Генная терапия в офтальмологии: новые горизонты в лечении глазных заболеваний
- Авторы: Харисова Ч.Б.1, Китаева К.В.1, Соловьева В.В.1, Ахметшин Р.Ф.2, Ризванов А.А.1,3
-
Учреждения:
- Казанский (Приволжский) федеральный университет
- Казанский государственный медицинский университет
- Академия наук Республики Татарстан
- Выпуск: Том 107, № 1 (2026)
- Страницы: 100-115
- Тип: Обзоры
- URL: https://ogarev-online.ru/kazanmedj/article/view/382466
- DOI: https://doi.org/10.17816/KMJ677044
- EDN: https://elibrary.ru/TQCKFO
- ID: 382466
Цитировать
Аннотация
Глазные заболевания могут значительно снижать качество жизни пациентов вследствие уменьшения остроты зрения. Ряд наследственных и приобретённых заболеваний органа зрения имеет лишь консервативные и поддерживающие методы лечения, не устраняющие этиологический фактор. Одним из потенциальных подходов к решению данной проблемы является генная терапия, демонстрирующая обнадёживающие результаты в ряде клинических исследований, однако требующая дальнейшего изучения в связи с ограниченной доказательной базой и возможными долгосрочными рисками. Воздействуя на определённые участки дефектных генов, данный терапевтический подход может способствовать замедлению или даже обратному развитию прогрессирования глазных заболеваний. В качестве векторов доставки особый интерес представляет использование аденоассоциированных вирусов, продемонстрировавших высокую эффективность и минимальный риск побочных эффектов. На сегодняшний день Управлением по санитарному надзору за качеством пищевых продуктов и медикаментов США зарегистрирован лишь один генотерапевтический препарат для терапии наследственной дистрофии сетчатки, вызванной патогенными вариантами гена RPE65. Проводимые доклинические и клинические испытания генной терапии заболеваний зрительной системы способствуют развитию данной области медицины и поиску новых подходов к лечению патологий, не поддающихся полному восстановлению функций повреждённых тканей и органов. В обзоре рассмотрены концепция генной терапии и её применение при патологиях зрительной системы, а также представлены последние научные достижения и их потенциальное влияние на состояние зрительных функций. Особое внимание уделено анализу клинических испытаний, безопасности, эффективности и перспективности персонализированной терапии, основанной на молекулярно-генетических особенностях пациентов. Кроме того, освещены текущие барьеры внедрения генной терапии в клиническую практику и основные направления дальнейших исследований.
Ключевые слова
Об авторах
Чулпан Булатовна Харисова
Казанский (Приволжский) федеральный университет
Email: harisovachulpan@gmail.com
ORCID iD: 0009-0001-0326-3450
SPIN-код: 7165-8591
аспирант, младший научный сотрудник, НИЛ OpenLab Генные и клеточные технологии
Россия, КазаньКристина Викторовна Китаева
Казанский (Приволжский) федеральный университет
Email: KrVKitaeva@kpfu.ru
ORCID iD: 0000-0002-0704-8141
SPIN-код: 6937-6311
канд. биол. наук, доцент, каф. генетики; старший научный сотрудник, НИЛ OpenLab Генные и клеточные технологии
Россия, КазаньВалерия Владимировна Соловьева
Казанский (Приволжский) федеральный университет
Email: VaVSoloveva@kpfu.ru
ORCID iD: 0000-0002-8776-3662
SPIN-код: 8796-3760
канд. биол. наук, доцент, каф. генетики; ведущий научный сотрудник, НИЛ OpenLab Генные и клеточные технологии
Россия, КазаньРустэм Фаисович Ахметшин
Казанский государственный медицинский университет
Email: rustemfa@mail.ru
ORCID iD: 0000-0003-4633-093X
SPIN-код: 2030-0194
канд. мед. наук, доцент, каф. офтальмологии
Россия, КазаньАльберт Анатольевич Ризванов
Казанский (Приволжский) федеральный университет; Академия наук Республики Татарстан
Автор, ответственный за переписку.
