Role of intestinal microbiome in depression

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Depression has become one of the most significant concerns in neuropsychiatry and neuropharmacology. This is supported by recent concepts that emphasize the variability of mechanisms underlying depression. The pathogenesis of depression involves multiple factors, including changes in hypothalamic–pituitary–adrenal axis regulation, impaired homeostasis with destabilized monoamine levels, and reduced neuroplasticity with cytokine expression and microglia activation. Recent research into the gut-brain axis has significantly improved our understanding of the mechanisms behind depression. The interactions between the intestinal microbiome and the central nervous system are thought to have numerous manifestations, including those that can serve as predictors of depression. These characteristics include neurotransmitter signaling, cofactor-mediated stimulation, and increased synthesis of neurotransmitters required for mental health stabilization. However, there is currently no consensus on the nature of these interactions. Therefore, it is relevant to summarize data on the interactions between the intestinal microbiota and the central nervous system in order to improve the treatment of depressive disorders. This review summarizes research papers from PubMed, eLIBRARY.RU, MEDLINE, PMC, PMID, PMCID, and Google Scholar databases published between 2000 and July 30, 2025, examining the relationship between depressive disorders and anxiety and changes in microbiome composition. The review included case-control studies assessing the characteristics of intestinal microbiota (microbiome) in humans and experimental animals (excluding virome, Archaea, and eukaryotic parasites) in depression and anxiety. Commensal and pathogenic strains were found to contribute to persistent changes in brain functioning. From a pharmacological perspective, data on changes in microorganisms associated with depression and anxiety were summarized. Furthermore, drugs capable of changing the microbiological balance and, thus, indirectly promoting these disorders were identified.

About the authors

Yuri A. Sergeev

Stavropol State Medical University

Author for correspondence.
Email: serg_yuriy@mail.ru
ORCID iD: 0000-0002-6183-2586
SPIN-code: 3007-8098

MD, Cand. Sci. (Medicine)

