Применение цифровых технологий в работе патологоанатома: обучение использованию систем автоматического распознавания речи

Обложка
  • Авторы: Храмцов А.И.1, Насыров Р.А.2, Храмцова Г.Ф.3
  • Учреждения:
    1. Детская больница Энн и Роберта Лурье
    2. Федеральное государственное образовательное учреждение высшего образования «Санкт-Петербургский государственный педиатрический медицинский университет» Министерства здравоохранения Российской Федерации
    3. Чикагский Университет
  • Выпуск: Том 12, № 3 (2021)
  • Страницы: 63-68
  • Раздел: Обзоры
  • URL: https://ogarev-online.ru/pediatr/article/view/83060
  • DOI: https://doi.org/10.17816/PED12363-68
  • ID: 83060

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Обработка естественного языка, или Natural language processing, — это одно из направлений вычислительной лингвистики. Это раздел информатики, который включает алгоритмическую обработку речи и текстов на естественном языке. С применением таких алгоритмов создаются системы машинного перевода, ответов на вопросы, системы автоматического распознавания речи (САРР). Применение САРР направлено на преобразование речи и генерирование связанного и осмысленного текста, а также общение на естественном языке при взаимодействии компьютера и человека. Сегодня эти системы широко используются в медицинской практике, в том числе и патологической анатомии. Ключевыми этапами для успешного использования САРР являются: составление стандартных шаблонов-описаний для автоматического включения их в диагноз и обучение врачей навыкам использования таких систем в практической деятельности. Попытки стандартизации патологоанатомических заключений давно предпринимаются врачами во всем мире. После изучения отечественной и зарубежной литературы нами был составлен перечень элементов, которые должны быть обязательно включены в макро- и микроскопическое описание и отражены в окончательном заключении. Такие шаблоны помогают в принятии решений и точной формулировке диагноза, так как содержат все ключевые элементы в порядке их значимости. Это значительно снижает необходимость повторного исследования, как фиксированного макроскопического материала, так и подготовки дополнительных гистологических срезов. Шаблоны, встроенные в САРР, позволяют сократить время, затрачиваемое на ведение документации и значительно уменьшить рабочую нагрузку на патологоанатомов. Для успешного пользования САРР нами разработан учебный курс «Digital Speech Recognition in an Anatomical Pathology Practice» для последипломного образования как отечественных, так и зарубежных врачей. Краткая характеристика курса приводится в этой статье, а сам курс доступен в сети Интернет.

Об авторах

Андрей Ильич Храмцов

Детская больница Энн и Роберта Лурье

Автор, ответственный за переписку.
Email: duvip@yandex.ru

кандидат медицинских наук, старший научный сотрудник отдела патологии и лабораторной медицины

США, Чикаго

Руслан Абдуллаевич Насыров

Федеральное государственное образовательное учреждение высшего образования «Санкт-Петербургский государственный педиатрический медицинский университет» Министерства здравоохранения Российской Федерации

Email: ran.53@mail.ru

доктор медицинских наук, профессор, заведующий кафедрой патологической анатомии с курсом судебной медицины

Россия, Санкт-Петербург

Галина Федоровна Храмцова

Чикагский Университет

Email: galina@uchicago.edu

кандидат медицинских наук, старший научный сотрудник отдела медицины, секция гематологии и онкологии