Email: rizvanov@gmail.com
ORCID iD: 0000-0002-9427-5739
SPIN-код: 7031-5996
д-р биол. наук, профессор, главный научный сотрудник, НИЛ OpenLab Генные и клеточные технологии
Россия, Казань; КазаньСписок литературы
- Kamińska A, Pinkas J, Wrześniewska-Wal I, et al. Awareness of Common Eye Diseases and Their Risk Factors-A Nationwide Cross-Sectional Survey among Adults in Poland. Int J Environ Res Public Health. 2023;20(4):3594. doi: 10.3390/ijerph20043594 EDN: ALLQZW
- Kelly E, Wen Q, Haddad D, O'Banion J. Effects of an Aging Population and Racial Demographics on Eye Disease Prevalence: Projections for Georgia Through 2050. Am J Ophthalmol. 2020;210:35–40. doi: 10.1016/j.ajo.2019.10.028 EDN: WAYJIW
- Ghoraba HH, Akhavanrezayat A, Karaca I, et al. Ocular Gene Therapy: A Literature Review with Special Focus on Immune and Inflammatory Responses. Clin Ophthalmol. 2022;16:1753–1771. doi: 10.2147/OPTH.S364200 EDN: UUKEDG
- Russell S, Bennett J, Wellman JA, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet. 2017;390(10097):849–860. doi: 10.1016/S0140-6736(17)31868-8
- Bouquet C, Vignal Clermont C, Galy A, et al. Immune Response and Intraocular Inflammation in Patients With Leber Hereditary Optic Neuropathy Treated With Intravitreal Injection of Recombinant Adeno-Associated Virus 2 Carrying the ND4 Gene: A Secondary Analysis of a Phase 1/2 Clinical Trial. JAMA Ophthalmol. 2019;137(4):399–406. doi: 10.1001/jamaophthalmol.2018.6902
- Cehajic-Kapetanovic J, Xue K, Martinez-Fernandez de la Camara C, et al. Initial results from a first-in-human gene therapy trial on X-linked retinitis pigmentosa caused by mutations in RPGR. Nat Med. 2020;26(3):354–359. doi: 10.1038/s41591-020-0763-1 EDN: XJLKCX
- Mishra A, Vijayasarathy C, Cukras CA, et al. Immune function in X-linked retinoschisis subjects in an AAV8-RS1 phase I/IIa gene therapy trial. Mol Ther. 2021;29(6):2030–2040. doi: 10.1016/j.ymthe.2021.02.013 EDN: PGHEBM
- Prado DA, Acosta-Acero M, Maldonado RS. Gene therapy beyond luxturna: a new horizon of the treatment for inherited retinal disease. Curr Opin Ophthalmol. 2020;31(3):147–154. doi: 10.1097/ICU.0000000000000660 EDN: DPETPB
- Hordeaux J, Lamontagne RJ, Song C, et al. High-dose systemic adeno-associated virus vector administration causes liver and sinusoidal endothelial cell injury. Mol Ther. 2024;32(4):952–968. doi: 10.1016/j.ymthe.2024.02.002 EDN: CSZBAS
- Gaudana R, Ananthula HK, Parenky A, Mitra AK. Ocular drug delivery. AAPS J. 2010;12(3):348–360. doi: 10.1208/s12248-010-9183-3 EDN: XNUSMS
- Bitoque DB, Fernandes CF, Oliveira AML, Silva GA. Strategies to Improve the Targeting of Retinal Cells by Non-Viral Gene Therapy Vectors. Front Drug Deliv. 2022;2. doi: 10.3389/fddev.2022.899260 EDN: EVNQDI
- Kansara V, Muya L, Wan CR, Ciulla TA. Suprachoroidal Delivery of Viral and Nonviral Gene Therapy for Retinal Diseases. J Ocul Pharmacol Ther. 2020;36(6):384–392. doi: 10.1089/jop.2019.0126 EDN: WSHUQS
- Irigoyen C, Amenabar Alonso A, Sanchez-Molina J, et al. Subretinal Injection Techniques for Retinal Disease: A Review. J Clin Med. 2022;11(16):4717. doi: 10.3390/jcm11164717 EDN: FCRSZD
- Ameri H. Prospect of retinal gene therapy following commercialization of voretigene neparvovec-rzyl for retinal dystrophy mediated by RPE65 mutation. J Curr Ophthalmol. 2018;30(1):1–2. doi: 10.1016/j.joco.2018.01.006
