Immune response to primary glioblastoma
- Authors: Sklyar S.S.1,2, Trashkov A.P.2, Matsko M.V.3,4,5, Safarov B.I.1, Vasiliev A.G.6
-
Affiliations:
- Polenov Russian Neurosurgical Institute — the branch of Almazov National Medical Research Centre
- B.P. Konstantinov St. Petersburg Institute of Nuclear Physics
- Clinical Scientific-Practical Center of oncology
- Saint Petersburg State University
- St. Petersburg Medico-Social Institute
- St. Petersburg State Pediatric Medical University
- Issue: Vol 13, No 2 (2022)
- Pages: 49-60
- Section: Reviews
- URL: https://ogarev-online.ru/pediatr/article/view/109259
- DOI: https://doi.org/10.17816/PED13249-60
- ID: 109259
Cite item
Abstract
Immunotherapy is a promising and rapidly developing method of therapy patients with different oncological pathology. Considering the demonstrated efficacy in the treatment of patients with some solid tumors, as well as low survival rates and the absence of a significant effect in the standard treatment of most patients with glioblastomas, the question of the use of immunotherapy for malignant gliomas of the brain was raised. However, to decision this problem, it is necessary to consider the interaction of the immune system with tumors of this group. The modern view of the interaction of immunity and glioblastoma is presented. Special attention is paid to the mechanisms of tumor escape and suppression of the functional activity of immune system. The current immunotherapeutic approaches in the treatment of patients with glioblastoma are presented. Interaction of glioblastoma with immune system at all the stages of tumor growth is a complex process. While planning the immunotherapy of this pathology it’s necessary to take into consideration all mechanisms used by the tumor cells to avoid the immune response and suppress it. However, the clinical studies of this type of therapy proved to be less successful than expected. Further detailed studies of immune-resistance and escape of gliobloastoma must contribute to working out more effective immunotherapy tactics.
Full Text
##article.viewOnOriginalSite##About the authors
Sofia S. Sklyar
Polenov Russian Neurosurgical Institute — the branch of Almazov National Medical Research Centre; B.P. Konstantinov St. Petersburg Institute of Nuclear Physics
Author for correspondence.
Email: s.sklyar2017@yandex.ru
Junior Researcher of the Laboratory of Neurooncology; Junior Researcher of the Laboratory of the Center of Preclinical and Clinical Research
Russian Federation, Saint Petersburg; GatchinaAlexander P. Trashkov
B.P. Konstantinov St. Petersburg Institute of Nuclear Physics
Email: alexander.trashkov@gmail.com
MD, PhD, Head of the Center of Preclinical and Clinical Research
Russian Federation, GatchinaMarina V. Matsko
Clinical Scientific-Practical Center of oncology; Saint Petersburg State University; St. Petersburg Medico-Social Institute
Email: marinamatsko@mail.ru
MD, PhD, Dr. Med. Sci., Senior Researcher; Assistant of the Department of Oncology; Associate Professor of Department of Oncology
Russian Federation, Saint Petersburg; Saint Petersburg; Saint PetersburgBobir I. Safarov
Polenov Russian Neurosurgical Institute — the branch of Almazov National Medical Research Centre
Email: safarovbob@mail.ru
MD, PhD, Head, 4th Department
Russian Federation, Saint PetersburgAndrei G. Vasiliev
St. Petersburg State Pediatric Medical University
Email: avas7@mail.ru
MD, PhD, Dr. Med. Sci., Head of the Pathophysiology Department
Russian Federation, Saint PetersburgReferences
- Gratchev AN, Samoilova DV, Rashidova MA, et al. Tumor associated macrophages: current research and perspectives of clinical use. Advances in Molecular Oncology. 2018;5(4):20–28. (In Russ.) doi: 10.17650/2313-805X-2018-5-4-20-28
- Ponomarev AV. Myeloid suppressor cells: general characteristics. Immunologiya. 2016;37(1):47–50. (In Russ.) doi: 10.18821/0206-4952-2016-37-1-47-50
