Генная терапия в офтальмологии: новые горизонты в лечении глазных заболеваний

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Глазные заболевания могут значительно снижать качество жизни пациентов вследствие уменьшения остроты зрения. Ряд наследственных и приобретённых заболеваний органа зрения имеет лишь консервативные и поддерживающие методы лечения, не устраняющие этиологический фактор. Одним из потенциальных подходов к решению данной проблемы является генная терапия, демонстрирующая обнадёживающие результаты в ряде клинических исследований, однако требующая дальнейшего изучения в связи с ограниченной доказательной базой и возможными долгосрочными рисками. Воздействуя на определённые участки дефектных генов, данный терапевтический подход может способствовать замедлению или даже обратному развитию прогрессирования глазных заболеваний. В качестве векторов доставки особый интерес представляет использование аденоассоциированных вирусов, продемонстрировавших высокую эффективность и минимальный риск побочных эффектов. На сегодняшний день Управлением по санитарному надзору за качеством пищевых продуктов и медикаментов США зарегистрирован лишь один генотерапевтический препарат для терапии наследственной дистрофии сетчатки, вызванной патогенными вариантами гена RPE65. Проводимые доклинические и клинические испытания генной терапии заболеваний зрительной системы способствуют развитию данной области медицины и поиску новых подходов к лечению патологий, не поддающихся полному восстановлению функций повреждённых тканей и органов. В обзоре рассмотрены концепция генной терапии и её применение при патологиях зрительной системы, а также представлены последние научные достижения и их потенциальное влияние на состояние зрительных функций. Особое внимание уделено анализу клинических испытаний, безопасности, эффективности и перспективности персонализированной терапии, основанной на молекулярно-генетических особенностях пациентов. Кроме того, освещены текущие барьеры внедрения генной терапии в клиническую практику и основные направления дальнейших исследований.

Об авторах

Чулпан Булатовна Харисова

Казанский (Приволжский) федеральный университет

Email: harisovachulpan@gmail.com
ORCID iD: 0009-0001-0326-3450
SPIN-код: 7165-8591

аспирант, младший научный сотрудник, НИЛ OpenLab Генные и клеточные технологии

Россия, Казань

Кристина Викторовна Китаева

Казанский (Приволжский) федеральный университет

Email: KrVKitaeva@kpfu.ru
ORCID iD: 0000-0002-0704-8141
SPIN-код: 6937-6311

канд. биол. наук, доцент, каф. генетики; старший научный сотрудник, НИЛ OpenLab Генные и клеточные технологии

Россия, Казань

Валерия Владимировна Соловьева

Казанский (Приволжский) федеральный университет

Email: VaVSoloveva@kpfu.ru
ORCID iD: 0000-0002-8776-3662
SPIN-код: 8796-3760

канд. биол. наук, доцент, каф. генетики; ведущий научный сотрудник, НИЛ OpenLab Генные и клеточные технологии

Россия, Казань

Рустэм Фаисович Ахметшин

Казанский государственный медицинский университет

Email: rustemfa@mail.ru
ORCID iD: 0000-0003-4633-093X
SPIN-код: 2030-0194

канд. мед. наук, доцент, каф. офтальмологии

Россия, Казань

Альберт Анатольевич Ризванов

Казанский (Приволжский) федеральный университет; Академия наук Республики Татарстан

Автор, ответственный за переписку.
Email: rizvanov@gmail.com
ORCID iD: 0000-0002-9427-5739
SPIN-код: 7031-5996

д-р биол. наук, профессор, главный научный сотрудник, НИЛ OpenLab Генные и клеточные технологии