- Ghoraba HH, Akhavanrezayat A, Karaca I, et al. Ocular Gene Therapy: A Literature Review with Special Focus on Immune and Inflammatory Responses. Clin Ophthalmol. 2022;16:1753–1771. doi: 10.2147/OPTH.S364200 EDN: UUKEDG
- Lim Y, Campochiaro PA, Green JJ. Suprachoroidal Delivery of Viral and Nonviral Vectors for Treatment of Retinal and Choroidal Vascular Diseases. AmJ Ophthalmol. 2025;277:518–533. doi: 10.1016/j.ajo.2024.12.010
- Anderson WJ, da Cruz NFS, Lima LH, et al. Mechanisms of sterile inflammation after intravitreal injection of antiangiogenic drugs: a narrative review. Int J Retina Vitreous. 2021;7(1):37. doi: 10.1186/s40942-021-00307-7 EDN: AJAFDQ
- Jaffe GJ, Westby K, Csaky KG, et al. C5 Inhibitor Avacincaptad Pegol for Geographic Atrophy Due to Age-Related Macular Degeneration: A Randomized Pivotal Phase 2/3 Trial. Ophthalmology. 2021;128(4):576–586. doi: 10.1016/j.ophtha.2020.08.027 EDN: VSEPIN
- Wu KY, Fujioka JK, Gholamian T, et al. Suprachoroidal Injection: A Novel Approach for Targeted Drug Delivery. Pharmaceuticals. 2023;16(9):1241. doi: 10.3390/ph16091241 EDN: GORUEZ
- Koponen S, Kokki E, Kinnunen K, Ylä-Herttuala S. Viral-Vector-Delivered Anti-Angiogenic Therapies to the Eye. Pharmaceutics. 2021;13(2):219. doi: 10.3390/pharmaceutics13020219 EDN: JXJBKA
- Song L, Llanga T, Conatser LM, et al. Serotype survey of AAV gene delivery via subconjunctival injection in mice. Gene Ther. 2018;25(6):402–414. doi: 10.1038/s41434-018-0035-6 EDN: DQFDBW
- Subrizi A, Del Amo EM, Korzhikov-Vlakh V, et al. Design principles of ocular drug delivery systems: importance of drug payload, release rate, and material properties. Drug Discov Today. 2019;24(8):1446–1457. doi: 10.1016/j.drudis.2019.02.001 EDN: SICYFL
- Gehl J. Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol Scand. 2003;177(4):437–447. doi: 10.1046/j.1365-201X.2003.01093.x EDN: LXMQJX
- Bitoque DB, Fernandes CF, Oliveira AML, Silva GA. Strategies to Improve the Targeting of Retinal Cells by Non-Viral Gene Therapy Vectors. Front Drug Deliv. 2022;2. doi: 10.3389/fddev.2022.899260 EDN: EVNQDI
- Shamsnajafabadi H, MacLaren RE, Cehajic-Kapetanovic J. Current and Future Landscape in Genetic Therapies for Leber Hereditary Optic Neuropathy. Cells. 2023;12(15):2013. doi: 10.3390/cells12152013 EDN: LEMIWX
- Catarino CB, von Livonius B, Priglinger C, et al. Real-World Clinical Experience With Idebenone in the Treatment of Leber Hereditary Optic Neuropathy. J Neuroophthalmol. 2020;40(4):558–565. doi: 10.1097/WNO.0000000000001023 EDN: QXZNCU
- Zhang X, Jones D, Gonzalez-Lima F. A Potential Model for Leber's Hereditary Optic Neuropathy: Rotenone Effects on Retinal Ganglion Cells. IOVS. ARVO Journals. 2002;43(13). Available from: https://iovs.arvojournals.org/article.aspx?articleid = 2417453
- Russell SR, Drack AV, Cideciyan AV, et al. Intravitreal antisense oligonucleotide sepofarsen in Leber congenital amaurosis type 10: a phase 1b/2 trial. Nat Med. 2022;28(5):1014–1021. doi: 10.1038/s41591-022-01755-w EDN: HLPJWH
- Weber AJ, Harman CD, Viswanathan S. Effects of optic nerve injury, glaucoma, and neuroprotection on the survival, structure, and function of ganglion cells in the mammalian retina. J Physiol. 2008;586(18):4393–4400. doi: 10.1113/jphysiol.2008.156729
- Wu H, Chen Q. Hypoxia activation of mitophagy and its role in disease pathogenesis. Antioxid Redox Signal. 2015;22(12):1032–1046. doi: 10.1089/ars.2014.6204 EDN: UOQFEP