Russian Federation, Stavropol

Eduard V. Beyer

Stavropol State Medical University

Email: karokris@mail.ru
ORCID iD: 0000-0003-3248-6212
SPIN-code: 3411-1334

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Stavropol

Igor A. Bazikov

Stavropol State Medical University

Email: bazikov@list.ru
ORCID iD: 0000-0001-9207-6552
SPIN-code: 7585-8596

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Stavropol

Tatyana V. Taran

Stavropol State Medical University

Email: mikra-2018@mail.ru
ORCID iD: 0000-0002-8070-0706
SPIN-code: 9158-3750

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Stavropol

References

  1. Limbana T, Khan F, Eskander N. Gut Microbiome and Depression: How Microbes Affect the Way We Think. Cureus. 2020;12(8):e9966. doi: 10.7759/cureus.9966 EDN: QVOLEK
  2. Arneth B. Gut-Brain Axis and Brain Microbiome Interactions from a Medical Perspective. Brain Sci. 2025;15(2):167. doi: 10.3390/brainsci15020167 EDN: DRJDSO
  3. Toader C, Dobrin N, Costea D, et al. Mind, Mood and Microbiota-Gut-Brain Axis in Psychiatric Disorders. Int J Mol Sci. 2024;25(6):3340. doi: 10.3390/ijms25063340 EDN: RBOATR
  4. Chernomurova VO, Bocharova KA. Human gut microbiome and mental health. Biology and Integrative Medicine. 2025;1(72):451–460. (In Russ.) doi: 10.24412/cl-34438-2025-451-460
  5. Du Y, Gao X, Peng L, et al. Crosstalk between the microbiota-gut-brain axis and depression. Heliyon. 2020;6(6):e04097. doi: 10.1016/j.heliyon.2020.e04097 EDN: JLYVJI
  6. Hou K, Wu Z, Chen X, et al. Microbiota in health and diseases. Signal Transduct Target Ther. 2022;7(1):135. doi: 10.1038/s41392-022-00974-4 EDN: YLKZIH
  7. Neznanov NG, Tumova MA, Freize VV, et al. Modern concept of depression pathogenesis: the contribution of I.P. Lapin's research team. Consort Psychiatr. 2025;6(2):77–84. doi: 10.17816/CP15601 EDN: KGGJGE
  8. Mcmullen LM. Fact Sheets as Gendered Narratives of Depression. In: Depression and narrative: telling the dark. Clark H., editor. Albany: State University of New York; 2008. P. 127–142. ISBN: 978-0-7914-7569-0
  9. Wilczek N, Bogucka Ju, Brzyska A, et al. The gut microbiota in development and treatment of depression. Eur J Clin Exp Med. 2023;21(4):887–895. doi: 10.15584/ejcem.2023.4.23 EDN: NGFVGM
  10. Marano G, Rossi S, Sfratta G, et al. Gut Microbiota: A New Challenge in Mood Disorder Research. Life. 2025;15(4):593. doi: 10.3390/life15040593
  11. Cao Y, Cheng Y, Pan W, et al. Gut microbiota variations in depression and anxiety: a systematic review. BMC Psychiatry. 2025;25(1):443. doi: 10.1186/s12888-025-06871-8
  12. Chudzik A, Orzyłowska A, Rola R, et al. Probiotics, Prebiotics and Postbiotics on Mitigation of Depression Symptoms: Modulation of the Brain-Gut-Microbiome Axis. Biomolecules. 2021;11(7):1000. doi: 10.3390/biom11071000 EDN: NKIEYS
  13. Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J. 2017;474(11):1823–1836. doi: 10.1042/BCJ20160510 EDN: SVLWHP
  14. Tan Y, Xu M, Lin D. Review of research progress on intestinal microbiota based on metabolism and inflammation for depression. Arch Microbiol. 2024;206(4):146. doi: 10.1007/s00203-024-03866-z EDN: QKPQOY
  15. Hao W, Ma Q, Wang L, et al. Gut dysbiosis induces the development of depression-like behavior through abnormal synapse pruning in microglia-mediated by complement C3. Microbiome. 2024;12(1):34. doi: 10.1186/s40168-024-01756-6 EDN: IUEVAD
  16. Zhu S, Jiang Y, Xu K, et al. The progress of gut microbiome research related to brain disorders. J Neuroinflammation. 2020;17(1):25. doi: 10.1186/s12974-020-1705-z EDN: EDPHCV
  17. Hoban AE, Stilling RM, Ryan FJ, et al. Regulation of prefrontal cortex myelination by the microbiota. Transl Psychiatry. 2016;6(4):e774–e774. doi: 10.1038/tp.2016.42