- Semiglazov VF, Tseluiko AI, Baldueva IA, et al. Immunology and immunotherapy in the complex treatment of malignant tumors. Medical Council. 2021;(4):248–257. (In Russ.) doi: 10.21518/2079-701X-2021-4-248-257
- Trashkov AP, Verlov NA, Artemenko MR, et al. VEGF dynamical changes in laboratory rodents with transplanted experimental tumors of various histological types. Pediatrician (St. Petersburg). 2018;9(3):49–56. (In Russ.) doi: 10.17816/PED9349-56
- Aspelund A, Antila S, Proulx ST, et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med. 2015;212(7):991–999. doi: 10.1084/jem.20142290
- Banks WA. Characteristics of compounds that cross the blood-brain barrier. BMC Neurol. 2009;9:S3. doi: 10.1186/1471-2377-9-S1-S3
- Belykh E, Shaffer KV, Lin C, et al. Blood-Brain Barrier, Blood-Brain Tumor Barrier, and Fluorescence-Guided Neurosurgical Oncology: Delivering Optical Labels to Brain Tumors. Front Oncol. 2020;10:739. doi: 10.3389/fonc.2020.00739
- Berghoff AS, Kiesel B, Widhalm G, et al. Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma. Neuro-Oncology. 2015;17(8): 1064–1075. doi: 10.1093/neuonc/nou307
- Bielamowicz K, Fousek K, Byrd TT, et al. Trivalent CAR T cells overcome interpatient antigenic variability in glioblastoma. Neuro Oncol. 2018;20(4):506–518. doi: 10.1093/neuonc/nox182
- Brown CE, Alizadeh D, Starr R, et al. Regression of Glioblastoma after Chimeric Antigen Receptor T-Cell Therapy. N Engl J Med. 2016;375:2561–2569. doi: 10.1056/NEJMoa1610497
- Burster T, Cartner F, Bulach C, et al. Regulation of MHC I Molecules in Glioblastoma Cells and the Sensitizing of NK Cells. Pharmaceuticals. 2021;14(3):236. doi: 10.3390/ph14030236
- Carare RO, Bernardes-Silva M, Newman TA, et al. Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol Appl Neurobiol. 2008;34(2):131–144. doi: 10.1111/j.1365-2990.2007. 00926.x
- Castriconi R, Cantoni C, Della Chiesa M, et al. Transforming growth factor beta 1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK-mediated killing of dendritic cells. Proc Natl Acad Sci USA. 2003;100(7):4120–4125. doi: 10.1073/pnas.0730640100
- Chen DS, Mellman I. Oncology Meets Immunology: The Cancer-Immunity Cycle. Immunity. 2013;39(1): 1–10. doi: 10.1016/j.immuni.2013.07.012
- Do AS-MS, Amano T, Edwards LA, et al. CD133 mRNA-Loaded Dendritic Cell Vaccination Abrogates Glioma Stem Cell Propagation in Humanized Glioblastoma Mouse Model. Mol Ther Oncolytics. 2020;18:295–303. doi: 10.1016/j.omto.2020.06.019
- Draaisma K, Chatzipli A, Taphoorn M, et al. Molecular evolution of IDH wild-type glioblastomas treated with standard of care affects survival and design of precision medicine trials: a report from the EORTC1542 study. J Clin Oncol. 2020;38(1):81–99. doi: 10.1200/JCO.19.00367
- Dunn GP, Okada H. Principles of immunology and its nuances in the central nervous system. Neuro Oncol. 2015;17(7):3–8. doi: 10.1093/neuon-c/nov175
- Faghfuri E, Faramarzi MA, Nikfar S, Abdollahi M. Nivolumab and pembrolizumab as immune-modulating monoclonal antibodies targeting the PD-1 receptor to treat melanoma. Expert Rev Anticancer Ther. 2015;15(9): 981–993. doi: 10.1586/14737140.2015.1074862
- Goldberg SB, Gettinger SN, Mahajan A, et al. Pembrolizumab for patients with melanoma or non-small-cell lung cancer and untreated brain metastases: early analysis of a non-randomised, open-label, phase 2 trial. Lancet Oncol. 2016;17(7):976–983. doi: 10.1016/S1470-2045(16)30053-5
- Kim H, Zheng S, Amini SS, et al. Whole-genome and multisector exome sequencing of primary and post-treatment glioblastoma reveals patterns of tumor evolution. Genome Res. 2015;25:316–327. doi: 10.1101/gr.180612.114
- Laviron M, Boissonnas A. Ontogeny of Tumor-Associated macrophages. Frontiers in Immunology. Front Immunol. 2019;10:1799. doi: 10.3389/fimmu.2019. 01799
- Liau LM, Ashkan K, Tran DD, et al. First results on survival from a large Phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma. J Transl Med. 2018;16:142. doi: 10.1186/s12967-018-1507-6
- Louveau A, Smirnov I, Keyes TJ, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523:337–341. doi: 10.1038/nature14432