Россия, Казань; Казань

Список литературы

  1. Kamińska A, Pinkas J, Wrześniewska-Wal I, et al. Awareness of Common Eye Diseases and Their Risk Factors-A Nationwide Cross-Sectional Survey among Adults in Poland. Int J Environ Res Public Health. 2023;20(4):3594. doi: 10.3390/ijerph20043594 EDN: ALLQZW
  2. Kelly E, Wen Q, Haddad D, O'Banion J. Effects of an Aging Population and Racial Demographics on Eye Disease Prevalence: Projections for Georgia Through 2050. Am J Ophthalmol. 2020;210:35–40. doi: 10.1016/j.ajo.2019.10.028 EDN: WAYJIW
  3. Ghoraba HH, Akhavanrezayat A, Karaca I, et al. Ocular Gene Therapy: A Literature Review with Special Focus on Immune and Inflammatory Responses. Clin Ophthalmol. 2022;16:1753–1771. doi: 10.2147/OPTH.S364200 EDN: UUKEDG
  4. Russell S, Bennett J, Wellman JA, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet. 2017;390(10097):849–860. doi: 10.1016/S0140-6736(17)31868-8
  5. Bouquet C, Vignal Clermont C, Galy A, et al. Immune Response and Intraocular Inflammation in Patients With Leber Hereditary Optic Neuropathy Treated With Intravitreal Injection of Recombinant Adeno-Associated Virus 2 Carrying the ND4 Gene: A Secondary Analysis of a Phase 1/2 Clinical Trial. JAMA Ophthalmol. 2019;137(4):399–406. doi: 10.1001/jamaophthalmol.2018.6902
  6. Cehajic-Kapetanovic J, Xue K, Martinez-Fernandez de la Camara C, et al. Initial results from a first-in-human gene therapy trial on X-linked retinitis pigmentosa caused by mutations in RPGR. Nat Med. 2020;26(3):354–359. doi: 10.1038/s41591-020-0763-1 EDN: XJLKCX
  7. Mishra A, Vijayasarathy C, Cukras CA, et al. Immune function in X-linked retinoschisis subjects in an AAV8-RS1 phase I/IIa gene therapy trial. Mol Ther. 2021;29(6):2030–2040. doi: 10.1016/j.ymthe.2021.02.013 EDN: PGHEBM
  8. Prado DA, Acosta-Acero M, Maldonado RS. Gene therapy beyond luxturna: a new horizon of the treatment for inherited retinal disease. Curr Opin Ophthalmol. 2020;31(3):147–154. doi: 10.1097/ICU.0000000000000660 EDN: DPETPB
  9. Hordeaux J, Lamontagne RJ, Song C, et al. High-dose systemic adeno-associated virus vector administration causes liver and sinusoidal endothelial cell injury. Mol Ther. 2024;32(4):952–968. doi: 10.1016/j.ymthe.2024.02.002 EDN: CSZBAS
  10. Gaudana R, Ananthula HK, Parenky A, Mitra AK. Ocular drug delivery. AAPS J. 2010;12(3):348–360. doi: 10.1208/s12248-010-9183-3 EDN: XNUSMS
  11. Bitoque DB, Fernandes CF, Oliveira AML, Silva GA. Strategies to Improve the Targeting of Retinal Cells by Non-Viral Gene Therapy Vectors. Front Drug Deliv. 2022;2. doi: 10.3389/fddev.2022.899260 EDN: EVNQDI
  12. Kansara V, Muya L, Wan CR, Ciulla TA. Suprachoroidal Delivery of Viral and Nonviral Gene Therapy for Retinal Diseases. J Ocul Pharmacol Ther. 2020;36(6):384–392. doi: 10.1089/jop.2019.0126 EDN: WSHUQS
  13. Irigoyen C, Amenabar Alonso A, Sanchez-Molina J, et al. Subretinal Injection Techniques for Retinal Disease: A Review. J Clin Med. 2022;11(16):4717. doi: 10.3390/jcm11164717 EDN: FCRSZD
  14. Ameri H. Prospect of retinal gene therapy following commercialization of voretigene neparvovec-rzyl for retinal dystrophy mediated by RPE65 mutation. J Curr Ophthalmol. 2018;30(1):1–2. doi: 10.1016/j.joco.2018.01.006
  15. Ghoraba HH, Akhavanrezayat A, Karaca I, et al. Ocular Gene Therapy: A Literature Review with Special Focus on Immune and Inflammatory Responses. Clin Ophthalmol. 2022;16:1753–1771. doi: 10.2147/OPTH.S364200 EDN: UUKEDG