  18. Quillin SJ, Tran P, Prindle A. Potential Roles for Gamma-Aminobutyric Acid Signaling in Bacterial Communities. Bioelectricity. 2021;3(2):120–125. doi: 10.1089/bioe.2021.0012 EDN: YHXXUB
  19. Naseribafrouei A, Hestad K, Avershina E, et al. Correlation between the human fecal microbiota and depression. Neurogastroenterol Motil. 2014;26(8):1155–1162. doi: 10.1111/nmo.12378
  20. Jiang H, Ling Z, Zhang Y, et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain, Behav Immun. 2015;48186–194. doi: 10.1016/j.bbi.2015.03.016 EDN: XYRIWZ
  21. Fusco W, Lorenzo MB, Cintoni M, et al. Short-Chain Fatty-Acid-Producing Bacteria: Key Components of the Human Gut Microbiota. Nutrients. 2023;15(9):2211. doi: 10.3390/nu15092211 EDN: EZVKJZ
  22. Simpson CA, Diaz-Arteche C, Eliby D, et al. The gut microbiota in anxiety and depression — A systematic review. Clin Psychol Rev. 2021;83101943. doi: 10.1016/j.cpr.2020.101943 EDN: BVURJR
  23. Katasonov A. Gut microbiome as a therapeutic target in the treatment of depression and anxiety. S.S. Korsakov journal of neurology and psychiatry. 2021;121(11):129. doi: 10.17116/jnevro2021121111129 EDN: DSSFXQ
  24. Zheng P, Zeng B, Zhou C, et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host's metabolism. Mol Psychiatry. 2016;21(6):786–796. doi: 10.1038/mp.2016.44
  25. Zhou L, Wu Q, Jiang L, et al. Role of the microbiota in inflammation-related related psychiatric disorders. Front Immunol. 2025;161613027. doi: 10.3389/fimmu.2025.1613027
  26. Zheng P, Yang J, Li Y, et al. Gut Microbial Signatures Can Discriminate Unipolar from Bipolar Depression. Adv Sci. 2020;7(7):1902862. doi: 10.1002/advs.201902862 EDN: PWVJZI
  27. Montagnani M, Bottalico L, Potenza MA, et al. The Crosstalk between Gut Microbiota and Nervous System: A Bidirectional Interaction between Microorganisms and Metabolome. Int J Mol Sci. 2023;24(12):10322. doi: 10.3390/ijms241210322 EDN: IUVVWN
  28. Chen Y, Xue F, Yu S, et al. Gut microbiota dysbiosis in depressed women: The association of symptom severity and microbiota function. J Affect Disord. 2021;282:391–400. doi: 10.1016/j.jad.2020.12.143 EDN: PBLNVL
  29. Li D, Wang P, Wang P, et al. The gut microbiota: A treasure for human health. Biotechnol Adv. 2016;34(7):1210–1224. doi: 10.1016/j.biotechadv.2016.08.003
  30. Dai W, Liu J, Qiu Y, et al. Gut Microbial Dysbiosis and Cognitive Impairment in Bipolar Disorder: Current Evidence. Front Pharmacol. 2022;13:893567. doi: 10.3389/fphar.2022.89356 EDN: DAXRMN
  31. Huang F, Wu X. Brain Neurotransmitter Modulation by Gut Microbiota in Anxiety and Depression. Front Cell Dev Biol. 2021;9649103. doi: 10.3389/fcell.2021.649103 EDN: OWAQWA
  32. Lukić I, Getselter D, Ziv O, et al. Antidepressants affect gut microbiota and Ruminococcus flavefaciens is able to abolish their effects on depressive-like behavior. Transl Psychiatry. 2019;9(1):133. doi: 10.1038/s41398-019-0466-x EDN: YKNYQJ
  33. Magne F, Gotteland M, Gauthier L, et al. The Firmicutes/Bacteroidetes Ratio: A Relevant Marker of Gut Dysbiosis in Obese Patients? Nutrients. 2020;12(5):1474. doi: 10.3390/nu12051474 EDN: KFZKTL
  34. Lin P, Ding B, Feng C, et al. Prevotella and Klebsiella proportions in fecal microbial communities are potential characteristic parameters for patients with major depressive disorder. J Affect Disord. 2017;207:300–304. doi: 10.1016/j.jad.2016.09.051
  35. Niemela L, Lamoury G, Carroll S, et al. Exploring gender differences in the relationship between gut microbiome and depression — a scoping review. Front Psychiatry. 2024;151361145. doi: 10.3389/fpsyt.2024.1361145 EDN: TUWMLW
  36. O'hare MA, Swart PC, Malan-Müller S, et al. The saNeuroGut Initiative: Investigating the Gut Microbiome and Symptoms of Anxiety, Depression, and Posttraumatic Stress. Neuroimmunomodulation. 2024;32(1):1–15. doi: 10.1159/000542696 EDN: SVLOGE