- Majc B, Novak M, Kopitar-Jerala N, et al. Immunotherapy of Glioblastoma: Current Strategies and Challenges in Tumor Model Development. Cells. 2021;10(2):265. doi: 10.3390/cells10020265
- Mastorakos P, McGavern D. The anatomy and immunology of vasculature in the central nervous system. Sci Immunol. 2019;4(37):1–29. doi: 10.1126/sciimmunol. aav0492
- Matsko MV, Imaynitov EN. Predictive role of O6-methylguanine DNA methyltransferase status for the treatment of brain tumors. Mehdipour P, editor. Epigenetics Territory and Cancer. Springer Dordrecht, 2015. P. 251–279. doi: 10.1007/978-94-017-9639-2_9
- Nduom EK, Wei J, Yaghi NK, et al. PD-L1 expression and prognostic impact in glioblastoma. Neuro-Oncology. 2016;18(2):195–205. doi: 10.1093/neuonc/nov172
- Nejo T, Mende A, Okada H. The current state of immunotherapy for primary and secondary brain tumors: similarities and differences. Jpn J Clin Oncol. 2020;50(11):1231–1245. doi: 10.1093/jjco/hyaa164
- Noch EK, Ramakrishna R, Magge R. Challenges in the Treatment of Glioblastoma: Multisystem Mechanisms of Therapeutic Resistance. World Neurosurg. 2018;116:505–517. doi: 10.1016/j.wneu.2018.04.022
- Novak M, Koprivnikar Krajnc M, Hrastar B, et al. CCR5-Mediated Signaling is Involved in Invasion of Glioblastoma Cells in its Microenvironment. Int J Mol Sci. 2020;21(12):4199. doi: 10.3390/ijms21124199
- Omuro A, Vlahovic G, Lim M, et al. Nivolumab with or without ipilimumab in patients with recurrent glioblastoma: results from exploratory phase 1 cohorts of checkmate 143. Neuro-Oncology. 2018;20(5):674–686. doi: 10.1093/neuonc/nox208
- Ostrom QT, Gittleman H, Truitt G, et al. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2011–2015. Neuro-Oncology. 2018;20(4):1–86. doi: 10.1093/neuonc/noy131
- Overacre-Delgoffe AE, Chikina M, Dadey RE, et al. Interferon-γ drives Treg fragility to promote Anti-tumor immunity. Cell. 2017;169(6):1130–1141. doi: 10.1016/j.cell.2017.05.005
- Rampling R, Peoples S, Mulholland PJ, et al. A cancer research UK first time in human phase i trial of IMA950 (novel multipeptide therapeutic vaccine) in patients with newly diagnosed glioblastoma. Clin Cancer Res. 2016;22(19):4776–4785. doi: 10.1158/1078-0432.CCR-16-0506
- Ratnam NM, Gilbert MR, Giles AJ. Immunotherapy in CNS cancers: the role of immune cell trafficking. Neuro Oncol. 2019;21(1):37–46. doi: 10.1093/neuonc/noy084
- Salinas RD, Durgin JS, O’Rourke D. Potential of Glioblastoma — Targeted Chimeric Antigen Receptor (CAR) CAR T Therapy. CNS Drugs. 2020;34:127–145. DOI: 10.1007/ s40263-019-00687-3
- Sampson JH, Heimberger AB, Archer GE, et al. Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol. 2010;28(31):4722–4729. doi: 10.1200/JCO.2010.28.6963
- Sanders S, Debinski W. Challenges to successful implementation of the immune checkpoint inhibitors for treatment of glioblastoma. Int J Mol Sci. 2020;21(8):2759. doi: 10.3390/ijms21082759
- Tawbi HA-H, Forsyth PAJ, Algazi AP, et al. Efficacy and safety of nivolumab (NIVO) plus ipilimumab (IPI) in patients with melanoma (MEL) metastatic to the brain: results of the phase II study CheckMate 204. J Clin Oncol. 2017;35(15):9507. doi: 10.1200/JCO.2017.35.15_suppl.9507
- Wainwright DA, Balyasnikova IV, Chang AL, et al. IDO expression in brain tumors increases the recruitment of regulatory T cells and negatively impacts survival. Clin Cancer Res. 2012;18(22):6110–6121. doi: 10.1158/1078-0432.CCR-12-213
- Wang Q, Hu B, Hu X, et al. Tumor evolution of glioma intrinsic gene expression subtype associates with immunological changes in the microenvironment. Cancer Cell. 2017;32(1):42–56. doi: 10.1016/j.ccell.2017.06.003
- Wang X, Guo G, Guan H, et al. Challenges and potential of PD-1/PD-L1 checkpoint blockade immunotherapy for glioblastoma. J Exp Clin Cancer Res. 2019;38:87. doi: 10.1186/s13046-019-1085-3
- Wen PY, Weller M, Lee EQ, et al. Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro Oncol. 2020;22(8):1073–1113. doi: 10.1093/neuonc/noaa106
Supplementary files