  16. Lim Y, Campochiaro PA, Green JJ. Suprachoroidal Delivery of Viral and Nonviral Vectors for Treatment of Retinal and Choroidal Vascular Diseases. AmJ Ophthalmol. 2025;277:518–533. doi: 10.1016/j.ajo.2024.12.010
  17. Anderson WJ, da Cruz NFS, Lima LH, et al. Mechanisms of sterile inflammation after intravitreal injection of antiangiogenic drugs: a narrative review. Int J Retina Vitreous. 2021;7(1):37. doi: 10.1186/s40942-021-00307-7 EDN: AJAFDQ
  18. Jaffe GJ, Westby K, Csaky KG, et al. C5 Inhibitor Avacincaptad Pegol for Geographic Atrophy Due to Age-Related Macular Degeneration: A Randomized Pivotal Phase 2/3 Trial. Ophthalmology. 2021;128(4):576–586. doi: 10.1016/j.ophtha.2020.08.027 EDN: VSEPIN
  19. Wu KY, Fujioka JK, Gholamian T, et al. Suprachoroidal Injection: A Novel Approach for Targeted Drug Delivery. Pharmaceuticals. 2023;16(9):1241. doi: 10.3390/ph16091241 EDN: GORUEZ
  20. Koponen S, Kokki E, Kinnunen K, Ylä-Herttuala S. Viral-Vector-Delivered Anti-Angiogenic Therapies to the Eye. Pharmaceutics. 2021;13(2):219. doi: 10.3390/pharmaceutics13020219 EDN: JXJBKA
  21. Song L, Llanga T, Conatser LM, et al. Serotype survey of AAV gene delivery via subconjunctival injection in mice. Gene Ther. 2018;25(6):402–414. doi: 10.1038/s41434-018-0035-6 EDN: DQFDBW
  22. Subrizi A, Del Amo EM, Korzhikov-Vlakh V, et al. Design principles of ocular drug delivery systems: importance of drug payload, release rate, and material properties. Drug Discov Today. 2019;24(8):1446–1457. doi: 10.1016/j.drudis.2019.02.001 EDN: SICYFL
  23. Gehl J. Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol Scand. 2003;177(4):437–447. doi: 10.1046/j.1365-201X.2003.01093.x EDN: LXMQJX
  24. Bitoque DB, Fernandes CF, Oliveira AML, Silva GA. Strategies to Improve the Targeting of Retinal Cells by Non-Viral Gene Therapy Vectors. Front Drug Deliv. 2022;2. doi: 10.3389/fddev.2022.899260 EDN: EVNQDI
  25. Shamsnajafabadi H, MacLaren RE, Cehajic-Kapetanovic J. Current and Future Landscape in Genetic Therapies for Leber Hereditary Optic Neuropathy. Cells. 2023;12(15):2013. doi: 10.3390/cells12152013 EDN: LEMIWX
  26. Catarino CB, von Livonius B, Priglinger C, et al. Real-World Clinical Experience With Idebenone in the Treatment of Leber Hereditary Optic Neuropathy. J Neuroophthalmol. 2020;40(4):558–565. doi: 10.1097/WNO.0000000000001023 EDN: QXZNCU
  27. Zhang X, Jones D, Gonzalez-Lima F. A Potential Model for Leber's Hereditary Optic Neuropathy: Rotenone Effects on Retinal Ganglion Cells. IOVS. ARVO Journals. 2002;43(13). Available from: https://iovs.arvojournals.org/article.aspx?articleid = 2417453
  28. Russell SR, Drack AV, Cideciyan AV, et al. Intravitreal antisense oligonucleotide sepofarsen in Leber congenital amaurosis type 10: a phase 1b/2 trial. Nat Med. 2022;28(5):1014–1021. doi: 10.1038/s41591-022-01755-w EDN: HLPJWH
  29. Weber AJ, Harman CD, Viswanathan S. Effects of optic nerve injury, glaucoma, and neuroprotection on the survival, structure, and function of ganglion cells in the mammalian retina. J Physiol. 2008;586(18):4393–4400. doi: 10.1113/jphysiol.2008.156729
  30. Wu H, Chen Q. Hypoxia activation of mitophagy and its role in disease pathogenesis. Antioxid Redox Signal. 2015;22(12):1032–1046. doi: 10.1089/ars.2014.6204 EDN: UOQFEP
  31. Macanianand J, Sharma SC. Pathogenesis of Glaucoma. Encyclopedia. 2022;2(4):1803–1810. doi: 10.3390/encyclopedia2040124