  37. Liang J, Zhao Y, Xi Y, et al. Association between Depression, Anxiety Symptoms and Gut Microbiota in Chinese Elderly with Functional Constipation. Nutrients. 2022;14(23):5013. doi: 10.3390/nu14235013 EDN: OMLHRA
  38. Arbabi F, Shapoury R, Haghi F, et al. Investigating the bacterial profiles of Lactobacillus, Bifidobacterium, Actinobacteria, Fusobacterium, Firmicutes, and Bacteroides in stool samples from patients with severe depression and healthy individuals. Psychoneuroendocrinology. 2024;170:107090. doi: 10.1016/j.psyneuen.2024.107090 EDN: TYNPXN
  39. Xiong J, Xu T, Wang Z, et al. The hidden genetic and microbial networks connecting neuropsychiatric and digestive disorders. Comput Struct Biotechnol J. 2025;27:3114–3126. doi: 10.1016/j.csbj.2025.07.029
  40. Tsai C, Chuang C, Tu P, et al. Interaction of the gut microbiota and brain functional connectivity in late-life depression. J Psychiatry Neurosci. 2024;49(5):E289–E300. doi: 10.1503/jpn.240050 EDN: SSXGXY
  41. Faysal M, Zehravi M, Sutradhar B, et al. The Microbiota-Gut-Brain Connection: A New Horizon in Neurological and Neuropsychiatric Disorders. CNS Neurosci Ther. 2025;31(9):e70593. doi: 10.1111/cns.70593
  42. Wegierska AE, Charitos IA, Topi S, et al. The Connection Between Physical Exercise and Gut Microbiota: Implications for Competitive Sports Athletes. Sports Med. 2022;52(10):2355–2369. doi: 10.1007/s40279-022-01696-x EDN: BULBVM
  43. Barton JR, Londregan AK, Alexander TD, et al. Enteroendocrine cell regulation of the gut-brain axis. Front Neurosci. 2023;17:1272955. doi: 10.3389/fnins.2023.1272955 EDN: ZHJOWA
  44. Tortorella C, Neri G, Nussdorfer GG. Galanin in the regulation of the hypothalamic-pituitary-adrenal axis (Review). Int J Mol Med. 2007;19(4):639–647. EDN: OMJHHZ
  45. Flores-Burgess A, Millón C, Gago B, et al. Galanin (1–15) Enhances the Behavioral Effects of Fluoxetine in the Olfactory Bulbectomy Rat, Suggesting a New Augmentation Strategy in Depression. Int J Neuropsychopharmacol. 2021;25(4):307–318. doi: 10.1093/ijnp/pyab089 EDN: PNTSVV
  46. Pugin B, Barcik W, Westermann P, et al. A wide diversity of bacteria from the human gut produces and degrades biogenic amines. Microb Ecol Health Dis. 2017;28(1):1353881. doi: 10.1080/16512235.2017.1353881
  47. Mou Z, Yang Y, Hall AB, et al. The taxonomic distribution of histamine-secreting bacteria in the human gut microbiome. BMC Genom. 2021;22(1):695. doi: 10.1186/s12864-021-08004-3 EDN: XYVUTS
  48. Sudo N. Biogenic Amines: Signals Between Commensal Microbiota and Gut Physiology. Front Endocrinol. 2019;10:504. doi: 10.3389/fendo.2019.00504
  49. Sforzini L, Nettis MA, Mondelli V, et al. Inflammation in cancer and depression: a starring role for the kynurenine pathway. Psychopharmacology. 2019;236(10):2997–3011. doi: 10.1007/s00213-019-05200-8 EDN: MAEUJN
  50. Traina G. Mast Cells in Gut and Brain and Their Potential Role as an Emerging Therapeutic Target for Neural Diseases. Front Cell Neurosci. 2019;13345. doi: 10.3389/fncel.2019.00345 EDN: ZOZCTH
  51. Vásquez-Pérez JM, González-Guevara E, Gutiérrez-Buenabad D, et al. Is Nasal Dysbiosis a Required Component for Neuroinflammation in Major Depressive Disorder? Mol Neurobiol. 2025;62(2):2459–2469. doi: 10.1007/s12035-024-04375-2 EDN: DCMLVL
  52. Cruz-Pereira JS, Rea K, Nolan YM, et al. Depression's Unholy Trinity: Dysregulated Stress, Immunity, and the Microbiome. Annu Rev Psychol. 2020;71(1):49–78. doi: 10.1146/annurev-psych-122216-011613 EDN: RHEKHD
  53. Lee C, Giuliani F. The Role of Inflammation in Depression and Fatigue. Front Immunol. 2019;101696. doi: 10.3389/fimmu.2019.01696
