Ricardo Miledi - an outstanding neurophysiologist of 20th-21st centuries (1927-2017)
- Authors: Bregestovski PD1,2
-
Affiliations:
- Kazan State Medical University
- Institut de Neurosciences des Systèmes, Aix-Marseille University
- Issue: Vol 99, No 3 (2018)
- Pages: 531-536
- Section: History of medicine
- URL: https://ogarev-online.ru/kazanmedj/article/view/8913
- DOI: https://doi.org/10.17816/KMJ2018-531
- ID: 8913
Cite item
Full Text
Abstract
Ricardo Miledi (16.09.1927-18.12.2017) is an outstanding neurophysiologist and biophysicist who made a great contribution to the study of synaptic transmission functions. He proved the key role of сalcium ions in the release of neuromediators, developed methods of receptor expression and membrane fragments integration into large oocytes that provided huge possibilities for thousands of researchers to study subtle mechanisms of transmembrane proteins function in norm and pathology. Ricardo Miledi received his MD degree in the National Autonomous University of Mexico and in 1954 he defensed his dissertation on the study of electrical nature of cardiac fibrillation in the National Institute of Cardiology (Mexico). In 1956-1958 he underwent training in Canberra Health Research Institute (Australia) in the laboratory headed by John Eccles (Nobel Prize 1963). In 1958 R. Miledi was invited to the Department of biophysics of University College London where in cooperation with Bernard Katz (Nobel Prize 1970) made a number of important discoveries in the analysis of acetylcholine receptor expression in denervated mucle; determination of the role of calcium in neuromediators release; analysis of membrane noise on neuromediator application to neuromuscular synapses; study of the effect of antibodies from patients with myasthenia gravis on neuromuscular transmission. In the early 1980s Ricardo Miledi implemented the method of functional expression in Xenopus frog oocytes of receptors and ion channels from messenger ribonucleic acid (mRNA). His heritage running the gamut is presented in more than 500 articles.
Full Text
##article.viewOnOriginalSite##About the authors
P D Bregestovski
Kazan State Medical University; Institut de Neurosciences des Systèmes, Aix-Marseille University
Author for correspondence.
Email: pbreges@gmail.com
Kazan, Russia; Kazan, Russia
References
- Katz B., Miledi R. The effect of calcium on acetylcholine release from motor nerve terminals. Proc. R. Soc. Lond. B. 1965; 161: 496–503. doi: 10.1098/rspb.1965.0017.
- Katz B., Miledi R. Input–output relation of a single synapse. Nature. 1966; 212: 1242–1245. doi: 10.1038/2121242a0.
- Miledi R., Slater C.R. The action of calcium on neuronal synapses in the squid. J. Physiol. 1966; 184: 473–498. doi: 10.1113/jphysiol.1966.sp007927.
- Miledi R. Acetylcholine sensitivity of partially denervated frog muscle fibres. J. Physiol. 1959; 147: 45–46.
- Miledi R. The acetylcholine sensitivity of frog muscle fibres after complete or partial denervation. J. Physiol. 1960; 151: 1–23. PMID: 14422356.
- Ginetzinskiy A.G., Shamarina N.M. The tonomotor phenomenon in denervated muscle. Uspekhi sovremennoy biologii. 1942; 15: 283–294. (In Russ.)
- Kuffler S.W. Specific excitability of the end-plate region in normal and denervated muscle. J. Neurophysiol. 1943; 6: 99–110. doi: 10.1152/jn.1943.6.2.99.
- Miledi R. Junctional and extrajunctional acetylcholine receptors in skeletal muscle fibres. J. Physiol. 1960; 151: 24–30. PMID: 14422355.
- Mishina M., Takai T., Imoto K. et al. Molecular distinction between fetal and adult forms of muscle acetylcholine receptor. Nature. 1986; 321: 406–411. doi: 10.1038/321406a0.
- Katz B., Miledi R. The statistical nature of the acetylcholine potential and its molecular components. J. Physiol. 1972; 224: 665–699. doi: 10.1113/jphysiol.1972.sp009918.
- Bregestovski P.D., Chailachjan L.M., Dunin-Barkovski V.L. et al. Effect of temperature on the equilibrium endplate potential. Nature. 1972; 236: 453–454. doi: 10.1038/236453a0.
- Katz B., Miledi R. The characteristics of ‘end‐plate noise’ produced by different depolarizing drugs. J. Physiol. 1973; 230: 707–717. doi: 10.1113/jphysiol.1973.sp010213.