  32. He M, Rong R, Ji D, Xia X. From Bench to Bed: The Current Genome Editing Therapies for Glaucoma. Front Cell Dev Biol. 2022;10. doi: 10.3389/fcell.2022.879957 EDN: GKCFSU
  33. Gharahkhani P, Jorgenson E, Hysi P, et al. Genome-wide meta-analysis identifies 127 open-angle glaucoma loci with consistent effect across ancestries. Nat Commun. 2021;12(1):1258. doi: 10.1038/s41467-020-20851-4 EDN: GPLMWF
  34. Khor CC, Do T, Jia H, et al. Genome-wide association study identifies five new susceptibility loci for primary angle closure glaucoma. Nat Genet. 2016;48(5):556–562. doi: 10.1038/ng.3540 EDN: WPNSCT
  35. Souma T, Tompson SW, Thomson BR, et al. Angiopoietin receptor TEK mutations underlie primary congenital glaucoma with variable expressivity. J Clin Invest. 2016;126(7):2575–2587. doi: 10.1172/JCI85830 EDN: WRJYRZ
  36. Wójcik-Gryciuk A, Gajewska-Woźniak O, Kordecka K, et al. Neuroprotection of Retinal Ganglion Cells with AAV2-BDNF Pretreatment Restoring Normal TrkB Receptor Protein Levels in Glaucoma. Int J Mol Sci. 2020;21(17):6262. doi: 10.3390/ijms21176262 EDN: GKNJTN
  37. Bulcha JT, Wang Y, Ma H, et al. Viral vector platforms within the gene therapy landscape. Signal Transduct Target Ther. 2021;6(1):53. doi: 10.1038/s41392-021-00487-6
  38. Wu J, Bell OH, Copland DA, et al. Gene Therapy for Glaucoma by Ciliary Body Aquaporin 1 Disruption Using CRISPR-Cas9. Mol Ther. 2020;28(3):820–829. doi: 10.1016/j.ymthe.2019.12.012 EDN: DPTFAR
  39. Donahue RJ, Fehrman RL, Gustafson JR, Nickells RW. BCLXL gene therapy moderates neuropathology in the DBA/2J mouse model of inherited glaucoma. Cell Death Dis. 2021;12(8):781. doi: 10.1038/s41419-021-04068-x EDN: BXOABQ
  40. Visuvanathan S, Baker AN, Lagali PS, et al. XIAP gene therapy effects on retinal ganglion cell structure and function in a mouse model of glaucoma. Gene Ther. 2022;29(3–4):147–156. doi: 10.1038/s41434-021-00281-7 EDN: EFGMDS
  41. Krishnan A, Fei F, Jones A, et al. Overexpression of Soluble Fas Ligand following Adeno-Associated Virus Gene Therapy Prevents Retinal Ganglion Cell Death in Chronic and Acute Murine Models of Glaucoma. J Immunol. 2016;197(12):4626–4638. doi: 10.4049/jimmunol.1601488
  42. O'Callaghan J, Delaney C, O'Connor M, et al. Matrix metalloproteinase-3 (MMP-3)-mediated gene therapy for glaucoma. Sci Adv. 2023;9(16):eadf6537. doi: 10.1126/sciadv.adf6537 EDN: HQENYS
  43. Telegina DV, Kolosova NG, Kozhevnikova OS. Immunohistochemical localization of NGF, BDNF, and their receptors in a normal and AMD-like rat retina. BMC Med Genomics. 2019;12(Suppl 2):48. doi: 10.1186/s12920-019-0493-8 EDN: IRZUKX
  44. Osborne A, Khatib TZ, Songra L, et al. Neuroprotection of retinal ganglion cells by a novel gene therapy construct that achieves sustained enhancement of brain-derived neurotrophic factor/tropomyosin-related kinase receptor-B signaling. Cell Death Dis. 2018;9(10):1007. doi: 10.1038/s41419-018-1041-8
  45. Shen Y, Wei W, Zhou DX. Histone Acetylation Enzymes Coordinate Metabolism and Gene Expression. Trends Plant Sci. 2015;20(10):614–621. doi: 10.1016/j.tplants.2015.07.005
  46. Saha RN, Pahan K. HATs and HDACs in neurodegeneration: a tale of disconcerted acetylation homeostasis. Cell Death Differ. 2006;13(4):539–550. doi: 10.1038/sj.cdd.4401769
  47. Li S, He Q, Wang H, et al. Injured adult retinal axons with Pten and Socs3 co-deletion reform active synapses with suprachiasmatic neurons. Neurobiol Dis. 2015;73:366–376. doi: 10.1016/j.nbd.2014.09.019
