Simulation of the maglev suspension dynamic characteristics during movement, acceleration and deceleration

Cover Page

Cite item

Full Text

Abstract

Background: When developing high-speed transport systems based on the magnetic levitation phenomenon, it is necessary to take into account a huge number of factors that affect the characteristics and stability of this type systems. One of the simplest and most convenient methods for achieving these goals is numerical simulation.

Aim: simulation of the dynamic characteristics of a magnetic suspension based on a high-temperature superconductor during movement, acceleration and deceleration.

Methods: numerical analysis of the magnetic levitation system was performed by the finite element method in the Comsol Multiphysics engineering simulation software.

Results: during straight motion, lateral vibrations do not exceed 15 %, and the suspension speed and mass increase does not have a significant effect on the vibrations amplitude. In the case of vertical oscillations, the platform mass and speed increase leads to an increase in the vibration resistance of the system. With an increase in the turning radius of the track, the maximum possible speed of entering the turn without detaching the suspension from the magnetic track increases non-linearly.

Conclusion: The developed numerical model makes it possible to predict the dynamic characteristics of levitation transport and can be applied to systems of various scales.

About the authors

Irina V. Martirosian

National research nuclear university MEPHI; Sirius University; Kazan Federal University

Author for correspondence.
Email: mephizic@gmail.com
ORCID iD: 0000-0003-2301-1768
SPIN-code: 3368-8809

engineer

Russian Federation, Moscow; Sirius, Krasnodar region; Kazan

Sergey V. Pokrovskii

National research nuclear university MEPHI; Sirius University; Kazan Federal University

Email: sergeypokrovskii@gmail.com
ORCID iD: 0000-0002-3137-4289
SPIN-code: 6643-7817

Candidate of Physical and Mathematical Sciences, Assistant

Russian Federation, Moscow; Sirius, Krasnodar region; Kazan

Maxim A. Osipov

National research nuclear university MEPHI; Sirius University

Email: max.vfk@gmail.com
ORCID iD: 0000-0002-8981-5606
SPIN-code: 4776-7939

engineer

Russian Federation, Moscow; Sirius, Krasnodar region

Alexander S. Starikovskii

National research nuclear university MEPHI; Sirius University

Email: sannyok1995@gmail.com
ORCID iD: 0000-0002-7605-7578
SPIN-code: 9493-3256

Graduate

Russian Federation, Moscow; Sirius, Krasnodar region

Igor A. Rudnev

National research nuclear university MEPHI; Sirius University; Kazan Federal University

Email: iarudnev@mephi.ru
ORCID iD: 0000-0002-5438-2548
SPIN-code: 2070-5265

Doctor of Physical and Mathematical Sciences, Professor

Russian Federation, Moscow; Sirius, Krasnodar region; Kazan

References

  1. Nagaya K, Tsukagoshi M, Kosugi Y, Murakami M. VIBRATION CONTROL FOR A HIGH-Tc SUPERCONDUCTING NON-LINEAR LEVITATION SYSTEM. J SOUND VIB. 1997;208(2):299-311.doi: 10.1006/jsvi.1997.1223
  2. Jang-Horng Y, Postrekhin E, Ki Bui M, et al. Vibration isolation for space structures using HTS-magnet interaction. IEEE T APPL SUPERCON. 1999;9(2):908-10. doi: 10.1109/77.783444
  3. Brandt EH. Levitation in Physics. Science. 1989;243(4889):349-55. doi: 10.1126/science.243.4889.349
  4. Moon FC. Superconducting Levitation: Applications to Bearing & Magnetic Transportation 1994 August 01, 1994. 310 p. Available from https://ui.adsabs.harvard.edu/abs/1994slab.book.....M/
  5. Ma K, Postrekhin YV, Chu W-K. Superconductor and magnet levitation devices. REV SCI INSTRUM. 2003;74:4989-5017. doi: 10.1063/1.1622973
  6. Hull JR. Superconducting bearings. SUPERCOND SCI TECH (Online). 2000;13(2):R1-R15. doi:https:10.1088/0953-2048/13/2/201
  7. Wang J, Wang S, Zeng Y, et al. The first man-loading high temperature superconducting Maglev test vehicle in the world. Physica C. 2002;378-381:809-14. doi: 10.1016/S0921-4534(02)01548-4
  8. Deng Z, Zhang W, Zheng J, et al. A High-Temperature Superconducting Maglev Ring Test Line Developed in Chengdu, China. IEEE T APPL SUPERCON. 2016;26(6):1-8. doi: 10.1109/TASC.2016.2555921
  9. Li H, Deng Z, Ke Z, et al. Curve Negotiation Performance of High-Temperature Superconducting Maglev Based on Guidance Force Experiments and Dynamic Simulations. IEEE T APPL SUPERCON. 2020;30(1):1-11. doi: 10.1109/TASC.2019.2932283
  10. Lee S, Petrykin V, Molodyk A, Samoilenkov SV, et al. Development and production of second generation high Tc superconducting tapes at SuperOx and first tests of model cables. SUPERCOND SCI TECH. 2014;27:044022. doi: 10.1088/0953-2048/27/4/044022
  11. Dular P, Remacle J, Henrotte F, et al. Magnetostatic and magnetodynamic mixed formulations compared with conventional formulations. IEEE T MAGN. 1997;33(2):1302-5. doi: 10.1109/20.582494
  12. Bíró O. Edge element formulations of eddy current problems. COMPUT METHOD APPL M. 1999;169(3):391-405. doi:https:10.1016/S0045-7825(98)00165-0
  13. Bortot L, Auchmann B, Garcia IC, et al. A Coupled A–H Formulation for Magneto-Thermal Transients in High-Temperature Superconducting Magnets. IEEE T APPL SUPERCON. 2020;30(5):1-11. doi: 10.1109/TASC.2020.2969476
  14. Strickland N, Wimbush S. The magnetic-field dependence of the critical current: what we really need to know. IEEE T APPL SUPERCON. 2016;PP:1. doi: 10.1109/TASC.2016.2636561
  15. Zhang M, Matsuda K, Coombs TA. New application of temperature-dependent modelling of high temperature superconductors: Quench propagation and pulse magnetization. JPN J APPL PHYS. 2012;112(4):043912. doi: 10.1063/1.4747925
  16. Anischcenko I, Pokrovskii S, Rudnev I, Osipov M. Modeling of magnetization and levitation force of HTS tapes in magnetic fields of complex configurations. SUPERCOND SCI TECH. 2019;32(10):105001. doi: 10.1088/1361-6668/ab2bbe

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1

Download (59KB)
3. Fig. 2

Download (68KB)
4. Fig. 3

Download (62KB)
5. Fig. 4

Download (44KB)
6. Fig. 5

Download (41KB)
7. Fig. 6

Download (126KB)

Copyright (c) 2022 Martirosian I.V., Pokrovskii S.V., Osipov M.A., Starikovskii A.S., Rudnev I.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

link to the archive of the previous title

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).