Determination of operating parameters of toroidal field coils of a tokamak based on a high-temperature superconductor

Cover Page

Cite item

Full Text

Abstract

Aim: to determine the operating parameters of the toroidal magnetic field system (operating temperature, number of CORC cables, transport current value) of the MEPhIST-1 superconducting tokamak

Materials and Methods: numerical calculation of the toroidal magnetic field of a tokamak was performed in the COMSOL Multiphysics software

Results: magnetic field distributions were obtained for various values of the transport current flowing through the tokamak coil. The proportionality coefficients between the maximum magnetic field on the coil and the transport current, the operating magnetic field and the operating transport current were determined.

Conclusion: the number of CORC cables required to achieve an operating magnetic field induction of 1 T has been determined: 7 at a temperature of 37.6 K and 6 at a temperature of 33.6 K. It has been shown that it is possible to achieve an operating field value of about 1.5T with 7 CORC cables when the temperature is lowered to 21.1 K.

About the authors

D. A. Aleksandrov

National research nuclear university MEPHI

Email: cfrfcfrfdima123@gmail.com
ORCID iD: 0009-0001-7383-0094
SPIN-code: 5365-6190

research engineer

Russian Federation, Moscow

I. V. Martirosian

National research nuclear university MEPHI

Email: mephizic@gmail.com
ORCID iD: 0000-0003-2301-1768
SPIN-code: 3368-8809

Cand. Sci. (Phys. Math.), research engineer

Russian Federation, Moscow

E. A. Vinitskiy

National research nuclear university MEPHI

Email: egor.vinitsky@gmail.com
ORCID iD: 0009-0003-9462-5756
SPIN-code: 9216-7080

engineer

Russian Federation, Moscow

M. A. Osipov

National research nuclear university MEPHI

Author for correspondence.
Email: max.vfk@gmail.com
ORCID iD: 0000-0002-8981-5606
SPIN-code: 4776-7939

research engineer

Russian Federation, Moscow

S. V. Pokrovskii

National research nuclear university MEPHI

Email: sergeypokrovskii@gmail.com
ORCID iD: 0000-0002-3137-4289
SPIN-code: 6643-7817