  48. Xie L, Yin Y, Benowitz L. Chemokine CCL5 promotes robust optic nerve regeneration and mediates many of the effects of CNTF gene therapy. Proc Natl Acad Sci U S A. 2021;118(9):e2017282118. doi: 10.1073/pnas.2017282118 EDN: GWXJWJ
  49. Li HJ, Pan YB, Sun ZL, et al. Inhibition of miR-21 ameliorates excessive astrocyte activation and promotes axon regeneration following optic nerve crush. Neuropharmacology. 2018;137:33-49. doi: 10.1016/j.neuropharm.2018.04.028
  50. Thomas CN, Bernardo-Colón A, Courtie E, et al. Effects of intravitreal injection of siRNA against caspase-2 on retinal and optic nerve degeneration in air blast induced ocular trauma. Sci Rep. 2021;11(1):16839. doi: 10.1038/s41598-021-96107-y EDN: ZYTISN
  51. Ting DSJ, Deshmukh R, Ting DSW, Ang M. Big data in corneal diseases and cataract: Current applications and future directions. Front Big Data. 2023;6:1017420. doi: 10.3389/fdata.2023.1017420 EDN: NDLIRC
  52. Sarkar S, Panikker P, D'Souza S, et al. Corneal Regeneration Using Gene Therapy Approaches. Cells. 2023;12(9):1280. doi: 10.3390/cells12091280 EDN: XBFXPQ
  53. Klintworth GK. Corneal dystrophies. Orphanet J Rare Dis. 2009;4:7. doi: 10.1186/1750-1172-4-7
  54. Aiello F, Gallo Afflitto G, Ceccarelli F, et al. Global Prevalence of Fuchs Endothelial Corneal Dystrophy (FECD) in Adult Population: A Systematic Review and Meta-Analysis. J Ophthalmol. 2022;2022:3091695. doi: 10.1155/2022/3091695 EDN: TXCENS
  55. Aiello F, Gallo Afflitto G, Ceccarelli F, et al. Global Prevalence of Fuchs Endothelial Corneal Dystrophy (FECD) in Adult Population: A Systematic Review and Meta-Analysis. J Ophthalmol. 2022;2022:3091695. doi: 10.1155/2022/3091695 EDN: TXCENS
  56. Kocaba V, Katikireddy KR, Gipson I, et al. Association of the Gutta-Induced Microenvironment With Corneal Endothelial Cell Behavior and Demise in Fuchs Endothelial Corneal Dystrophy. JAMA Ophthalmol. 2018;136(8):886–892. doi: 10.1001/jamaophthalmol.2018.2031
  57. Sarkar S, Panikker P, D'Souza S, et al. Corneal Regeneration Using Gene Therapy Approaches. Cells. 2023;12(9):1280. doi: 10.3390/cells12091280 EDN: XBFXPQ
  58. Malhotra D, Loganathan SK, Chiu AM, et al. Human Corneal Expression of SLC4A11, a Gene Mutated in Endothelial Corneal Dystrophies. Sci Rep. 2019;9(1):9681. doi: 10.1038/s41598-019-46094-y EDN: HZUAUO
  59. Wieben ED, Aleff RA, Tang X, et al. Trinucleotide Repeat Expansion in the Transcription Factor 4 (TCF4) Gene Leads to Widespread mRNA Splicing Changes in Fuchs' Endothelial Corneal Dystrophy. Invest Ophthalmol Vis Sci. 2017;58(1):343–352. doi: 10.1167/iovs.16-20900
  60. Uehara H, Zhang X, Pereira F, et al. Start codon disruption with CRISPR/Cas9 prevents murine Fuchs' endothelial corneal dystrophy. Elife. 2021;10:e55637. doi: 10.7554/eLife.55637 EDN: PLBBET
  61. Rong SS, Ma STU, Yu XT, et al. Genetic associations for keratoconus: a systematic review and meta-analysis. Sci Rep. 2017;7(1):4620. doi: 10.1038/s41598-017-04393-2
  62. Deshmukh R, Ong ZZ, Rampat R, et al. Management of keratoconus: an updated review. Front Med. 2023;10:1212314. doi: 10.3389/fmed.2023.1212314 EDN: ABNFWQ
  63. Wang Y, Rabinowitz YS, Rotter JI, Yang H. Genetic epidemiological study of keratoconus: evidence for major gene determination. Am J Med Genet. 2000;93(5):403–409.
  64. Karolak JA, Gajecka M. Genomic strategies to understand causes of keratoconus. Mol Genet Genomics. 2017;292(2):251–269. doi: 10.1007/s00438-016-1283-z EDN: LDBSZX