  54. Rudzki L, Maes M. The Microbiota-Gut-Immune-Glia (MGIG) Axis in Major Depression. Mol Neurobiol. 2020;57(10):4269–4295. doi: 10.1007/s12035-020-01961-y EDN: VMEUQR
  55. Carlessi AS, Borba LA, Zugno AI, et al. Gut microbiota-brain axis in depression: The role of neuroinflammation. Eur J Neurosci. 2019;53(1):222–235. doi: 10.1111/ejn.14631
  56. Chaudhury D, Liu H, Han M. Neuronal correlates of depression. Cell Mol Life Sci. 2015;72(24):4825–4848. doi: 10.1007/s00018-015-2044-6 EDN: TBSSKA
  57. Ledford H. Medical research: If depression were cancer. Nature. 2014;515(7526):182–184. doi: 10.1038/515182a
  58. Ou Y, Belzer C, Smidt H, de Weerth C. Development of the gut microbiota in the first 14 years of life and its relations to internalizing and externalizing difficulties and social anxiety during puberty. Eur Child Adolesc Psychiatry. 2024;33(3):847–860. doi: 10.1007/s00787-023-02205-9
  59. Strandwitz P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018;1693:128–133. doi: 10.1016/j.brainres.2018.03.015 EDN: WVWDZO
  60. Chen C, Wang Y, Lei L, et al. MicroRNA-specific targets for neuronal plasticity, neurotransmitters, neurotrophic factors, and gut microbes in the pathogenesis and therapeutics of depression. Prog Neuro-psychopharmacology Biol Psychiatry. 2025;136:111186. doi: 10.1016/j.pnpbp.2024.111186 EDN: AGHREW
  61. Pourhamzeh M, Moravej FG, Arabi M, et al. The Roles of Serotonin in Neuropsychiatric Disorders. Cell Mol Neurobiol. 2021;42(6):1671–1692. doi: 10.1007/s10571-021-01064-9 EDN: ELHGNO
  62. Xu D, Lian D, Wu J, et al. Brain-derived neurotrophic factor reduces inflammation and hippocampal apoptosis in experimental Streptococcus pneumoniae meningitis. J Neuroinflammation. 2017;14(1):156. doi: 10.1186/s12974-017-0930-6 EDN: OPBNWT
  63. Molska M, Mruczyk K, Cisek-Woźniak A, et al. The Influence of Intestinal Microbiota on BDNF Levels. Nutrients. 2024;16(17):2891. doi: 10.3390/nu16172891 EDN: JFTKVU
  64. Sarawagi A, Soni ND, Patel AB. Glutamate and GABA Homeostasis and Neurometabolism in Major Depressive Disorder. Front Psychiatry. 2021;12:637863. doi: 10.3389/fpsyt.2021.637863 EDN: GQXYGV
  65. Caspani G, Kennedy S, Foster JA, et al. Gut microbial metabolites in depression: understanding the biochemical mechanisms. Microb Cell. 2019;6(10):454–481. doi: 10.15698/mic2019.10.693 EDN: JFVYIJ
  66. Janik R, Thomason LA, Stanisz AM, et al. Magnetic resonance spectroscopy reveals oral Lactobacillus promotion of increases in brain GABA, N-acetyl aspartate and glutamate. NeuroImage. 2016;125:988–995. doi: 10.1016/j.neuroimage.2015.11.018
  67. Tette F, Kwofie SK, Wilson MD. Therapeutic Anti-Depressant Potential of Microbial GABA Produced by Lactobacillus rhamnosus Strains for GABAergic Signaling Restoration and Inhibition of Addiction-Induced HPA Axis Hyperactivity. Curr Issues Mol Biol. 2022;44(4):1434–1451. doi: 10.3390/cimb44040096 EDN: OPPTAC
  68. Peredo-Lovillo A, Romero-Luna H, Jiménez-Fernández M. Health promoting microbial metabolites produced by gut microbiota after prebiotics metabolism. Food Res Int. 2020;136:109473. doi: 10.1016/j.foodres.2020.109473 EDN: ZAFFYG
  69. Sampson TR, Mazmanian SK. Control of Brain Development, Function, and Behavior by the Microbiome. Cell Host Microbe. 2015;17(5):565–576. doi: 10.1016/j.chom.2015.04.011
  70. O'Mahony S, Clarke G, Borre Y, et al. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res. 2015;277:32–48. doi: 10.1016/j.bbr.2014.07.027 EDN: UUHXDL
  71. Tateishi H, Setoyama D, Kang D, et al. The changes in kynurenine metabolites induced by rTMS in treatment-resistant depression: A pilot study. J Psychiatr Res. 2021;138:194–199. doi: 10.1016/j.jpsychires.2021.04.009 EDN: RIRGWX