- Macanianand J, Sharma SC. Pathogenesis of Glaucoma. Encyclopedia. 2022;2(4):1803–1810. doi: 10.3390/encyclopedia2040124
- He M, Rong R, Ji D, Xia X. From Bench to Bed: The Current Genome Editing Therapies for Glaucoma. Front Cell Dev Biol. 2022;10. doi: 10.3389/fcell.2022.879957 EDN: GKCFSU
- Gharahkhani P, Jorgenson E, Hysi P, et al. Genome-wide meta-analysis identifies 127 open-angle glaucoma loci with consistent effect across ancestries. Nat Commun. 2021;12(1):1258. doi: 10.1038/s41467-020-20851-4 EDN: GPLMWF
- Khor CC, Do T, Jia H, et al. Genome-wide association study identifies five new susceptibility loci for primary angle closure glaucoma. Nat Genet. 2016;48(5):556–562. doi: 10.1038/ng.3540 EDN: WPNSCT
- Souma T, Tompson SW, Thomson BR, et al. Angiopoietin receptor TEK mutations underlie primary congenital glaucoma with variable expressivity. J Clin Invest. 2016;126(7):2575–2587. doi: 10.1172/JCI85830 EDN: WRJYRZ
- Wójcik-Gryciuk A, Gajewska-Woźniak O, Kordecka K, et al. Neuroprotection of Retinal Ganglion Cells with AAV2-BDNF Pretreatment Restoring Normal TrkB Receptor Protein Levels in Glaucoma. Int J Mol Sci. 2020;21(17):6262. doi: 10.3390/ijms21176262 EDN: GKNJTN
- Bulcha JT, Wang Y, Ma H, et al. Viral vector platforms within the gene therapy landscape. Signal Transduct Target Ther. 2021;6(1):53. doi: 10.1038/s41392-021-00487-6
- Wu J, Bell OH, Copland DA, et al. Gene Therapy for Glaucoma by Ciliary Body Aquaporin 1 Disruption Using CRISPR-Cas9. Mol Ther. 2020;28(3):820–829. doi: 10.1016/j.ymthe.2019.12.012 EDN: DPTFAR
- Donahue RJ, Fehrman RL, Gustafson JR, Nickells RW. BCLXL gene therapy moderates neuropathology in the DBA/2J mouse model of inherited glaucoma. Cell Death Dis. 2021;12(8):781. doi: 10.1038/s41419-021-04068-x EDN: BXOABQ
- Visuvanathan S, Baker AN, Lagali PS, et al. XIAP gene therapy effects on retinal ganglion cell structure and function in a mouse model of glaucoma. Gene Ther. 2022;29(3–4):147–156. doi: 10.1038/s41434-021-00281-7 EDN: EFGMDS
- Krishnan A, Fei F, Jones A, et al. Overexpression of Soluble Fas Ligand following Adeno-Associated Virus Gene Therapy Prevents Retinal Ganglion Cell Death in Chronic and Acute Murine Models of Glaucoma. J Immunol. 2016;197(12):4626–4638. doi: 10.4049/jimmunol.1601488
- O'Callaghan J, Delaney C, O'Connor M, et al. Matrix metalloproteinase-3 (MMP-3)-mediated gene therapy for glaucoma. Sci Adv. 2023;9(16):eadf6537. doi: 10.1126/sciadv.adf6537 EDN: HQENYS
- Telegina DV, Kolosova NG, Kozhevnikova OS. Immunohistochemical localization of NGF, BDNF, and their receptors in a normal and AMD-like rat retina. BMC Med Genomics. 2019;12(Suppl 2):48. doi: 10.1186/s12920-019-0493-8 EDN: IRZUKX
- Osborne A, Khatib TZ, Songra L, et al. Neuroprotection of retinal ganglion cells by a novel gene therapy construct that achieves sustained enhancement of brain-derived neurotrophic factor/tropomyosin-related kinase receptor-B signaling. Cell Death Dis. 2018;9(10):1007. doi: 10.1038/s41419-018-1041-8
- Shen Y, Wei W, Zhou DX. Histone Acetylation Enzymes Coordinate Metabolism and Gene Expression. Trends Plant Sci. 2015;20(10):614–621. doi: 10.1016/j.tplants.2015.07.005
- Saha RN, Pahan K. HATs and HDACs in neurodegeneration: a tale of disconcerted acetylation homeostasis. Cell Death Differ. 2006;13(4):539–550. doi: 10.1038/sj.cdd.4401769