  65. Farjadnia M, Naderan M, Mohammadpour M. Gene therapy in keratoconus. Oman J Ophthalmol. 2015;8(1):3–8. doi: 10.4103/0974-620X.149854
  66. Arnalich-Montiel F, Alió del Barrio JL, Alió JL. Corneal surgery in keratoconus: which type, which technique, which outcomes? Eye Vis. 2016;3:2. doi: 10.1186/s40662-016-0033-y EDN: MFHOTA
  67. Kondo H, Oku K, Katagiri S, et al. Novel mutations in the RS1 gene in Japanese patients with X-linked congenital retinoschisis. Hum Genome Var. 2019;6:3. doi: 10.1038/s41439-018-0034-6 EDN: VZFWBS
  68. Hahn LC, Schooneveld MJ van, Wesseling NL, et al. X-Linked Retinoschisis: Novel Clinical Observations and Genetic Spectrum in 340 Patients. Ophthalmology. 2022;129(2):191–202. doi: 10.1016/j.ophtha.2021.09.021 EDN: JTYIHZ
  69. Sieving PA, MacDonald IM, Hoang S. X-Linked Congenital Retinoschisis. In: Adam MP, Feldman J, Mirzaa GM, et al, editors. GeneReviews®. University of Washington, Seattle; 1993. Available from:: http://www.ncbi.nlm.nih.gov/books/NBK1222
  70. Bush RA, Zeng Y, Colosi P, et al. Preclinical Dose-Escalation Study of Intravitreal AAV-RS1 Gene Therapy in a Mouse Model of X-linked Retinoschisis: Dose-Dependent Expression and Improved Retinal Structure and Function. Hum Gene Ther. 2016;27(5):376–389. doi: 10.1089/hum.2015.142
  71. Ye GJ, Conlon T, Erger K, et al. Safety and Biodistribution Evaluation of rAAV2tYF-CB-hRS1, a Recombinant Adeno-Associated Virus Vector Expressing Retinoschisin, in RS1-Deficient Mice. Hum Gene Ther Clin Dev. 2015;26(3):177–184. doi: 10.1089/humc.2015.077
  72. Kohl S, Jägle H, Wissinger B, Zobor D. Achromatopsia. In: Adam MP, Feldman J, Mirzaa GM, et al, editors. GeneReviews®. University of Washington, Seattle; 1993. Available from:: http://www.ncbi.nlm.nih.gov/books/NBK1418
  73. Michaelides M, Hardcastle AJ, Hunt DM, Moore AT. Progressive cone and cone-rod dystrophies: phenotypes and underlying molecular genetic basis. Surv Ophthalmol. 2006;51(3):232–258. doi: 10.1016/j.survophthal.2006.02.007 EDN: LMUSZN
  74. Pokorny J, Smith VC, Pinckers AJ, Cozijnsen M. Classification of complete and incomplete autosomal recessive achromatopsia. Graefes Arch Clin Exp Ophthalmol. 1982;219(3):121–130. doi: 10.1007/BF02152296 EDN: EKABBD
  75. Genead MA, Fishman GA, Rha J, et al. Photoreceptor structure and function in patients with congenital achromatopsia. Invest Ophthalmol Vis Sci. 2011;52(10):7298–7308. doi: 10.1167/iovs.11-7762
  76. Michalakis S, Gerhardt M, Rudolph G, et al. Achromatopsia: Genetics and Gene Therapy. Mol Diagn Ther. 2022;26(1):51–59. doi: 10.1007/s40291-021-00565-z EDN: DENLJD
  77. Burkard M, Kohl S, Krätzig T, et al. Accessory heterozygous mutations in cone photoreceptor CNGA3 exacerbate CNG channel-associated retinopathy. J Clin Invest. 2018;128(12):5663–5675. doi: 10.1172/JCI96098
  78. Michalakis S, Gerhardt M, Rudolph G, et al. Achromatopsia: Genetics and Gene Therapy. Mol Diagn Ther. 2022;26(1):51–59. doi: 10.1007/s40291-021-00565-z EDN: DENLJD
  79. Ghoraba HH, Akhavanrezayat A, Karaca I, et al. Ocular Gene Therapy: A Literature Review with Special Focus on Immune and Inflammatory Responses. Clin Ophthalmol. 2022;16:1753–1771. doi: 10.2147/OPTH.S364200 EDN: UUKEDG
  80. Kubota R, Boman NL, David R, et al. Safety and effect on rod function of ACU-4429, a novel small-molecule visual cycle modulator. Retina. 2012;32(1):183–188. doi: 10.1097/IAE.0b013e318217369e
