Role of Transforming Growth Factor-β in Pathogenesis of Pulmonary Fibrosis in COVID-19, Post-COVID Syndrome, Oncological and Chronic Inflammatory Lung Diseases

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

INTRODUCTION: Persistent post-COVID syndrome is the persistent physical, medical and cognitive sequelae of coronavirus disease 2019 (COVID-19), including persistent immunosuppression, pulmonary, cardiac and vascular fibrosis which lead to increased mortality and impair the quality of life of patients.

АIM: To analyze the completed foreign and domestic studies on the pathophysiology of transforming growth factor-β (TGF-β) in conditions of COVID-19, post-COVID syndrome, oncological and chronic inflammatory lung diseases.

Mast cells are among the main producers of inflammatory cytokines in COVID-19, their stimulation leads to the release of many proinflammatory cytokines, such as interleukin 1β, tumor necrosis factor α, interleukin 6, and also TGF-β. The basis of the pathogenesis of post-COVID syndrome is the overexpression of TGF-β leading to a prolonged state of immunosuppression and fibrosis. TGF-β acts as a tumor suppressor inhibiting proliferation and inducing apoptosis in the early stages of oncogenesis; plays an important role in most cellular biological processes leading to remodeling of the airway structures; is involved in epithelial changes, in subepithelial fibrosis, remodeling of smooth muscle of airways and in microvascular changes; induces resistance to glucocorticosteroids; stimulates the production of blood coagulation factor XII, thereby leading to development of potentially fatal complications, such as pulmonary embolism and ischemic stroke.

CONCLUSION: In this literature review, a structured analysis of a multicomponent role of TGF-β in the pathogenesis of post-COVID syndrome, pulmonary fibrosis in COVID-19, tumors of respiratory system, chronic obstructive pulmonary disease, bronchial asthma, is given. A possible use of TGF-β as a biomarker of severe and moderate degree of COVID-19 is substantiated.

About the authors

Andrey V. Budnevsky

N. N. Burdenko Voronezh State Medical University

Email: budnev@list.ru
ORCID iD: 0000-0002-1171-2746
SPIN-code: 7381-0612

MD, Dr. Sci. (Med.), Professor

Russian Federation, Voronezh

Sergey N. Avdeev

I. M. Sechenov First Moscow State Medical University (Sechenov University)

Email: serg_avdeev@list.ru
ORCID iD: 0000-0002-5999-2150
SPIN-code: 1645-5524

MD, Dr. Sci. (Med.), Professor

Russian Federation, Moscow

Evgeny S. Ovsyannikov

N. N. Burdenko Voronezh State Medical University

Email: ovses@yandex.ru
ORCID iD: 0000-0002-8545-6255
SPIN-code: 7999-0433

MD, Dr. Sci. (Med.), Associate Professor

Russian Federation, Voronezh

Viktoria V. Shishkina

N. N. Burdenko Voronezh State Medical University

Email: 4128069@gmail.ru
ORCID iD: 0000-0001-9185-4578
SPIN-code: 9339-7794

MD, Cand. Sci. (Med.)

Russian Federation, Voronezh

Nadezhda G. Alekseeva

N. N. Burdenko Voronezh State Medical University

Author for correspondence.
Email: nadya.alekseva@mail.ru
ORCID iD: 0000-0002-3357-9384
SPIN-code: 2284-2725
Russian Federation, Voronezh

Inna M. Perveeva

N. N. Burdenko Voronezh State Medical University; Voronezh Regional Clinical Hospital No. 1

Email: perveeva.inna@yandex.ru
ORCID iD: 0000-0002-5712-9302
SPIN-code: 5995-6533

MD, Cand. Sci. (Med.)

