Автоматизированный алгоритм составления картограммы фрезерования

Обложка

Цитировать

Полный текст

Аннотация

Обоснование: Картограмма фрезерования является техническим заданием для машиниста дорожной фрезы.

Цель: Автоматизация процесса составления картограммы фрезерования.

Материалы и методы: Алгоритм поиска наилучшего варианта основан на методе обобщенного приведенного градиента. В качестве программного комплекса используется MS Excel. Источниками ограничений являются требования нормативных документов к качеству проведения работ по фрезерованию.

Результаты: Составленная модель учитывает условия для обеспечения поверхностного водоотвода, а также ограничения, предусмотренные строительными правилами. В качестве целевой функции принято расхождение фактической глубины реза с предпочтительной. Проведен анализ результатов решения и дано сопоставление ручного и автоматизированного расчетов.

Выводы: Использование описанного в статье алгоритма позволяет сократить трудозатраты на составление картограммы в два раза. Аналогично снижается степень отклонения задаваемой глубины реза от целевой, что приводит к снижению объемов перерасхода материалов при дальнейших работах.

Об авторах

Никита Александрович Федосеев

Санкт-Петербургский политехнический университет Петра Великого

Автор, ответственный за переписку.
Email: fedoseev.na@edu.spbstu.ru
ORCID iD: 0000-0001-6104-9674
SPIN-код: 6857-7057

магистрант, Инженерно-строительный институт

Россия, Санкт-Петербург

Вера Алексеевна Свальбова

Санкт-Петербургский политехнический университет Петра Великого

Email: svalbova.va@edu.spbstu.ru
ORCID iD: 0000-0002-3726-9359
SPIN-код: 7383-9132

магистрант, Инженерно-строительный институт

Россия, Санкт-Петербург

Сергей Викторович Алексеев

Санкт-Петербургский политехнический университет Петра Великого

Email: sergeyaleks1966@gmail.com
ORCID iD: 0000-0001-8632-3852
SPIN-код: 6013-0312