  81. Kubota R, Al-Fayoumi S, Mallikaarjun S, et al. Phase 1, dose-ranging study of emixustat hydrochloride (ACU-4429), a novel visual cycle modulator, in healthy volunteers. Retina. 2014;34(3):603–609. doi: 10.1097/01.iae.0000434565.80060.f8
  82. Charbel Issa P, Barnard AR, Herrmann P, et al. Rescue of the Stargardt phenotype in Abca4 knockout mice through inhibition of vitamin A dimerization. Proc Natl Acad Sci U S A. 2015;112(27):8415–8420. doi: 10.1073/pnas.1506960112
  83. Mata NL, Lichter JB, Vogel R, et al. Investigation of oral fenretinide for treatment of geographic atrophy in age-related macular degeneration. Retina. 2013;33(3):498–507. doi: 10.1097/IAE.0b013e318265801d
  84. Sun D, Sun W, Gao SQ, et al. Effective gene therapy of Stargardt disease with PEG-ECO/pGRK1-ABCA4-S/MAR nanoparticles. Mol Ther Nucleic Acids. 2022;29:823–835. doi: 10.1016/j.omtn.2022.08.026 EDN: OCKAOI
  85. Mitsios A, Dubis AM, Moosajee M. Choroideremia: from genetic and clinical phenotyping to gene therapy and future treatments. Ther Adv Ophthalmol. 2018;10:2515841418817490. doi: 10.1177/2515841418817490
  86. Cehajic Kapetanovic J, Barnard AR, MacLaren RE. Molecular Therapies for Choroideremia. Genes. 2019;10(10):738. doi: 10.3390/genes10100738
  87. MacDonald IM, Hume S, Zhai Y, Xu M. Choroideremia. In: Adam MP, Feldman J, Mirzaa GM, et al, editors. GeneReviews®. University of Washington, Seattle; 1993. Режим доступа: http://www.ncbi.nlm.nih.gov/books/NBK1337 Дата обращения: 09.02.2025.
  88. Xue K, Jolly JK, Barnard AR, et al. Beneficial effects on vision in patients undergoing retinal gene therapy for choroideremia. Nat Med. 2018;24(10):1507–1512. doi: 10.1038/s41591-018-0185-5 EDN: FFYBWK
  89. Ferrari S, Di Iorio E, Barbaro V, et al. Retinitis pigmentosa: genes and disease mechanisms. Curr Genomics. 2011;12(4):238–249. doi: 10.2174/138920211795860107
  90. Hamel C. Retinitis pigmentosa. Orphanet J Rare Dis. 2006;1:40. doi: 10.1186/1750-1172-1-40 EDN: SWFDDB
  91. Boughman JA, Vernon M, Shaver KA. Usher syndrome: definition and estimate of prevalence from two high-risk populations. J Chronic Dis. 1983;36(8):595–603. doi: 10.1016/0021-9681(83)90147-9
  92. Hamel C. Retinitis pigmentosa. Orphanet J Rare Dis. 2006;1:40. doi: 10.1186/1750-1172-1-40 EDN: SWFDDB
  93. Birch DG, Cheetham JK, Daiger SP, et al. Overcoming the Challenges to Clinical Development of X-Linked Retinitis Pigmentosa Therapies: Proceedings of an Expert Panel. Transl Vis Sci Technol. 2023;12(6):5. doi: 10.1167/tvst.12.6.5 EDN: JJSBTI
  94. Gumerson JD, Alsufyani A, Yu W, et al. Restoration of RPGR expression in vivo using CRISPR/Cas9 gene editing. Gene Ther. 2022;29(1–2):81–93. doi: 10.1038/s41434-021-00258-6 EDN: IIAQKW
  95. Deng WT, Dyka FM, Dinculescu A, et al. Stability and Safety of an AAV Vector for Treating RPGR-ORF15 X-Linked Retinitis Pigmentosa. Hum Gene Ther. 2015;26(9):593–602. doi: 10.1089/hum.2015.035
  96. Tsang SH, Sharma T. Stargardt Disease. Adv Exp Med Biol. 2018;1085:139–151. doi: 10.1007/978-3-319-95046-4_27
  97. Huang CH, Yang CM, Yang CH, et al. Leber's Congenital Amaurosis: Current Concepts of Genotype-Phenotype Correlations. Genes. 2021;12(8):1261. doi: 10.3390/genes12081261 EDN: EKQFYT
  98. Chiu W, Lin TY, Chang YC, et al. An Update on Gene Therapy for Inherited Retinal Dystrophy: Experience in Leber Congenital Amaurosis Clinical Trials. Int J Mol Sci. 2021;22(9):4534. doi: 10.3390/ijms22094534 EDN: IZTHOY