Russian Federation, Voronezh; Voronezh

Avag G. Kitoyan

N. N. Burdenko Voronezh State Medical University

Email: kitoyan9812@gmail.com
ORCID iD: 0009-0003-7869-5519
SPIN-code: 6865-4727
Russian Federation, Voronezh

Lyubov N. Antakova

N. N. Burdenko Voronezh State Medical University

Email: tsvn@bk.ru
ORCID iD: 0000-0001-5212-1005
SPIN-code: 3936-3381

Cand. Sci. (Biology)

Russian Federation, Voronezh

Anastasia S. Yurchenko

N. N. Burdenko Voronezh State Medical University

Email: yurch.01@mail.ru
ORCID iD: 0000-0002-0880-5562
SPIN-code: 3045-5502
Russian Federation, Voronezh

References

  1. Oronsky B, Larson C, Hammond TC, et al. A Review of Persistent Post-COVID Syndrome (PPCS). Clin Rev Allergy immunol. 2023;64(1): 66–74. doi: 10.1007/s12016-021-08848-3
  2. Walkey AJ, Summer R, Ho V, et al. Acute respiratory distress syndrome: epidemiology and management approaches. Clin Epidemiol. 2012;4:159–69. doi: 10.2147/clep.s288000
  3. Williams AE, Chambers RC. The mercurial nature of neutrophils: still an enigma in ARDS?. Am J Physiol Lung Cell Mol Physiol. 2014;306(3):L217–30. doi: 10.1152/ajplung.00311.2013
  4. Burnham EL, Janssen WJ, Riches DW, et al. The fibroproliferative response in acute respiratory distress syndrome: mechanisms and clinical significance. Eur Respir J. 2014;43(1):276–85. doi: 10.1183/09031936.00196412
  5. Wismans LV, Lopuhaä B, de Koning W, et al. Increase of mast cells in COVID-19 pneumonia may contribute to pulmonary fibrosis and thrombosis. Histopathology. 2023;82(3):407–19. doi: 10.1111/his.14838
  6. David CJ, Massagué J. Contextual determinants of TGFβ action in development, immunity and cancer. Nat Rev Mol Cell Biol. 2018;19(7): 419–35. doi: 10.1038/s41580-018-0007-0
  7. Saito A, Horie M, Nagase T. TGF-β Signaling in Lung Health and Disease. Int J Mol Sci. 2018;19(8):2460. doi: 10.3390/ijms190824600
  8. Shi M, Zhu J, Wang R, et al. Latent TGF-β structure and activation. Nature. 2011;474(7351):343–9. doi: 10.1038/nature10152
  9. Gordon KJ, Blobe GC. Role of transforming growth factor-beta superfamily signaling pathways in human disease. Biochim Biophys Acta. 2008;1782(4):197–228. doi: 10.1016/j.bbadis.2008.01.006
  10. Kanzaki T, Olofsson A, Morén A, et al. TGF-beta 1 binding protein: a component of the large latent complex of TGF-beta 1 with multiple repeat sequences. Cell. 1990;61(6):1051–61. doi: 10.1016/0092-8674(90)90069-q
  11. Minton K. Extracellular matrix: Preconditioning the ECM for fibrosis. Nat Rev Mol Cell Biol. 2014;15(12):766–7. doi: 10.1038/nrm3906
  12. Xu P, Liu J, Derynck R. Post-translational regulation of TGF-β receptor and Smad signaling. FEBS Lett. 2012;586(14):1871–84. doi: 10.1016/j.febslet.2012.05.010
  13. Massagué J. TGFβ signalling in context. Nat Rev Mol Cell Biol. 2012;13(10):616–30. doi: 10.1038/nrm3434
  14. Muppala S, Xiao R, Krukovets I, et al. Thrombospondin-4 mediates TGF-β-induced angiogenesis. Oncogene. 2017;36(36):5189–98. doi: 10.1038/onc.2017.140
  15. Robertson IB, Horiguchi M, Zilberberg L, et al. Latent TGF-β-binding proteins. Matrix Biol. 2015;47:44–53. doi: 10.1016/j.matbio.2015.05.005
  16. Moustakas A, Heldin C–H. Non-Smad TGF-beta signals. J Cell Sci. 2005;118(Pt 16):3573–84. doi: 10.1242/jcs.02554
  17. Galvão F Jr, Grokoski KC, da Silva BB, et al. The amyloid precursor protein (APP) processing as a biological link between Alzheimer's disease and cancer. Ageing Res Rev. 2019;49:83–91. doi: 10.1016/j.arr.2018.11.007