- Li S, He Q, Wang H, et al. Injured adult retinal axons with Pten and Socs3 co-deletion reform active synapses with suprachiasmatic neurons. Neurobiol Dis. 2015;73:366–376. doi: 10.1016/j.nbd.2014.09.019
- Xie L, Yin Y, Benowitz L. Chemokine CCL5 promotes robust optic nerve regeneration and mediates many of the effects of CNTF gene therapy. Proc Natl Acad Sci U S A. 2021;118(9):e2017282118. doi: 10.1073/pnas.2017282118 EDN: GWXJWJ
- Li HJ, Pan YB, Sun ZL, et al. Inhibition of miR-21 ameliorates excessive astrocyte activation and promotes axon regeneration following optic nerve crush. Neuropharmacology. 2018;137:33-49. doi: 10.1016/j.neuropharm.2018.04.028
- Thomas CN, Bernardo-Colón A, Courtie E, et al. Effects of intravitreal injection of siRNA against caspase-2 on retinal and optic nerve degeneration in air blast induced ocular trauma. Sci Rep. 2021;11(1):16839. doi: 10.1038/s41598-021-96107-y EDN: ZYTISN
- Ting DSJ, Deshmukh R, Ting DSW, Ang M. Big data in corneal diseases and cataract: Current applications and future directions. Front Big Data. 2023;6:1017420. doi: 10.3389/fdata.2023.1017420 EDN: NDLIRC
- Sarkar S, Panikker P, D'Souza S, et al. Corneal Regeneration Using Gene Therapy Approaches. Cells. 2023;12(9):1280. doi: 10.3390/cells12091280 EDN: XBFXPQ
- Klintworth GK. Corneal dystrophies. Orphanet J Rare Dis. 2009;4:7. doi: 10.1186/1750-1172-4-7
- Aiello F, Gallo Afflitto G, Ceccarelli F, et al. Global Prevalence of Fuchs Endothelial Corneal Dystrophy (FECD) in Adult Population: A Systematic Review and Meta-Analysis. J Ophthalmol. 2022;2022:3091695. doi: 10.1155/2022/3091695 EDN: TXCENS
- Aiello F, Gallo Afflitto G, Ceccarelli F, et al. Global Prevalence of Fuchs Endothelial Corneal Dystrophy (FECD) in Adult Population: A Systematic Review and Meta-Analysis. J Ophthalmol. 2022;2022:3091695. doi: 10.1155/2022/3091695 EDN: TXCENS
- Kocaba V, Katikireddy KR, Gipson I, et al. Association of the Gutta-Induced Microenvironment With Corneal Endothelial Cell Behavior and Demise in Fuchs Endothelial Corneal Dystrophy. JAMA Ophthalmol. 2018;136(8):886–892. doi: 10.1001/jamaophthalmol.2018.2031
- Sarkar S, Panikker P, D'Souza S, et al. Corneal Regeneration Using Gene Therapy Approaches. Cells. 2023;12(9):1280. doi: 10.3390/cells12091280 EDN: XBFXPQ
- Malhotra D, Loganathan SK, Chiu AM, et al. Human Corneal Expression of SLC4A11, a Gene Mutated in Endothelial Corneal Dystrophies. Sci Rep. 2019;9(1):9681. doi: 10.1038/s41598-019-46094-y EDN: HZUAUO
- Wieben ED, Aleff RA, Tang X, et al. Trinucleotide Repeat Expansion in the Transcription Factor 4 (TCF4) Gene Leads to Widespread mRNA Splicing Changes in Fuchs' Endothelial Corneal Dystrophy. Invest Ophthalmol Vis Sci. 2017;58(1):343–352. doi: 10.1167/iovs.16-20900
- Uehara H, Zhang X, Pereira F, et al. Start codon disruption with CRISPR/Cas9 prevents murine Fuchs' endothelial corneal dystrophy. Elife. 2021;10:e55637. doi: 10.7554/eLife.55637 EDN: PLBBET
- Rong SS, Ma STU, Yu XT, et al. Genetic associations for keratoconus: a systematic review and meta-analysis. Sci Rep. 2017;7(1):4620. doi: 10.1038/s41598-017-04393-2
- Deshmukh R, Ong ZZ, Rampat R, et al. Management of keratoconus: an updated review. Front Med. 2023;10:1212314. doi: 10.3389/fmed.2023.1212314 EDN: ABNFWQ
- Wang Y, Rabinowitz YS, Rotter JI, Yang H. Genetic epidemiological study of keratoconus: evidence for major gene determination. Am J Med Genet. 2000;93(5):403–409.
