Asynchronous motor fault detection using machine learning algorithms

Cover Page

Cite item

Full Text

Abstract

BACKGROUND. Machine learning methods are effective advanced means ensuring the operability of various engineering systems, including test systems. As statistics on faults accumulate, test systems based on machine learning algorithms provide higher prediction accuracy and do not require expensive test equipment and skilled personnel.

AIM. To develop a test system capable of both determining the fault and assessing its extent with high accuracy.

MATERIALS AND METHODS. The subject of the study is a three-phase asynchronous motor with a squirrel cage rotor; machine learning methods are used to achieve the goal.

RESULTS. Using the example of interturn faults in the stator winding, the authors demonstrate that it is possible to detect the fault and its extent even at the initial stage (with a few short-circuited turns) with an accuracy of at least 95%.

CONCLUSION. Machine learning methods allow to develop effective and affordable test systems that are versatile, highly accurate, and do not require skilled personnel.

About the authors

Evgeny G. Sereda

LLC “RackFork”

Email: evgeniy.sereda@rackfork.ru
SPIN-code: 4284-3319

Cand. Sci. (Tech.), Senior specialist

Russian Federation, St. Petersburg

Andrey S. Solovyov

Emperor Alexander I St. Petersburg State Transport University; JSC “Power machines”

Author for correspondence.
Email: vgvhyjh@mail.ru
ORCID iD: 0009-0001-2408-1840
SPIN-code: 1594-5049

Post graduate student, test engineer

Russian Federation, St. Petersburg; St. Petersburg

References

  1. Kotelents NF, Akimova NA, Antonov MV. Ispytania, ekspluatatsia i remont elektricheskikh mashin. Moscow: Akademia; 2003. (In Russ.)
  2. Dorokhina ES, Goldovskaya AA, Girnik AS. A Way To Predict The Residual Lifetime Of Induction Traction Electric Motors. Journal of Machinery Manufacture and Reliability. 2019;48(4):336-339. (Russ., Engl.) doi: 10.1134/S0235711919040060
  3. Vorobiev VE, Kucher VIa. Prognozirovanie sroka sluzhby elektricheskikh mashin. St.-Petersburg: SZTU, 2004. 56 p. (In Russ.).
  4. Ryzhova EL, Kim KK, Ivanov SN. Evaluation оf Traction Motor Reliability Based On The State Of Winding Electrical Insulation. Učenye zapiski Komsomol’skogo-na-Amure gosudarstvennogo tehničeskogo universiteta. 2023; 5(69):8-14. (In Russ.). doi: 10.17084/20764359-2023-69-8
  5. Miasoedova MA, Mamonova LG. Analiz sovremennykh metodov diagnostiki elektrooborudovania. In: Proceedings of the 2nd All-Russian Scientific and Practical Conference “Technologii, mashiny i oborudovanie dlya agropromyshlennogo kompleksa”. 2024 June 5. Kursk: Universitetskaya Kniga. 2024:81-84. (In Russ.).
  6. Koroleva EB, Kurmashev SM, Kim KK, Tkachuk AA, Kuznetsov AA. Devices for express diagnostics of power semiconductor devices and semiconductor converters. Omsk Scientific Bulletin. 2023;2(186):119-125. (Russ., Engl.) doi: 10.25206/1813-8225-2023-186-119-125
  7. Siddique A, Yadava G, Singh B. A Review of Stator Fault Monitoring Techniques of Induction Motors. IEEE transactions on energy conversion. 2005;20(1):106-114. doi: 10.1109/TEC.2004.837304
  8. Villada F, Cadavid D, Munoz N, et al. Fault Diagnosis in Induction Motors Fed by PWM Inverters. In: 4th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, 2003. SDEMPED; 2003:229-234. doi: 10.1109/DEMPED.2003.1234578
  9. Ryzhova EL, Osipov VYu. The use of technical means for diagnosing traction engines of rolling stock. Modern Transportation Systems and Technologies. 2024;10(4):556-576. doi: 10.17816/transsyst635142557
  10. Salnikov SV, Solodkiy EM, Vishnyakov DD, et al. Diagnostika asinhronnogo dvigatelia na osnove mashinnogo obuchenia. In: Proceedings of the XXVI International Conference on soft Computing and Measurements SCM-2023. 2023 May 24-26. St. Petersburg: SPBGETU “LETI”; 2023.
  11. Khalyasmaa A. Machine Learning as a Tool of High-Voltage Electrical Equipment Lifecycle Control Enhancement. Proceedings of Irkutsk State Technical University. 2020;24(5):1093-1094.] doi: 10.21285/1814-3520-2020-5-1093-1104.
  12. Korobeinikov AB, Sarvarov AS. Analysis Of Existing Methods for Diagnostics of Electric Motors and Perspectives of their Development. Electrotechnical Systems and Complexes. 2015;26(1):4-9. doi: 10.18503/2311-8318
  13. Breiman L. Random Forests. Machine Learning. 2001;45(1):5-32. doi: 10.1023/A:1010933404324
  14. Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: ACM; 2016:785-794.
  15. Flakh P. Mashinnoe obuchenie. Nauka i iskusstvo postroenia algoritmov kotorye izvlekaut znznia iz dannyh. Moscow: DMK Press; 2015. (In Russ.).
  16. Kugaevskih AV, Muromtsev DI, Kirsanova OV. Klassicheskie Metody Mashinnogo Obuchenia. St.-Petersburg: Universitet ITMO; 2022. (In Russ.)

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Experimental setup ПЧ – frequency converter; AT – autotransformer; ДТ1, ДТ2 – current sensors; АД – asynchronous motor; МПТ – direct current machine; ОВ – independent excitation winding of МПТ; СУ МПТ – control system of МПТ; ИУ – measuring device; ПК – personal computer.

Download (83KB)
3. Fig. 2. Initial signal received from the DT current sensors

Download (302KB)
4. Fig. 3. Signal from current sensors after filtering high-frequency interference

Download (202KB)
5. Fig. 4. View of normalized signals from current sensors after filtering for different degrees of development of interturn short circuit: а – short circuit of 5% of turns; b – short circuit of 15% of turns

Download (158KB)
6. Fig. 5. Error matrix (left) and ROC curve (right) for the logistical regression algorithm

Download (155KB)

Copyright (c) 2025 Sereda E.G., Solovyov A.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

link to the archive of the previous title

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).