США, Чикаго

Список литературы

  1. Белоногов Г.Г. Компьютерная лингвистика и перспективные информационные технологии. М.: Русский мир, 2004. [Belonogov GG. Komp’yuternaya lingvistika i perspektivnye informatsionnye tekhnologii. Moscow: Russkiy mir; 2004. (In Russ.)]
  2. Боярский К.К. Введение в компьютерную лингвистику. Учеб. пос. СПб.: НИУ ИТМО, 2013. [Boyarskiy KK. Vvedenie v komp’yuternuyu lingvistiku. Ucheb. pos. Saint Petersburg: NIU ITMO; 2013. (In Russ.)]
  3. Кудрявцев Н.Д., Сергунова К.А., Иванова Г.В., и др. Оценка эффективности внедрения технологии распознавания речи для подготовки протоколов рентгенологических исследований//Врач и информационные технологии. 2020. Т. S1. С. 58–64. [Kudryavtsev ND, Sergunova KA, Ivanova GV, et al. Evolution of the effectiveness of the introduction of speech recognition technology for the preparation of protocols for X-ray examinations. Information Technologies for the Physician. 2020; S1:58-64. (In Russ.)] doi: 10.37690/1811-0193-2020-S1-58-64
  4. Мальков П.Г., Франк Г.А., Пальцев М.А. Стандартные технологические процедуры при проведении патологоанатомических исследований: Клинические рекомендации. М.: Практическая медицина, 2017. [Mal’kov PG, Frank GA, Pal’tsev MA. Standartnye tekhnologicheskie protsedury pri provedenii patologoanatomicheskikh issledovaniy: Klinicheskie rekomendatsii. Moscow: Prakticheskaya meditsina; 2017. (In Russ.)]
  5. Трякин А. А., Гладков О. А., Матвеев В. Б., и др. Практические рекомендации по лечению герминогенных опухолей у мужчин. Злокачественные опухоли: Практические рекомендации//RUSSCO. 2020. T. 10, № 3s2. С. 572–602. [Tryakin AA, Gladkov OA, Matveev VB, et al. Prakticheskie rekomendatsii po lecheniyu germinogennykh opukholey u muzhchin Zlokachestvennye opukholi: Prakticheskie rekomendatsii. RUSSCO. 2020;10(3s2):572-602. (In Russ.)] doi: 10.18027/2224-5057-2020-10-3s2-34
  6. Цитульский А.М., Иванников А.В., Рогов И.С. NLP — Обработка естественных языков//Научно-образовательный журнал для студентов и преподавателей StudNet. 2020. Т. 3. № 6. С. 467–475. [Tsitul’skiy AM, Ivannikov AV, Rogov IS. NLP – Natural language processing. StudNet. 2020;6:467-475. (In Russ.)]
  7. Blackley SV, Schubert VD, Goss FR, et al. Physician use of speech recognition versus typing in clinical documentation: A controlled observational study. Int J Med Inform. 2020;141:104178. doi: 10.1016/j.ijmedinf.2020.104178
  8. Goldsmith JD, Siegal GP, Suster S, et al. Reporting guidelines for clinical laboratory reports in surgical pathology. Arch Pathol Lab Med. 2008;132(10):1608-1616. doi: 10.5858/2008-132-1608-RGFCLR
  9. Henricks WH, Roumina K, Skilton BE, et al. The utility and cost effectiveness of voice recognition technology in surgical pathology. Mod Pathol. 2002;15(5):565-571. doi: 10.1038/modpathol.3880564
  10. Kang HP, Sirintrapun SJ, Nestler RJ, Parwani AV. Experience with voice recognition in surgical pathology at a large academic multi-institutional center. Am J Clin Pathol. 2010;133(1):156-159. doi: 10.1309/AJCPOI5F1LPSLZKP
  11. Renshaw AA, Mena-Allauca M, Gould EW, Sirintrapun SJ. Synoptic Reporting: Evidence-Based Review and Future Directions. JCO Clin Cancer Inform. 2018;2:1-9. doi: 10.1200/CCI.17.00088
  12. Singh M, Pal TR. Voice recognition technology implementation in surgical pathology: advantages and limitations. Arch Pathol Lab Med. 2011;135(11): 1476-1481. doi: 10.5858/arpa.2010-0714-OA
  13. Sluijter CE, van Workum F, Wiggers T, et al. Improvement of Care in Patients with Colorectal Cancer: Influence of the Introduction of Standardized Structured Reporting for Pathology. JCO Clin Cancer Inform. 2019;3:1-12. doi: 10.1200/CCI.18.00104
  14. Valenstein PN. Formatting pathology reports: applying four design principles to improve communication and patient safety. Arch Pathol Lab Med. 2008;132(1): 84-94. doi: 10.5858/2008-132-84-FPRAFD
  15. Veras LV, Arnold M, Avansino JR, et al. Guidelines for synoptic reporting of surgery and pathology in Hirschsprung disease. J Pediatr Surg. 2019;54(10):2017-2023. doi: 10.1016/j.jpedsurg.2019.03.010
  16. Программа Voice2Med. Режим доступа: https://www.speechpro.ru/product/programmy-dlya-raspoznavaniya-rechi-v-tekst/voice2med Дата обращения: 06.09.21. [Program Voice2Med. Available from: https://www.speechpro.ru/product/programmy-dlya-raspoznavaniya-rechi-v-tekst/voice2med (In Russ.)]
  17. Digital Speech Recognition Systems in an Anatomical Pathology Practice. Media Lab. Available from: https://www.medialab.com/digital_speech_recognition_systems_in_an_anatomic_pathology_practice.aspx Accessed: 06.09.2021.
  18. Dragon Medical One. Nuance Communications Inc. Available from: https://www.nuance.com/healthcare/provider-solutions/speech-recognition/dragon-medical-one.html Accessed: 06.09.21.
  19. VoiceOver PRO. Voicebrook Inc. Available from: https://www.voicebrook.com/voiceover.
  20. The College of American Pathologists (CAP) eCC (electronic Cancer Checklists). Available from: https://www.cap.org/laboratory-improvement/proficiency-testing/cap-ecc
  21. The Say it for Pathologists. Inc n Voq. Available from: https://sayit.nvoq.com/medical-dictation-software-for-pathologists/ (accessed 07.03.2021).
  22. Fusion Speech for Pathology. Dolbey. Available from: https://www.dolbey.com/solutions/speech-recognition/fusion-speechemr/pathology/(accessed 07.03.2021).

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Принцип работы системы автоматического распознавания речи

Скачать (50KB)
3. Рис. 2. Пример работы с программным обеспечением Dragon Medical One для создания протокола макроскопического описания и гистологического диагноза

Скачать (257KB)

© Храмцов А.И., Насыров Р.А., Храмцова Г.Ф., 2021

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».