  99. Wang X, Yu C, Tzekov RT, et al. The effect of human gene therapy for RPE65-associated Leber's congenital amaurosis on visual function: a systematic review and meta-analysis. Orphanet J Rare Dis. 2020;15(1):49. doi: 10.1186/s13023-020-1304-1 EDN: MUQOAG
  100. Wang X, Yu C, Tzekov RT, et al. The effect of human gene therapy for RPE65-associated Leber's congenital amaurosis on visual function: a systematic review and meta-analysis. Orphanet J Rare Dis. 2020;15(1):49. doi: 10.1186/s13023-020-1304-1 EDN: MUQOAG
  101. Finocchio L, Zeppieri M, Gabai A, et al. Recent Developments in Gene Therapy for Neovascular Age-Related Macular Degeneration: A Review. Biomedicines. 2023;11(12):3221. doi: 10.3390/biomedicines11123221 EDN: DTKHJW
  102. Fleckenstein M, Keenan TDL, Guymer RH, et al. Age-related macular degeneration. Nat Rev Dis Primers. 2021;7(1):31. doi: 10.1038/s41572-021-00265-2 EDN: DWMVTA
  103. Zweifel SA, Spaide RF, Curcio CA, et al. Reticular pseudodrusen are subretinal drusenoid deposits. Ophthalmology. 2010;117(2):303–312.e1. doi: 10.1016/j.ophtha.2009.07.014
  104. Davis MD, Gangnon RE, Lee LY, et al. The Age-Related Eye Disease Study severity scale for age-related macular degeneration: AREDS Report No. 17. Arch Ophthalmol. 2005;123(11):1484–1498. doi: 10.1001/archopht.123.11.1484
  105. Thee EF, Colijn JM, Cougnard-Grégoire A, et al. The Phenotypic Course of Age-Related Macular Degeneration for ARMS2/HTRA1. Ophthalmology. 2022;129(7):752–764. doi: 10.1016/j.ophtha.2022.02.026 EDN: VLSNOM
  106. Comparison of Age-related Macular Degeneration Treatments Trials (CATT) Research Group, Maguire MG, Martin DF, et al. Five-Year Outcomes with Anti-Vascular Endothelial Growth Factor Treatment of Neovascular Age-Related Macular Degeneration: The Comparison of Age-Related Macular Degeneration Treatments Trials. Ophthalmology. 2016;123(8):1751–1761. doi: 10.1016/j.ophtha.2016.03.045
  107. Aiyegbusi OL, Macpherson K, Elston L, et al. Patient and public perspectives on cell and gene therapies: a systematic review. Nat Commun. 2020;11(1):6265. doi: 10.1038/s41467-020-20096-1 EDN: ZTSOTO
  108. Nelles M, Stieger K, Preising MN, et al. Shared decision-making, control preferences and psychological well-being in patients with RPE65 deficiency awaiting experimental gene therapy. Ophthalmic Res. 2015;54(2):96–102. doi: 10.1159/000435887
  109. Sahel JA, Boulanger-Scemama E, Pagot C, et al. Partial recovery of visual function in a blind patient after optogenetic therapy. Nat Med. 2021;27(7):1223–1229. doi: 10.1038/s41591-021-01351-4 EDN: NSXXRE
  110. Sahel JA, Boulanger-Scemama E, Pagot C, et al. Partial recovery of visual function in a blind patient after optogenetic therapy. Nat Med. 2021;27(7):1223–1229. doi: 10.1038/s41591-021-01351-4 EDN: NSXXRE
  111. Sakai D, Tomita H, Maeda A. Optogenetic Therapy for Visual Restoration. Int J Mol Sci. 2022;23(23):15041. doi: 10.3390/ijms232315041 EDN: LJVSBA
  112. Lieto K, Skopek R, Lewicka A, et al. Looking into the Eyes-In Vitro Models for Ocular Research. Int J Mol Sci. 2022;23(16):9158. doi: 10.3390/ijms23169158 EDN: BIKWHL
  113. Wong CH, Li D, Wang N, Gruber J, et al. The estimated annual financial impact of gene therapy in the United States. Gene Ther. 2023;30(10–11):761–773. doi: 10.1038/s41434-023-00419-9
  114. Ylä-Herttuala S. Glybera's second act: the curtain rises on the high cost of therapy. Mol Ther. 2015;23(2):217–218. doi: 10.1038/mt.2014.248

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© 2026 Эко-Вектор

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).