  72. Erabi H, Okada G, Shibasaki C, et al. Kynurenic acid is a potential overlapped biomarker between diagnosis and treatment response for depression from metabolome analysis. Sci Reports. 2020;10(1):16822. doi: 10.1038/s41598-020-73918-z EDN: XQDAOY
  73. Ciocan D, Cassard A, Becquemont L, et al. Blood microbiota and metabolomic signature of major depression before and after antidepressant treatment: a prospective case-control study. J Psychiatry Neurosci. 2021;46(3):E358–E368. doi: 10.1503/jpn.200159 EDN: RWXZEH
  74. Kaybysheva V, Zharova M, Filimendikova K, et al. Human Microbiome: age-related changes and functions. Russian journal of evidence-based gastroenterology. 2020;9(2):42. doi: 10.17116/dokgastro2020902142 EDN: YKXBBQ
  75. Van de wouw M, Boehme M, Lyte JM, et al. Short-chain fatty acids: microbial metabolites that alleviate stress-induced brain-gut axis alterations. J Physiol. 2018;596(20):4923–4944. doi: 10.1113/JP276431 EDN: WCDKRO
  76. Yu S, Wang L, Jing X, et al. Features of gut microbiota and short-chain fatty acids in patients with first-episode depression and their relationship with the clinical symptoms. Front Psychol. 2023;141088268. doi: 10.3389/fpsyg.2023.1088268 EDN: YIQCTX
  77. Silva YP, Bernardi A, Frozza RL. The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication. Front Endocrinol. 2020;11:25. doi: 10.3389/fendo.2020.00025 EDN: SEIXMC
  78. Palepu MS, Gajula SN, K M, et al. SCFAs Supplementation Rescues Anxiety- and Depression-like Phenotypes Generated by Fecal Engraftment of Treatment-Resistant Depression Rats. ACS Chem Neurosci. 2024;15(5):1010–1025. doi: 10.1021/acschemneuro.3c00727 EDN: DSCLPP
  79. Li C, Yao J, Yang C, et al. Gut microbiota-derived short chain fatty acids act as mediators of the gut-liver-brain axis. Metab Brain Dis. 2025;40(2):122. doi: 10.1007/s11011-025-01554-5 EDN: BMYTYI
  80. Shen H, Zhang C, Zhang Q, et al. Gut microbiota modulates depressive-like behaviors induced by chronic ethanol exposure through short-chain fatty acids. J Neuroinflammation. 2024;21(1):290. doi: 10.1186/s12974-024-03282-6 EDN: KYSMPX
  81. Church JS, Bannish JA, Adrian LA, et al. Serum short chain fatty acids mediate hippocampal BDNF and correlate with decreasing neuroinflammation following high pectin fiber diet in mice. Front Neurosci. 2023;171134080. doi: 10.3389/fnins.2023.1134080 EDN: GIMJYR
  82. Varghese SM, Patel S, Nandan A, et al. Unraveling the Role of the Blood-Brain Barrier in the Pathophysiology of Depression: Recent Advances and Future Perspectives. Mol Neurobiol. 2024;61(12):10398–10447. doi: 10.1007/s12035-024-04205-5 EDN: TQQURO
  83. Wu Q, Zhang Y, Zhang Y, et al. Potential effects of antibiotic-induced gut microbiome alteration on blood-brain barrier permeability compromise in rhesus monkeys. Ann New York Acad Sci. 2020;1470(1):14–24. doi: 10.1111/nyas.14312 EDN: BKBCTU
  84. Chenghan M, Wanxin L, Bangcheng Z, et al. Short-chain fatty acids mediate gut microbiota-brain communication and protect the blood-brain barrier integrity. Ann New York Acad Sci. 2025;1545(1):116–131. doi: 10.1111/nyas.15299 EDN: WISOZC
  85. Peirce JM, Alviña K. The role of inflammation and the gut microbiome in depression and anxiety. J Neurosci Res. 2019;97(10):1223–1241. doi: 10.1002/jnr.24476 EDN: SZZBVN
  86. Perrone MG, Centonze A, Miciaccia M, et al. Cyclooxygenase Inhibition Safety and Efficacy in Inflammation-Based Psychiatric Disorders. Molecules. 2020;25(22):5388. doi: 10.3390/molecules25225388 EDN: ZVFIQT
  87. Yin R, Zhang K, Li Y, et al. Lipopolysaccharide-induced depression-like model in mice: meta-analysis and systematic evaluation. Front Immunol. 2023;14:1181973. doi: 10.3389/fimmu.2023.1181973 EDN: ZDYPQS
  88. Zozulya SA, Yakovlev MY, Klyushnik TP. Gut Microbiota and (Neuro)Inflammation: Involvement of Endotoxin in the Pathogenesis of Endogenous Psychoses. Psikhiatriya. 2023;21(5):86–96. doi: 10.30629/2618-6667-2023-21-5-86-96 EDN: CCMBLY
