A review of the theoretical preconditions for soil compaction

Cover Page

Cite item

Full Text

Abstract

The article aims to summarize the fundamental theoretical principles of soil mechanics and identify effective methods for influencing soil properties during the compaction process. It highlights the most effective soil compaction techniques in road construction, tailored to specific soil properties. The article also provides theoretical explanations for the behavior of different types of soil.

About the authors

Nikita A. Fedoseev

Peter the Great St. Petersburg Polytechnic University

Author for correspondence.
Email: vsvalbova@mail.ru
ORCID iD: 0000-0001-6104-9674
SPIN-code: 6857-7057

master’s degree student

Russian Federation, St. Petersburg

Sergey V. Alekseev

Peter the Great St. Petersburg Polytechnic University

Email: sergeyaleks1966@gmail.com
ORCID iD: 0000-0001-8632-3852
SPIN-code: 6013-0312

candidate of military sciences, associate professor

Russian Federation, St. Petersburg

Sergey M. Shevchenko

Peter the Great St. Petersburg Polytechnic University

Email: shef10b@yandex.ru
ORCID iD: 0000-0001-5244-8024
SPIN-code: 7734-1758

candidate of technical sciences, associate professor

Russian Federation, St. Petersburg

References

  1. Bugrov AK. Soil mechanics: schoolbook. St. Petersburg: SPbPU; 2020. (In Russ.)
  2. GOST 25100-2020 Soils. Classification. Moscow: Standardinform, 2020. (In Russ.) Accessed: 20.02.2024. available from: https://files.stroyinf.ru/Data2/1/4293719/4293719820.pdf
  3. Ter-Martirosyan AZ, Anzhelo GO, Ermoshina LYu, et al. Vliyanie koe`fficienta neravnomernosti rasshireniya gruntovogo obrazcza na mexanicheskie xarakteristiki. Vestnik MGSU. 2023;18(10):1574–1586. (In Russ.) doi: 10.22227/1997-0935.2023.10.1574-1586
  4. Lyashenko PA, Denisenko VV. Model` deformacii mikrostruktury` peschanogo grunta. Polythematic online scientific journal of Kuban State Agrarian University. 2016;(118):853-877. (In Russ.) EDN: VWPTMZ
  5. Nosov SV. Matematicheskoe modelirovanie processa uplotneniya dorozhno-stroitel`ny`x materialov zhestkim val`czom dorozhnogo katka. Bulletin of BSTU named after V.G. Shukhov. 2013;(4):31–35. (In Russ.) EDN: QCEJOT
  6. Galdin NS. Gruntouplotnyayushhee oborudovanie na osnove gidroudarnikov. The Russian Automobile and Highway Industry Journal. 2017;2(54):11–16. (In Russ.) EDN: ZQQITP
  7. Kostel`ov MP. Vozmozhnosti i e`ffektivnosti vibrokatkov dlya uplotneniya gruntov razlichnogo tipa i sostoyaniya. Putevoj navigator. 2012;14(40):60–71. (In Russ.) EDN: ZQQITP
  8. Kharkhuta NYa. Mashiny` dlya uplotneniya gruntov: Teoriya, raschet i konstrukcii. Leningrad: Mashinostroenie; 1973. (In Russ.)
  9. Instrukciya po e`kspluatacii gruntovogo katka firmy` BOMAG s poligonal`ny`m val`czom. [Internet]. [cited 2024 Feb 20]. Available from: https://specavto.ru/upload/iblock/968/968c611e2869c81fdea86a0b4757e711.pdf
  10. Petrakov AA, Yarkin VV, Taran RA, Kazachek TV. Soil mechanics: schoolbook. Makeevka: DonNASA; 2004. (In Russ.)
  11. Lyamina AA, Teteryadchenko TN, Derkach KV. Ukreplenie slaby`x osnovanij dorozhny`x nasy`pej gruntovy`mi tekstil`no-peschany`mi svami. In: Proceedings of the International Scientific Conference «Prioritetny`e napravleniya innovacionnoj deyatel`nosti v promy`shlennosti». 2020 Dec 30–31; Kazan. Kazan: Konvert; 2020:172–175. (In Russ.) EDN: VXJJDU
  12. Sonin VV. Obzor texnologij usileniya slaby`x osnovanij dorozhny`x nasy`pej. Aktual`ny`e problemy` gumanitarny`x i estestvenny`x nauk. 2016;(5–1):104–107. (In Russ.)