- Neher E., Sakmann B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature. 1976; 260: 799–802. doi: 10.1038/260799a0.
- Bregestovski P.D., Miledi R., Parker I. Calcium conductance of acetylcholine-induced endplate channels. Nature. 1979; 279: 638–639. doi: 10.1038/279638a0.
- Ito Y., Miledi R., Vincent A. Transmitter release induced by a 'factor' in rabbit serum. Proc. R. Soc. Lond. B. Biol. Sci. 1974; 187: 235–241. doi: 10.1098/rspb.1974.0072.
- Green D.P., Miledi R., Vincent A. Neuromuscular transmission after immunization against acetylcholine receptors. Proc. R. Soc. Lond. B. 1975; 189: 57–68. doi: 10.1098/rspb.1975.0041.
- Molenaar P.C., Polak R.L., Miledi R. et al. Acetylcholine in intercostal muscle from myasthenia gravis patients and in rat diaphragm after blockade of acetylcholine receptors. Progr. Brain Res. 1979; 49: 449–458. doi: 10.1016/S0079-6123(08)64657-9.
- Katz B., Miledi R. Transmitter leakage from motor nerve endings. Proc. R. Soc. Lond. B. Biol. Sci. 1977; 196: 59–72. doi: 10.1098/rspb.1977.0029.
- Nikolsky E.E., Voronin V.A., Vyskocil F. Kinetic differences in the effect of calcium on quantal and non-quantal acetylcholine release at the murine diaphragm. Neurosci. Lett. 1991; 123: 192–194. doi: 10.1016/0304-3940(91)90928-M.
- Nikolsky E.E., Oranska T.I., Vyskocil F. Non-quantal acetylcholine release after cholinesterase inhibition in vivo. Physiol. Res. 1992; 41: 333–334. PMID: 1286102.
- Barnard E.A., Miledi R., Sumikawa K. Translation of exogenous messenger RNA coding for nicotinic acetylcholine receptors produces functional receptors in Xenopus oocytes. Proc. R. Soc. Lond. B. 1982; 215: 241–246. doi: 10.1098/rspb.1982.0040.
- Miledi R., Parker I., Sumikawa K. Synthesis of chick brain GABA receptors by frog oocytes. Proc. R. Soc. Lond. B. 1982; 216: 509–515. doi: 10.1098/rspb.1982.0089.
- Gurdon J.B., Lane C.D., Woodland H.R., Marbaix G. Use of frog eggs and oocytes for the study of messenger RNA and its translation in living cells. Nature. 1971; 233: 177–182. doi: 10.1038/233177a0.
- Sumikawa K., Parker I., Miledi R. Partial purification and functional expression of brain mRNAs coding for neurotransmitter receptors and voltage-operated channels. Proc. Nat. Acad. Sci. USA. 1984; 81: 7994–7998. doi: 10.1073/pnas.81.24.7994.
- Ragozzino D., Palma E., Di Angelantonio S. et al. Rundown of GABA type A receptors is a dysfunction associated with human drug-resistant mesial temporal lobe epilepsy. Proc Natl Acad Sci USA. 2005; 102: 15219–15223. doi: 10.1073/pnas.0507339102.
- Palma E., Ragozzino D., Angelantonio S.D. et al. The antiepileptic drug levetiracetam stabilizes the human epileptic GABAA receptors upon repetitive activation. Epilepsia. 2007; 48 (10): 1842–1849. doi: 10.1111/j.1528-1167.2007.01131.x.
- Limon A., Reyes-Ruiz J.M., Miledi R. Microtransplantation of neurotransmitter receptors from postmortem autistic brains to Xenopus oocytes. Proc. National Acad. Sci. 2008; 105 (31): 10 973–10 977. doi: 10.1073/pnas.0804386105.
- Miledi R., Palma E., Eusebi F. Microtransplantation of neurotransmitter receptors from cells to Xenopus oocyte membranes: new procedure for ion channel studies. Methods Mol. Biol. 2006; 322: 347–355. doi: 10.1007/978-1-59745-000-3_24.
- Eusebi F., Palma E., Amici M., Miledi R. Microtransplantation of ligand-gated receptor-channels from fresh or frozen nervous tissue into Xenopus oocytes: a potent tool for expanding functional information. Progress in Neurobiol. 2009; 88 (1): 32–40. doi: 10.1016/j.pneurobio.2009.01.008.
Supplementary files
