheral nerve diffusion tensor imaging (DTI): normal values and demographic determinants in a cohort of 60 healthy individuals. Eur Radiol. 2018;28(5):1801–1808. doi: 10.1007/s00330-017-5134-z
- Tanitame K, Iwakado Y, Akiyama Y, et al. Effect of age on the fractional anisotropy (FA) value of peripheral nerves and clinical significance of the age-corrected FA value for evaluating polyneuropathies. Neuroradiology. 2012;54(8):815–821. doi: 10.1007/s00234-011-0981-9
- Wade RG, Tanner SF, Teh I, et al. Diffusion tensor imaging for diagnosing root avulsions in traumatic adult brachial plexus injuries: a proof-of-concept study. Front Surg. 2020;7:19. doi: 10.3389/fsurg.2020.00019
- Farrell JA, Landman BA, Jones CK, et al. Effects of signal-to-noise ratio on the accuracy and reproducibility of diffusion tensor imaging-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5 T. J Magn Reson Imaging. 2007;26(3):756–767. doi: 10.1002/jmri.21053
- Helmer KG, Chou MC, Preciado RI, et al. Multi-site study of diffusion metric variability: effects of site, vendor, field strength, and echo time on regions-of-interest and histogram-bin analyses. Proc SPIE Int Soc Opt Eng. 2016;9788. doi: 10.1117/12.2217445
- Vos SB, Jones DK, Viergever MA, Leemans A. Partial volume effect as a hidden covariate in DTI analyses. Neuroimage. 2011;55(4):1566–1576. doi: 10.1016/j.neuroimage.2011.01.048
- Johansen-Berg H, Behrens TE, editors. Diffusion MRI: from quantitative measurement to in vivo neuroanatomy. Academic Press; 2013. doi: 10.1016/B978-0-12-374709-9.X0001-6
- Cao J, He B, Wang S, et al. Diffusion tensor imaging of tibial and common peroneal nerves in patients with Guillain-Barre syndrome: a feasibility study. J Magn Reson Imaging. 2019;49(5):1356–1364. doi: 10.1002/jmri.26324
- Cheng H, Lan H, Bao Y, et al Application of magnetic resonance diffusion tensor imaging in diagnosis of lumbosacral nerve root compression. Curr Med Imaging. 2024;20. doi: 10.2174/1573405620666230612122725
- Kakuda T, Fukuda H, Tanitame K, et al. Diffusion tensor imaging of peripheral nerve in patients with chronic inflammatory demyelinating polyradiculoneuropathy: a feasibility study. Neuroradiology. 2011;53(12):955–960. doi: 10.1007/s00234-010-0833-z
- Pridmore MD, Glassman GE, Pollins AC, et al. Initial findings in traumatic peripheral nerve injury and repair with diffusion tensor imaging. Ann Clin Transl Neurol. 2021;8(2):332–347. doi: 10.1002/acn3.51270
- Simon NG, Kliot M. Diffusion weighted MRI and tractography for evaluating peripheral nerve degeneration and regeneration. Neural Regen Res. 2014;9(24):2122–2124. doi: 10.4103/1673-5374.147941
- Chen L, Gao SC, Gu YD, et al. Histopathologic study of the neuroma-in-continuity in obstetric brachial plexus palsy. Plast Reconstr Surg. 2008;121(6):2046–2054. doi: 10.1097/PRS.0b013e3181706e7e
- Manzanera Esteve IV, Farinas AF, Pollins AC, et al. Probabilistic assessment of nerve regeneration with diffusion MRI in rat models of peripheral nerve trauma. Sci Rep. 2019;9(1). doi: 10.1038/s41598-019-56215-2
- Heckel A., Weiler M., Xia A., et al. Peripheral nerve diffusion tensor imaging: assessment of axon and myelin sheath integrity. PLoS One. 2015;10(6). doi: 10.1371/journal.pone.0130833
- Scarfone H, McComas AJ, Pape K, et al. Denervation and reinnervation in congenital brachial palsy. Muscle Nerve. 1999;22(5):600–607. doi: 10.1002/(sici)1097-4598(199905)22:5<600::aid-mus8>3.0.co;2-b
- Payen M, Didier M, Vialle R, et al. MRI of brachial plexus using diffusion tensor imaging: a pilot study for the use of resolve sequence surgical and radiologic anatomy. Surg Radiol Anat. 2023;45(12):1567–1577. doi: 10.1007/s00276-023-03255-z
- Zhivolupov SA, Gnevyshev EN, Rashidov NA, et al. Neuroplastic patterns of functions restoration in case of traumatic neuropathies and plexopathies. Bulletin of the Russian Military Medical Academy. 2015;(1):81–90. EDN: TMXBMH
- Adidharma W, Khouri AN, Lee JC, et al. Sensory nerve regeneration and reinnervation in muscle following peripheral nerve injury. Muscle Nerve. 2022;66(4):384–396. doi: 10.1002/mus.27661
- Brunetti O, Carretta M, Magni F, et al. Role of the interval between axotomy and nerve suture on the success of muscle reinnervation: an experimental study in the rabbit. Exp Neurol. 1985;90(2):308–321. doi: 10.1016/0014-4886(85)90021-4
- Ferrante MA. Brachial plexopathies: classification, causes, and consequences. Muscle Nerve. 2004;30(5):547–568. doi: 10.1002/mus.20131
Supplementary files