- Karolak JA, Gajecka M. Genomic strategies to understand causes of keratoconus. Mol Genet Genomics. 2017;292(2):251–269. doi: 10.1007/s00438-016-1283-z EDN: LDBSZX
- Farjadnia M, Naderan M, Mohammadpour M. Gene therapy in keratoconus. Oman J Ophthalmol. 2015;8(1):3–8. doi: 10.4103/0974-620X.149854
- Arnalich-Montiel F, Alió del Barrio JL, Alió JL. Corneal surgery in keratoconus: which type, which technique, which outcomes? Eye Vis. 2016;3:2. doi: 10.1186/s40662-016-0033-y EDN: MFHOTA
- Kondo H, Oku K, Katagiri S, et al. Novel mutations in the RS1 gene in Japanese patients with X-linked congenital retinoschisis. Hum Genome Var. 2019;6:3. doi: 10.1038/s41439-018-0034-6 EDN: VZFWBS
- Hahn LC, Schooneveld MJ van, Wesseling NL, et al. X-Linked Retinoschisis: Novel Clinical Observations and Genetic Spectrum in 340 Patients. Ophthalmology. 2022;129(2):191–202. doi: 10.1016/j.ophtha.2021.09.021 EDN: JTYIHZ
- Sieving PA, MacDonald IM, Hoang S. X-Linked Congenital Retinoschisis. In: Adam MP, Feldman J, Mirzaa GM, et al, editors. GeneReviews®. University of Washington, Seattle; 1993. Available from:: http://www.ncbi.nlm.nih.gov/books/NBK1222
- Bush RA, Zeng Y, Colosi P, et al. Preclinical Dose-Escalation Study of Intravitreal AAV-RS1 Gene Therapy in a Mouse Model of X-linked Retinoschisis: Dose-Dependent Expression and Improved Retinal Structure and Function. Hum Gene Ther. 2016;27(5):376–389. doi: 10.1089/hum.2015.142
- Ye GJ, Conlon T, Erger K, et al. Safety and Biodistribution Evaluation of rAAV2tYF-CB-hRS1, a Recombinant Adeno-Associated Virus Vector Expressing Retinoschisin, in RS1-Deficient Mice. Hum Gene Ther Clin Dev. 2015;26(3):177–184. doi: 10.1089/humc.2015.077
- Kohl S, Jägle H, Wissinger B, Zobor D. Achromatopsia. In: Adam MP, Feldman J, Mirzaa GM, et al, editors. GeneReviews®. University of Washington, Seattle; 1993. Available from:: http://www.ncbi.nlm.nih.gov/books/NBK1418
- Michaelides M, Hardcastle AJ, Hunt DM, Moore AT. Progressive cone and cone-rod dystrophies: phenotypes and underlying molecular genetic basis. Surv Ophthalmol. 2006;51(3):232–258. doi: 10.1016/j.survophthal.2006.02.007 EDN: LMUSZN
- Pokorny J, Smith VC, Pinckers AJ, Cozijnsen M. Classification of complete and incomplete autosomal recessive achromatopsia. Graefes Arch Clin Exp Ophthalmol. 1982;219(3):121–130. doi: 10.1007/BF02152296 EDN: EKABBD
- Genead MA, Fishman GA, Rha J, et al. Photoreceptor structure and function in patients with congenital achromatopsia. Invest Ophthalmol Vis Sci. 2011;52(10):7298–7308. doi: 10.1167/iovs.11-7762
- Michalakis S, Gerhardt M, Rudolph G, et al. Achromatopsia: Genetics and Gene Therapy. Mol Diagn Ther. 2022;26(1):51–59. doi: 10.1007/s40291-021-00565-z EDN: DENLJD
- Burkard M, Kohl S, Krätzig T, et al. Accessory heterozygous mutations in cone photoreceptor CNGA3 exacerbate CNG channel-associated retinopathy. J Clin Invest. 2018;128(12):5663–5675. doi: 10.1172/JCI96098
- Michalakis S, Gerhardt M, Rudolph G, et al. Achromatopsia: Genetics and Gene Therapy. Mol Diagn Ther. 2022;26(1):51–59. doi: 10.1007/s40291-021-00565-z EDN: DENLJD
- Ghoraba HH, Akhavanrezayat A, Karaca I, et al. Ocular Gene Therapy: A Literature Review with Special Focus on Immune and Inflammatory Responses. Clin Ophthalmol. 2022;16:1753–1771. doi: 10.2147/OPTH.S364200 EDN: UUKEDG
- Kubota R, Boman NL, David R, et al. Safety and effect on rod function of ACU-4429, a novel small-molecule visual cycle modulator. Retina. 2012;32(1):183–188. doi: 10.1097/IAE.0b013e318217369e