  18. Johnson HE, Toettcher JE. Signaling Dynamics Control Cell Fate in the Early Drosophila Embryo. Dev Cell. 2019;48(3):361–70.e3. doi: 10.1016/j.devcel.2019.01.009
  19. Böhmer RM. IL-3-dependent early erythropoiesis is stimulated by autocrine transforming growth factor beta. Stem Cells. 2004;22(2): 216–24. doi: 10.1634/stemcells.22-2-216
  20. Jinnin M, Ihn H, Tamaki K. Characterization of SIS3, a novel specific inhibitor of Smad3, and its effect on transforming growth factor-beta1-induced extracellular matrix expression. Mol Pharmacol. 2006;69(2):597–607. doi: 10.1124/mol.105.017483
  21. Ota K, Quint P, Weivoda MM, et al. Transforming growth factor beta 1 induces CXCL16 and leukemia inhibitory factor expression in osteoclasts to modulate migration of osteoblast progenitors. Bone. 2013;57(1):68–75. doi: 10.1016/j.bone.2013.07.023
  22. Batra V, Musani AI, Hastie AT, et al. Bronchoalveolar lavage fluid concentrations of transforming growth factor (TGF)-beta1, TGF-beta2, interleukin (IL)-4 and IL-13 after segmental allergen challenge and their effects on alpha-smooth muscle actin and collagen III synthesis by primary human lung fibroblasts. Clin Exp Allergy. 2004;34(3): 437–44. doi: 10.1111/j.1365-2222.2004.01885.x
  23. Chiang C–H, Chuang C–H, Liu S–L. Transforming growth factor-β1 and tumor necrosis factor-α are associated with clinical severity and airflow limitation of COPD in an additive manner. Lung. 2014;192(1): 95–102. doi: 10.1007/s00408-013-9520-2
  24. Hinz B. The extracellular matrix and transforming growth factor-β1: Tale of a strained relationship. Matrix Biol. 2015;47:54–65. doi: 10.1016/j.matbio.2015.05.006
  25. Brown SD, Baxter KM, Stephenson ST, et al. Airway TGF-β1 and oxidant stress in children with severe asthma: association with airflow limitation. J Allergy Clin Immunol. 2012;129(2):388–96.e1-8. doi: 10.1016/j.jaci.2011.11.037
  26. Harris WT, Muhlebach MS, Oster RA, et al. Transforming growth factor-beta(1) in bronchoalveolar lavage fluid from children with cystic fibrosis. Pediatr Pulmonol. 2009;44(11):1057–64. doi: 10.1002/ppul.21079
  27. Thomas BJ, Kan-O K, Loveland KL, et al. In the Shadow of Fibrosis: Innate Immune Suppression Mediated by Transforming Growth Factor-β. Am J Respir Cell Mol Biol. 2016;55(6):759–66. doi: 10.1165/rcmb.2016-0248ps
  28. Matsumoto K, Inoue H. Viral infections in asthma and COPD. Respir Investig. 2014;52(2):92–100. doi: 10.1016/j.resinv.2013.08.005
  29. Xia YC, Radwan A, Keenan CR, et al. Glucocorticoid Insensitivity in Virally Infected Airway Epithelial Cells Is Dependent on Transforming Growth Factor-β Activity. PLoS Pathog. 2017;13(1):e1006138. doi: 10.1371/journal.ppat.1006138
  30. Korkut A, Zaidi S, Kanchi RS, et al. A Pan-Cancer Analysis Reveals High-Frequency Genetic Alterations in Mediators of Signaling by the TGF-β Superfamily. Cell Syst. 2018;7(4):422–37.e7. doi: 10.1016/j.cels.2018.08.010
  31. Cortez VS, Ulland TK, Cervantes–Barragan L, et al. SMAD4 impedes the conversion of NK cells into ILC1-like cells by curtailing non-canonical TGF-β signaling. Nat Immunol. 2017;18(9):995–1003. doi: 10.1038/ni.3809
  32. Wang Y, Chu J, Yi P, et al. SMAD4 promotes TGF-β-independent NK cell homeostasis and maturation and antitumor immunity. J Clin Invest. 2018;128(11):5123–36. doi: 10.1172/jci121227
  33. Frey B, Rückert M, Deloch L, et al. Immunomodulation by ionizing radiation-impact for design of radio-immunotherapies and for treatment of inflammatory diseases. Immunol Rev. 2017;280(1):231–48. doi: 10.1111/imr.12572
