Past, present and future of Superconducting Magnetic Levitation (SML)

封面

如何引用文章

全文:

详细

A review of Superconducting Magnetic Levitation (SML) applied to MagLev trains will be presented. The paper is divided into low-speed and high-speed MagLev. The promising perspectives will close this review.

作者简介

Richard Stephan

Federal University Rio de Janeiro

Email: richard@dee.ufrj.br
ORCID iD: 0000-0003-3325-4499
Scopus 作者 ID: 7103249684

Dr.-Ing., Full Professor

巴西, Rio de Janeiro

Zigang Deng

Southwest Jiaotong University

编辑信件的主要联系方式.
Email: deng@swjtu.cn
ORCID iD: 0000-0001-7937-9081
Scopus 作者 ID: 14053713800
Researcher ID: C-4245-2008

Ph.D.

台湾, Chengdu

参考

  1. Wu MK, Ashburn J, Torng CJ, et al. Superconductivity at 93k in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Physical Review Letters. 1987;58(9):908-910.
  2. Murakami M, Oyama T, Fujimoto H, et al. Large levitation force due to flux pinning in Y-Ba-Cu-O superconductors fabricated by melt-powder-melt-growth process. Japanese Journal of Applied Physic. 1990; 29(11):1191-1194. doi: 10.1143/jjap.29.1991
  3. J. Wang, S. Wang, Y. Zeng, et al. The first man-loading high temperature superconducting maglev test vehicle in the world. Physica C: Superconductivity. 2002; 378-381: 809-814, doi: 10.1016/S0921-4534(02)01548-4
  4. Stephan RM, Nicolsky R, Neves MA, A superconducting levitation vehicle prototype. Physica C, Superconductivity. 2004; 408:932-934. doi: 10.1109/tasc.2003.813017
  5. Schultz L, de Haas O, Verges P, et al. IEEE transactions on applied superconductivity. Physica C, Superconductivity. 2005; 15(2):2301-2305. doi: 10.1109/tasc.2005.849636
  6. Deng Z, Huang H, Zheng J, et al. A high temperature supercon- ducting maglev ring test line developed in Chengdu. IEEE Transactions on Applied Superconductivity. 2016; 26(6):3602408. doi: 10.1109/tasc.2016.2555921
  7. Stephan RM, de Andrade R, Ferreira AC, Sotelo GG. Superconducting levitation applied to urban transportation. Wiley Encyclopedia of Electrical and Electronics Engineering. 2017. doi: 10.1002/047134608X.W8346
  8. Deng Z, Huang H, Zheng J, et al. A high-temperature superconducting maglev-evacuated tube transport (HTS Maglev) test system. IEEE Transactions on Applied Superconductivity. 2017; 27(6):3602008. doi: 10.1109/tasc.2017.2716842
  9. Stephan RM, Costa F, Rodriguez E, Deng Z. Retrospective and perspectives of the superconducting magnetic levitation technology applied to urban transportation. Transportation Systems and Technology. 2018; 4(3):195-202. doi: 10.17816/transsyst201843s1195-202
  10. Stephan RM, de Andrade R, Ferreira AC. Superconducting light rail vehicle: A transportation solution for highly populated cities. IEEE. Vehicular Technology Magazine, 2012; 7(4):122-127. doi: 10.1109/mvt.2012.2218437
  11. Stephan RM, Pereira A. The vital contribution of maglev vehicles for the mobility in smart cities. MDPI – ELECTRONICS. 2020;9(6):978-990. doi: 2079-9292/9/6/978
  12. Oliveira RH, Stephan RM, Ferreira AC, Pina J. Design and innovative test of a linear induction motor for urban maglev vehicles. IEEE Transactions on Industry Applications. 2020; 56(6):6949-6956. doi: 10.1109/TIA.2020.3023066
  13. Oliveira RH, Stephan RM, Ferreira AC. Optimized linear motor for urban superconducting magnetic levitation vehicles. IEEE Transactions on Applied Superconductivity. 2020; 30(5):1-8. doi: 10.1109/TASC.2020.2976589
  14. Deng Z, Zhang W, Wang L, et al. A high-speed running test platform for high-temperature superconducting maglev. IEEE Transactions on Applied Superconductivity. 2022; 32(4):3600905. doi: 10.1109/TASC.2022.3143474
  15. Deng Z, Zhang W, Kou L, et al. An ultra-high-speed maglev test rig designed for HTS pinning levitation and electrodynamic levitation. IEEE Transactions on Applied Superconductivity. 2021; 31(8):3603605. doi: 10.1109/TASC.2021.3094449
  16. Li H, Deng Z, Huang H, et al. Experiments and simulations of the secondary suspension system to improve the dynamic characteristics of HTS Maglev. IEEE Transactions on Applied Superconductivity. 2021; 31(6):3602508. doi: 10.1109/TASC.2021.3088447

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. The last day of MagLev Conference in 2014

下载 (30KB)
3. Fig. 2. The 200 meters long elevated line of MagLev-Cobra

下载 (69KB)
4. Fig. 3. Graphical abstract of the MagLev-Cobra project

下载 (57KB)
5. Fig. 4. Industrial prototype in development (Aerom)

下载 (96KB)
6. Fig. 5. Improved linear motor

下载 (289KB)
7. Fig. 6. The proposed 1 km MagLev-Cobra line

下载 (2MB)
8. Fig. 7. The SML high-speed test platform

下载 (660KB)
9. Fig. 8. (a) Schematic diagram of the test line and (b) structure of the PMG

下载 (107KB)
10. Fig. 9. The (a) photo and (b) schematic diagram of the model vehicle in High-speed Test-Platform

下载 (98KB)
11. Fig. 10. The (a) photo and (b) schematic diagram of the rotating High- speed Test-Platform

下载 (130KB)
12. Fig. 11. Engineering prototype of SML in Chengdu, China. (a) Photo; (b) display inside the carriage

下载 (166KB)
13. Fig. 12. Main structure of the engineering prototype of SML

下载 (726KB)
14. Fig. 13. Transformation of the SML engineering test-platform: (a) The test-platform; (b) the upgraded model vehicle

下载 (242KB)
15. Fig. 14. The EML levitation method (two examples on the left side) in comparison with the SML levitation equipment (on the right)

下载 (62KB)
16. Fig. 15. The EML civil engineering construction (three commercial lines) in comparison with the real scale prototype of the SML technology

下载 (82KB)

版权所有 © Stephan R.M., Deng Z., 2023

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可

link to the archive of the previous title

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).