- Kubota R, Al-Fayoumi S, Mallikaarjun S, et al. Phase 1, dose-ranging study of emixustat hydrochloride (ACU-4429), a novel visual cycle modulator, in healthy volunteers. Retina. 2014;34(3):603–609. doi: 10.1097/01.iae.0000434565.80060.f8
- Charbel Issa P, Barnard AR, Herrmann P, et al. Rescue of the Stargardt phenotype in Abca4 knockout mice through inhibition of vitamin A dimerization. Proc Natl Acad Sci U S A. 2015;112(27):8415–8420. doi: 10.1073/pnas.1506960112
- Mata NL, Lichter JB, Vogel R, et al. Investigation of oral fenretinide for treatment of geographic atrophy in age-related macular degeneration. Retina. 2013;33(3):498–507. doi: 10.1097/IAE.0b013e318265801d
- Sun D, Sun W, Gao SQ, et al. Effective gene therapy of Stargardt disease with PEG-ECO/pGRK1-ABCA4-S/MAR nanoparticles. Mol Ther Nucleic Acids. 2022;29:823–835. doi: 10.1016/j.omtn.2022.08.026 EDN: OCKAOI
- Mitsios A, Dubis AM, Moosajee M. Choroideremia: from genetic and clinical phenotyping to gene therapy and future treatments. Ther Adv Ophthalmol. 2018;10:2515841418817490. doi: 10.1177/2515841418817490
- Cehajic Kapetanovic J, Barnard AR, MacLaren RE. Molecular Therapies for Choroideremia. Genes. 2019;10(10):738. doi: 10.3390/genes10100738
- MacDonald IM, Hume S, Zhai Y, Xu M. Choroideremia. In: Adam MP, Feldman J, Mirzaa GM, et al, editors. GeneReviews®. University of Washington, Seattle; 1993. Режим доступа: http://www.ncbi.nlm.nih.gov/books/NBK1337 Дата обращения: 09.02.2025.
- Xue K, Jolly JK, Barnard AR, et al. Beneficial effects on vision in patients undergoing retinal gene therapy for choroideremia. Nat Med. 2018;24(10):1507–1512. doi: 10.1038/s41591-018-0185-5 EDN: FFYBWK
- Ferrari S, Di Iorio E, Barbaro V, et al. Retinitis pigmentosa: genes and disease mechanisms. Curr Genomics. 2011;12(4):238–249. doi: 10.2174/138920211795860107
- Hamel C. Retinitis pigmentosa. Orphanet J Rare Dis. 2006;1:40. doi: 10.1186/1750-1172-1-40 EDN: SWFDDB
- Boughman JA, Vernon M, Shaver KA. Usher syndrome: definition and estimate of prevalence from two high-risk populations. J Chronic Dis. 1983;36(8):595–603. doi: 10.1016/0021-9681(83)90147-9
- Hamel C. Retinitis pigmentosa. Orphanet J Rare Dis. 2006;1:40. doi: 10.1186/1750-1172-1-40 EDN: SWFDDB
- Birch DG, Cheetham JK, Daiger SP, et al. Overcoming the Challenges to Clinical Development of X-Linked Retinitis Pigmentosa Therapies: Proceedings of an Expert Panel. Transl Vis Sci Technol. 2023;12(6):5. doi: 10.1167/tvst.12.6.5 EDN: JJSBTI
- Gumerson JD, Alsufyani A, Yu W, et al. Restoration of RPGR expression in vivo using CRISPR/Cas9 gene editing. Gene Ther. 2022;29(1–2):81–93. doi: 10.1038/s41434-021-00258-6 EDN: IIAQKW
- Deng WT, Dyka FM, Dinculescu A, et al. Stability and Safety of an AAV Vector for Treating RPGR-ORF15 X-Linked Retinitis Pigmentosa. Hum Gene Ther. 2015;26(9):593–602. doi: 10.1089/hum.2015.035
- Tsang SH, Sharma T. Stargardt Disease. Adv Exp Med Biol. 2018;1085:139–151. doi: 10.1007/978-3-319-95046-4_27
- Huang CH, Yang CM, Yang CH, et al. Leber's Congenital Amaurosis: Current Concepts of Genotype-Phenotype Correlations. Genes. 2021;12(8):1261. doi: 10.3390/genes12081261 EDN: EKQFYT
- Chiu W, Lin TY, Chang YC, et al. An Update on Gene Therapy for Inherited Retinal Dystrophy: Experience in Leber Congenital Amaurosis Clinical Trials. Int J Mol Sci. 2021;22(9):4534. doi: 10.3390/ijms22094534 EDN: IZTHOY