  34. Wang E–Y, Chen H, Sun B–Q, et al. Serum levels of the IgA isotype switch factor TGF-β1 are elevated in patients with COVID-19. FEBS Lett. 2021;595(13):1819–24. doi: 10.1002/1873-3468.14104
  35. Chen W. A potential treatment of COVID-19 with TGF-β blockade. Int J Biol Sci. 2020;16(11):1954–5. doi: 10.7150/ijbs.46891
  36. Budnevsky AV, Ovsyannikov ES, Shishkina VV, et al. Possible Unexplored Aspects of Covid-19 Pathogenesis: The Role of Carboxypeptidase A3. International Journal of Biomedicine. 2022;12(2):179–82. doi: 10.21103/Article12(2)_RA1
  37. Budnevsky AV, Ovsyannikov ES, Tokmachev RE, et al. The role of mast cells in the pathogenesis of COVID-19. Pakistan Journal of Medical & Health Sciences. 2022;16(06):422–4. doi: 10.53350/pjmhs22166422
  38. Delpino MV, Quarleri J. SARS-CoV-2 Pathogenesis: Imbalance in the Renin-Angiotensin System Favors Lung Fibrosis. Front Cell Infect Microbiol. 2020;10:340. doi: 10.3389/fcimb.2020.00340
  39. Ongchai S, Somnoo O, Kongdang P, et al. TGF-β1 upregulates the expression of hyaluronan synthase 2 and hyaluronan synthesis in culture models of equine articular chondrocytes. J Vet Sci. 2018; 19(6):735–43. doi: 10.4142/jvs.2018.19.6.735
  40. Shi Y, Wang Y, Shao C, et al. COVID-19 infection: the perspectives on immune responses. Cell Death Differ. 2020;27(5):1451–4. doi: 10.1038/s41418-020-0530-3
  41. Debuc B, Smadja DM. Is COVID-19 a New Hematologic Disease? Stem Cell Rev Rep. 2021;17(1):4–8. doi: 10.1007/s12015-020-09987-4
  42. Magro C, Mulvey JJ, Berlin D, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: A report of five cases. Transl Res. 2020;220:1–13. doi: 10.1016/j.trsl.2020.04.007
  43. Lodigiani C, Iapichino G, Carenzo L, et al. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thromb Res. 2020;191:9–14. doi: 10.1016/j.thromres.2020.04.024
  44. Renné T, Stavrou EX. Roles of Factor XII in Innate Immunity. Front Immunol. 2019;10:2011. doi: 10.3389/fimmu.2019.02011
  45. Göbel K, Eichler S, Wiendl H, et al. The Coagulation Factors Fibrinogen, Thrombin, and Factor XII in Inflammatory Disorders — A Systematic Review. Front Immunol. 2018;9:1731. doi: 10.3389/fimmu.2018.01731
  46. Zhou F, Yu T, Du R, et al Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2022;10:1054–62. doi: 10.1016/s0140-6736(20)30566-3
  47. Han H, Yang L, Liu R, et al. Prominent changes in blood coagulation of patients with SARS-CoV-2 infection. Clin Chem Lab Med. 2020;58(7):1116–20. doi: 10.1515/cclm-2020-0188
  48. Rovina N, Akinosoglou K, Eugen–Olsen J, et al. Soluble urokinase plasminogen activator receptor (suPAR) as an early predictor of severe respiratory failure in patients with COVID-19 pneumonia. Crit Care. 2020;24(1):187. doi: 10.1186/s13054-020-02897-4
  49. Overed–Sayer C, Rapley L, Mustelin T, et al. Are mast cells instrumental for fibrotic diseases? Front Pharmacol. 2014;4:174. doi: 10.3389/fphar.2013.00174
  50. Budnevsky AV, Avdeev SN, Ovsyannikov ES, et al. The role of mast cells and their proteases in lung damage associated with COVID-19. Pulmonologiya. 2023;33(1):17–26. (In Russ). doi: 10.18093/0869-0189-2023-33-1-17-26
  51. Budnevsky AV, Avdeev SN, Kosanovic D, et al. Role of mast cells in the pathogenesis of severe lung damage in COVID-19 patients. Respir Res. 2022;23(1):371. doi: 10.1186/s12931-022-02284-3

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Role of TGF-β in the pathogenesis of lung fibrosis in COVID-19 and post-COVID syndrome (authors’ scheme, modified by [27]).

Download (78KB)

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).