кандидат военных наук, доцент, Инженерно-строительный институт

Россия, Санкт-Петербург

Список литературы

  1. Васильев К.А., Бирюков О.Р., Алексеев С.В. Выбор способа устройства поперечного уклона проезжей части при ремонте автомобильной дороги / Материалы всероссийской конференции «Неделя науки ИСИ». 26–30 апреля 2021; СПб. ФГАОУ «СПбПУ», 2021. – С. 297–299. [Vasil'ev KA, Birjukov OR, Alekseev SV. Vybor sposoba ustrojstva poperechnogo uklona proezzhej chasti pri remonte avtomobil'noj dorogi. Materials of the All-Russian Conference “Nedelja nauki ISI”. 2021 Apr 26-30; St. Petersburg. FGAOU SPbPU, 2021. pр. 297-299. (In Russ.)]. Доступно по: https://www.elibrary.ru/item.asp?id=46294849 Ссылка активна на 29.04.2023.
  2. Закон Санкт-Петербурга №163-34 от 11 апреля 2013 г. «О порядке ремонта и содержания автомобильных дорог в Санкт-Петербурге (с изменениями на 18 марта 2020 года)» [Law of St. Petersburg № 163-34 of 11 April 2013. “O porjadke remonta i soderzhanija avtomobil'nyh dorog v Sankt-Peterburge (s izmenenijami na 18 marta 2020 goda)”. (In Russ.)]. Дата обращения: 29.04.2023. Режим доступа: https://npa.gov.spb.ru/SpbGovSearch/Document/2079.html
  3. Лебедева А.К. Моделирование систем методами линейного программирования / Материалы IV Всероссийской научно-практической конференции молодых ученых «Прикладная математика: современные проблемы математики, информатики и моделирования». 18–23 апреля 2022 года; Краснодар. Краснодар: ФГБУ "РЭА" Минэнерго России Краснодарский ЦНТИ – филиал ФГБУ "РЭА" Минэнерго России, 2022. – С. 317–321. [Lebedeva AK. Modelirovanie sistem metodami linejnogo programmirovanija. Materials of the IV All-Russian Scientific and Practical Conference of Young Scientists “Prikladnaja matematika: sovremennye problemy matematiki, informatiki i modelirovanija”. 2022 Apr 18–23; Krasnodar. Krasnodar: FGBU "REA" Min`energo Rossii Krasnodarskij TsNTI – filial FGBU "REA" Min`energo Rossii 2022. pр. 317-321. (In Russ.)]. Ссылка активна на 29.04.2023. Доступно по: https://www.elibrary.ru/item.asp?id=49529423
  4. Chew EP, Goh CJ, Fwa TF. Simultaneous optimization of horizontal and vertical alignments for highways. Transportation Research Part B: Methodological. 1989; 5(23): 315–329. doi: 10.1016/0191-2615(89)90008-8
  5. Artun A, Radaev AE, Badenko VL. Minimizing earthwork volumes by optimizing vertical alignment with linear programming algorithm. Construction of unique buildings and structures. 2019;7(82):7-13. doi: 10.18720/CUBS.82.1
  6. Shewchuk J. An Introduction to the Conjugate Gradient Method Without the Agonizing Pain. 1994 Mar [cited 2023 Apr 29]. Available from: https://people.eecs.berkeley.edu/~jrs/papers/cg.pdf
  7. Bertsekas D. P. Convex Optimization Theory. Belmont, Athena Scientific Publ., 2009. 444 p. [cited 2023 Apr 29]. Available from: http://web.mit.edu/dimitrib/www/Convex_Theory_Entire_Book.pdf
  8. Нестеров Ю.Е. Методы выпуклой оптимизации. Москва: МЦНМО, 2007. [Nesterov JuE. Metody vypukloj optimizatsii. Moscow: MTsNMO, 2007. (In Russ)]. Доступно по: https://mipt.ru/dcam/upload/abb/nesterovfinal-arpgzk47dcy.pdf Ссылка активна на: 29.04.2023.
  9. Зайцев А.А., Курейчик В.В., Полупанов А.А. Обзор эволюционных методов оптимизации на основе роевого интеллекта // Известия ЮФУ. Технические науки. – 2010. – № 12 (113). – С. 7–12. [Zajtsev AA, Kurejchik VV, Polupanov AA. Obzorevoljutsionnyh metodov optimizatsii na osnove roevogo intellekta. Izvestija JuFU. Engineering Sciences. 2010;12(113):7-12. (In Russ.)]. Доступно по: https://www.elibrary.ru/download/elibrary_15553703_33238503.pdf Ссылка активна на: 29.04.2023.
  10. Help and Documentation - MATLAB & Simulink. [Cited 2023 Apr 29]. Available from: https://www.mathworks.com/help/simulink
  11. Справка и обучение по Excel. Ссылка активна на: 29.04.2023. Доступно по: https://support.microsoft.com/en-us/excel
  12. Рыков С.В., Кудрявцева И.В., Рыков С.А., Рыков В.А. Методы оптимизации в примерах в пакете MATHCAD 15, Часть III Многомерная оптимизация. Аналитические методы. СПб: ИТМО, 2018. [Rykov SV, Kudrjavtseva IV, Rykov SA, Rykov VA. Metody optimizatsii v primerah v pakete MATHCAD 15, Chast' III Mnogomernaja optimizatsija. Analiticheskie metody. St. Petersburg: ITMO, 2018. (In Russ.)]. Ссылка активна на: 29.04.2023. Доступно по: https://books.ifmo.ru/file/pdf/2359.pdf
  13. Хабарова Д.С. Обзор программных комплексов многокритериальной оптимизации // Прикладная информатика. – 2013. – № 2(44). – С. 102–112. [Habarova DS. Obzor programmnyh kompleksov mnogokriterialnoj optimizatsii. Prikladnaja informatika. 2013;2(44):102-112. (In Russ.)]. Доступно по: https://www.elibrary.ru/download/elibrary_18946985_85841042.pdf Ссылка активна на: 29.04.2023.
  14. Свод правил №396.1325800.2018 от 1 августа 2018 г. «Улицы и дороги населенных пунктов. Правила градостроительного проектирования (с Изменениями N 1, 2)». [Body of rules №396.1325800.2018 of 1 August 2018. “Ulitsy i dorogi naselennyh punktov. Pravila gradostroitel'nogo proektirovanija (s Izmenenijami N 1, 2)”. (In Russ.)]. Дата обращения: 29.04.2023. Режим доступа: https://www.minstroyrf.gov.ru/upload/iblock/81f/SP-396.pdf
  15. Ермошин Н.А., Романчиков С.А., Аверьянов Д.А. Имитационное моделирование риска разрушения дорожных конструкций в межремонтный период // Путевой навигатор. – 2022. – № 50(76). – С. 30–41. [Ermoshin NA, Romanchikov SA, Averianov DA. Imitatsionnoye modelirovaniye riska razrusheniya dorozhnykh konstruktsiy v mezhremontnyy period. Putevoy navigator. 2022;50(76):30-41. (In Russ.)]. Ссылка активна на: 29.04.2023. Доступно по: https://www.elibrary.ru/download/elibrary_48202390_88032815.pdf
  16. Вавилов В.Е. Математическая модель гибридных систем магнитной левитации энерговырабатывающего оборудования автономных систем электроснабжения // Транспортные системы и технологии. – 2016. – Т. 2. – № 3. – С. 97–108. [Vavilov VE. Matematicheskaya model gibridnyh sistem magnitnoj levitacii energovyrabatyvayushchego oborudovaniya avtonomnyh sistem elektrosnabzheniya. Transportation Systems and Technology. 2016;2(3):97-108. (In Russ.)]. doi: 10.17816/transsyst20162397-108

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Плановое изображение поверхности и ее табличная интерпретация

Скачать (75KB)
3. Рис. 2. Схема к определению уклона

Скачать (16KB)
4. Рис. 3. Схема к определению площади, окрестной для точки

Скачать (35KB)
5. Рис. 4. Исходные данные. Результат расчета алгоритма приведен на Рис. 5 и 6.

Скачать (45KB)
6. Рис. 5. Проектная поверхность и значения глубин зарезания

Скачать (45KB)
7. Рис. 6. Проектная поверхность с обозначением величины уклонов и их направлением

Скачать (28KB)
8. Рис. 7. Графики сопоставления продольных профилей по БЛ №1-№3, полученных различными способами

Скачать (85KB)
9. Рис. 8. Частота отклонений глубины реза от диапазона [0–4] см в зависимости от способа составления картограммы

Скачать (120KB)

© Федосеев Н.А., Свальбова В.А., Алексеев С.В., 2023

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).