  13. Alekseev SI, Miroshnichenko RV. Ocenka zakrepleniya osnovaniya metodom pnevmotrambovaniya shhebenochno-cementnoj smesi. Proceedings of Petersburg Transport University. 2007;4(13):88–97. (In Russ.)
  14. Potapov AD, Platov NA, Lebedeva MD. Peschany`e grunty` (monograph). Moscow: MGSU; 2009. (In Russ.) [cited 2024 Feb 20]. Available from: https://elima.ru/books/?id=7030
  15. Mirny`j AYu, Gajkov EA, Zubov AO. Non-cohesive soils’ compressibility and uneven grain-size distribution relation. Mordovia university bulletin. 2016;1(26):12–19. (In Russ.) EDN: VNUFYB doi: 10.15507/0236-2910.026.201601.012-019
  16. Chernova NA, Biryukov OR, Ermoshin NA. Vliyanie stabiliziruyushchih dobavok iz cellyulozy na svojstva shchebenochno-mastichnogo asfal’ta. In: Materials of the All-Russian conference «Nedelya nauki ISI». 2021 Apr 26–30. (In Russ.) EDN: VJVYGS
  17. Kostel`ov MP. Opyat` o kachestve i e`ffektivnosti uplotneniya razlichny`x gruntov sovremenny`mi vibrokatkami. Dorozhnaya texnika i texnologii. 2008;40–47. (In Russ.) [cited 2024 Feb 20]. Available from: https://zaovad.ru/upload/file/2017/01/25/11-dorozhnaya-tehnika-2008-1-s40-47.pdf
  18. Fedoseev NA, Svalbova VA, Alekseev SV. Automated algorithm for drawing up a milling cartogram. Modern Transportation Systems and Technologies. 2023;9(2):66–82. doi: 10.17816/transsyst20239266-82
  19. GOST 22733-2016 Soils. Laboratory method for determining of maximum density. Moscow: Standardinform, 2019. (In Russ.) [cited 2024 Feb 20]. Available from: https://files.stroyinf.ru/Data2/1/4293753/4293753343.pdf
  20. Spoor G, Godwin RJ. Soil deformation and shear strength characteristics of some clay soils at different moisture contents. Journal of Soil Science. 1979;30(3):483–498. doi: 10.1111/j.1365-2389.1979.tb01003.x
  21. Dobrogorskaya LV, Lazarev YuG, Fedotov VV. Primenenie informacionnogo modelirovaniya pri diagnostike i obsledovanii mostovy`x sooruzhenij. In: Proceedings of the International Scientific and Practical Conference «Regional`ny`e aspekty` razvitiya nauki i obrazovaniya v oblasti arxitektury`, stroitel`stva, zemleustrojstva i kadastrov v nachale III ty`syacheletiya». 2018 Nov 29–30; Komsomolsk-on-Amur. Komsomolsk-on-Amur: Komsomolsk-na-Amure State University; 2018:223–227. (In Russ.) EDN: UVKEFU
  22. Hu W, Jia X, Zhu X, et al. Influence of moisture content on intelligent soil compaction. Automation in Construction. 2020;113. doi: 10.1016/j.autcon.2020.103141
  23. Ermoshin NA, Lazarev YuG, Egoshin AM, Zmeev AT. Upravlenie investicionny`mi i texnicheskimi riskami v dorozhnom stroitel`stve (monograph). St. Petersburg: VA MTO; 2017. (In Russ)
  24. SP 34.13330.2021 Avtomobilnye dorogi. Мoscow; 2021. (In Russ.) [cited 2024 Feb 20]. Available from: https://minstroyrf.gov.ru/docs/119239/

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The main properties of the soil affecting the compaction process, taking into account their variability

Download (203KB)
3. Fig. 2. Scheme of molecular interaction of soil particles with water I – solid particle; II – bound water; III – free water [1]

Download (146KB)
4. Fig. 3. An example of a polygonal roller [9]

Download (40KB)
5. Fig. 4. Coulomb-Mohr circles [10]

Download (121KB)
6. Fig. 5. Granulometric composition: homogeneous on the left; heterogeneous on the right [15]

Download (145KB)
7. Fig. 6. Dependence of soil density on humidity with standard compaction (a – for cohesive soil; b – for non-cohesive) [19]

Download (426KB)

Copyright (c) 2024 Fedoseev N.A., Alekseev S.V., Shevchenko S.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

link to the archive of the previous title

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).