- Wang X, Yu C, Tzekov RT, et al. The effect of human gene therapy for RPE65-associated Leber's congenital amaurosis on visual function: a systematic review and meta-analysis. Orphanet J Rare Dis. 2020;15(1):49. doi: 10.1186/s13023-020-1304-1 EDN: MUQOAG
- Wang X, Yu C, Tzekov RT, et al. The effect of human gene therapy for RPE65-associated Leber's congenital amaurosis on visual function: a systematic review and meta-analysis. Orphanet J Rare Dis. 2020;15(1):49. doi: 10.1186/s13023-020-1304-1 EDN: MUQOAG
- Finocchio L, Zeppieri M, Gabai A, et al. Recent Developments in Gene Therapy for Neovascular Age-Related Macular Degeneration: A Review. Biomedicines. 2023;11(12):3221. doi: 10.3390/biomedicines11123221 EDN: DTKHJW
- Fleckenstein M, Keenan TDL, Guymer RH, et al. Age-related macular degeneration. Nat Rev Dis Primers. 2021;7(1):31. doi: 10.1038/s41572-021-00265-2 EDN: DWMVTA
- Zweifel SA, Spaide RF, Curcio CA, et al. Reticular pseudodrusen are subretinal drusenoid deposits. Ophthalmology. 2010;117(2):303–312.e1. doi: 10.1016/j.ophtha.2009.07.014
- Davis MD, Gangnon RE, Lee LY, et al. The Age-Related Eye Disease Study severity scale for age-related macular degeneration: AREDS Report No. 17. Arch Ophthalmol. 2005;123(11):1484–1498. doi: 10.1001/archopht.123.11.1484
- Thee EF, Colijn JM, Cougnard-Grégoire A, et al. The Phenotypic Course of Age-Related Macular Degeneration for ARMS2/HTRA1. Ophthalmology. 2022;129(7):752–764. doi: 10.1016/j.ophtha.2022.02.026 EDN: VLSNOM
- Comparison of Age-related Macular Degeneration Treatments Trials (CATT) Research Group, Maguire MG, Martin DF, et al. Five-Year Outcomes with Anti-Vascular Endothelial Growth Factor Treatment of Neovascular Age-Related Macular Degeneration: The Comparison of Age-Related Macular Degeneration Treatments Trials. Ophthalmology. 2016;123(8):1751–1761. doi: 10.1016/j.ophtha.2016.03.045
- Aiyegbusi OL, Macpherson K, Elston L, et al. Patient and public perspectives on cell and gene therapies: a systematic review. Nat Commun. 2020;11(1):6265. doi: 10.1038/s41467-020-20096-1 EDN: ZTSOTO
- Nelles M, Stieger K, Preising MN, et al. Shared decision-making, control preferences and psychological well-being in patients with RPE65 deficiency awaiting experimental gene therapy. Ophthalmic Res. 2015;54(2):96–102. doi: 10.1159/000435887
- Sahel JA, Boulanger-Scemama E, Pagot C, et al. Partial recovery of visual function in a blind patient after optogenetic therapy. Nat Med. 2021;27(7):1223–1229. doi: 10.1038/s41591-021-01351-4 EDN: NSXXRE
- Sahel JA, Boulanger-Scemama E, Pagot C, et al. Partial recovery of visual function in a blind patient after optogenetic therapy. Nat Med. 2021;27(7):1223–1229. doi: 10.1038/s41591-021-01351-4 EDN: NSXXRE
- Sakai D, Tomita H, Maeda A. Optogenetic Therapy for Visual Restoration. Int J Mol Sci. 2022;23(23):15041. doi: 10.3390/ijms232315041 EDN: LJVSBA
- Lieto K, Skopek R, Lewicka A, et al. Looking into the Eyes-In Vitro Models for Ocular Research. Int J Mol Sci. 2022;23(16):9158. doi: 10.3390/ijms23169158 EDN: BIKWHL
- Wong CH, Li D, Wang N, Gruber J, et al. The estimated annual financial impact of gene therapy in the United States. Gene Ther. 2023;30(10–11):761–773. doi: 10.1038/s41434-023-00419-9
- Ylä-Herttuala S. Glybera's second act: the curtain rises on the high cost of therapy. Mol Ther. 2015;23(2):217–218. doi: 10.1038/mt.2014.248
Дополнительные файлы