Cand. Sci. (Phys. Math.), Head of the Laboratory

Russian Federation, Moscow

References

  1. Muehlich P, Hamacher T. Global transportation scenarios in the multi-regional EFDA-TIMES energy model. Fusion Engineering and Design. 2009;84(7):1361–1366. doi: https://doi.org/10.1016/j.fusengdes.2008.12.016
  2. Lerede D, Saccone M, Bustreo C, et al. Could clean industrial progresses and the rise of electricity demand foster the penetration of nuclear fusion in the European energy mix? Fusion Engineering and Design. 2021;172. doi: https://doi.org/10.1016/j.fusengdes.2021.112880 EDN: BNAQQO
  3. Gao X, Zhang T, Wu M, et al. Recent results of fusion triple product on EAST tokamak. Plasma Science and Technology. 2021;23(9). doi: 10.1088/2058-6272/ac1165 EDN: RCDXUP
  4. Kim H-S, Jeon Y, Han H, et al. Development of high-performance long-pulse discharge in KSTAR. Nuclear Fusion. 2024;64(1). doi: 10.1088/1741-4326/ad0fbd EDN: YEFTYI
  5. Creely AJ, Greenwald MJ, Ballinger SB, et al. Overview of the SPARC tokamak. Journal of Plasma Physics. 2020;86(5). doi: 10.1017/S0022377820001257 EDN: XOIYOH
  6. Zhai Y, van der Laan D, Connolly P, Kessel C. Conceptual design of HTS magnets for fusion nuclear science facility. Fusion Engineering and Design. 2021;168. doi: https://doi.org/10.1016/j.fusengdes.2021.112611 EDN: RFOOXZ
  7. Molodyk A, Samoilenkov S, Markelov A, et al. Development and large volume production of extremely high current density YBa2Cu3O7 superconducting wires for fusion. Scientific Reports. 2021;11(1):2084. doi: 10.1038/s41598-021-81559-z EDN: FQXYLW
  8. Federici G, Siccinio M, Bachmann C, et al. Relationship between magnetic field and tokamak size—a system engineering perspective and implications to fusion development. Nuclear Fusion. 2024;64(3):036025. doi: 10.1088/1741-4326/ad2425 EDN: QJXQPS
  9. Zohm H. On the Use of High Magnetic Field in Reactor Grade Tokamaks. Journal of Fusion Energy. 2019;38(1):3–10. doi: 10.1007/s10894-018-0177-y
  10. Krat S, Prishvitsyn A, Alieva A, et al. MEPhIST-0 Tokamak for Education and Research. Fusion Science and Technology. 2023;79(4):446–464. doi: 10.1080/15361055.2022.2149033 EDN: ZIBZCH
  11. Gryaznevich M, Asunta O. Overview and status of construction of ST40. Fusion Engineering and Design. 2017;123:177–180. doi: https://doi.org/10.1016/j.fusengdes.2017.03.011 EDN: VDFVMW
  12. Kuteev BV, Azizov EA, Bykov AS, et al. Steady-state operation in compact tokamaks with copper coils. Nuclear Fusion. 2011;51(7). doi: 10.1088/0029-5515/51/7/073013 EDN: MWVEXC
  13. File J, Mills RG, Sheffield GV. Large Superconducting Magnet Designs for Fusion Reactors. IEEE Transactions on Nuclear Science. 1971;18(4):277–282. doi: 10.1109/TNS.1971.4326354
  14. Shafranov VD. Optimum Shape of a Toroidal Solenoid. Soviet Physics Technical Physics. 1973;17:1433.
  15. Vinitskiy EA, Ulasevich DL, Prishvitsyn AS, et al. Optimization of the Toroidal Magnetic Coil System for the Small Spherical Tokamak MEPhIST-0. Fusion Science and Technology. 2025;81(5):485–494. doi: 10.1080/15361055.2024.2431782
  16. Khodzhibagiyan HG, Novikov MS, Fisher EZ, Shemchuk AV. Concept of the High-Temperature Superconductor Magnetic System of the New Nuclotron Synchrotron. Physics of Particles and Nuclei Letters. 2024;21(1):68–72. doi: 10.1134/S1547477124010060 EDN: GOFBTG
  17. Alexandrov DA, Martirosian IV, Pokrovskii SV, et al. Energy capacity and energy losses of inductive energy storage device based on composite HTS tapes. Modern Transportation Systems and Technologies. 2024;10(2):215–230. doi: https://doi.org/10.17816/transsyst632274 EDN: LKEQV

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. (a) - Cross section of the toroidal coil for the MIFIST-1 tokamak, inner radius R1 = 93 mm, outer radius R2= 0.7 m; (b) - Current line for the toroidal continuous solenoid for the MIFIST-1 tokamak

Download (258KB)
3. Fig. 2. External view of the cryomagnetic system of the toroidal magnetic field of the tokamak

Download (195KB)
4. Fig. 3. Dependence of the critical current of CORC cable assemblies on the external magnetic field at different temperatures (the dotted line denotes the magnet load curve)

Download (212KB)
5. Fig. 4. Magnetic field distribution. A – on the coil, B – in the poloidal cross section

Download (127KB)
6. Fig. 5. Dependence of the operational field of the tokamak on temperature for different values of the number of CORC cables in the toroidal coil

Download (225KB)
7. Fig. 6. Magnetic field distribution in the poloidal cross-section. A – for an operational field of 1 T, B – for an operational field of 1.5 T

Download (114KB)

Copyright (c) 2025 Aleksandrov D.А., Martirosian I.V., Vinitskiy Е.А., Osipov M.А., Pokrovskii S.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

link to the archive of the previous title

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).