  89. Di domenico M, Ballini A, Boccellino M, et al. The Intestinal Microbiota May Be a Potential Theranostic Tool for Personalized Medicine. J Pers Med. 2022;12(4):523. doi: 10.3390/jpm12040523 EDN: EGAHUK
  90. Van eeden WA, Van hemert AM, Carlier IV, et al. Basal and LPS-stimulated inflammatory markers and the course of individual symptoms of depression. Transl Psychiatry. 2020;10(1):235. doi: 10.1038/s41398-020-00920-4 EDN: QZYUNF
  91. Van eeden WA, El filali E, Van hemert AM, et al. Basal and LPS-stimulated inflammatory markers and the course of anxiety symptoms. Brain, Behav Immun. 2021;98:378-387. doi: 10.1016/j.bbi.2021.09.001 EDN: BVZNKH
  92. Yamawaki Y, Yoshioka N, Nozaki K, et al. Sodium butyrate abolishes lipopolysaccharide-induced depression-like behaviors and hippocampal microglial activation in mice. Brain Res. 2018;1680:13–38. doi: 10.1016/j.brainres.2017.12.004
  93. Wu Y, Zhu Z, Lan T, et al. Levomilnacipran Improves Lipopolysaccharide-Induced Dysregulation of Synaptic Plasticity and Depression-Like Behaviors via Activating BDNF/TrkB Mediated PI3K/Akt/mTOR Signaling Pathway. Mol Neurobiol. 2023;61(7):4102–4115. doi: 10.1007/s12035-023-03832-8 EDN: SSWGPB
  94. Zhong J, Li H, Cao K, et al. Glutamate-mediated antidepressant effects of Jieyu I formula via modulation of PFCCaMKII-LHbCaMKII/GABA circuitry in lipopolysaccharide-induced depression model. J Ethnopharmacol. 2025;342:119414. doi: 10.1016/j.jep.2025.119414 EDN: RLLKNF
  95. Deyama S, Sugie R, Tabata M, et al. Antidepressant-like effects of tomatidine and tomatine, steroidal alkaloids from unripe tomatoes, via activation of mTORC1 in the medial prefrontal cortex in lipopolysaccharide-induced depression model mice. Nutr Neurosci. 2023;27(8):795–808. doi: 10.1080/1028415X.2023.2254542
  96. Maes M, Kubera M, Leunis J, et al. Increased IgA and IgM responses against gut commensals in chronic depression: Further evidence for increased bacterial translocation or leaky gut. J Affect Disord. 2012;141(1):55–62. doi: 10.1016/j.jad.2012.02.023 EDN: YCYVGH
  97. Scassellati C, Marizzoni M, Cattane N, et al. The Complex Molecular Picture of Gut and Oral Microbiota-Brain-Depression System: What We Know and What We Need to Know. Front Psychiatry. 2021;12:722335. doi: 10.3389/fpsyt.2021.722335 EDN: BMJTII
  98. Wiest R, Garcia-Tsao G. Bacterial translocation (BT) in cirrhosis†. Hepatology. 2005;41(3):422–433. doi: 10.1002/hep.20632
  99. Lucas K, Maes M. Role of the Toll Like Receptor (TLR) Radical Cycle in Chronic Inflammation: Possible Treatments Targeting the TLR4 Pathway. Mol Neurobiol. 2013;48(1):190–204. doi: 10.1007/s12035-013-8425-7 EDN: IHKXFC
  100. Sodhi A, Pai K, Singh RK, et al. Activation of human NK cells and monocytes with cisplatin in vitro. Int J Immunopharmacol. 1990;12(8):893–898. doi: 10.1016/0192-0561(90)90008-b
  101. Maes M, Kubera M, Leunis J, et al. In depression, bacterial translocation may drive inflammatory responses, oxidative and nitrosative stress (O&NS), and autoimmune responses directed against O&NS-damaged neoepitopes. Acta Psychiatr Scand. 2012;127(5):344–354. doi: 10.1111/j.1600-0447.2012.01908.x
  102. Iovine NM, Pursnani S, Voldman A, et al. Reactive Nitrogen Species Contribute to Innate Host Defense against Campylobacter jejuni. Infect Immun. 2008;76(3):986–993. doi: 10.1128/IAI.01063-07
  103. Lin W, Lin C, Cheng H, et al. Regulation of cyclooxygenase-2 and cytosolic phospholipase A2 gene expression by lipopolysaccharide through the RNA-binding protein HuR: involvement of NADPH oxidase, reactive oxygen species and mitogen-activated protein kinases. Br J Pharmacol. 2011;163(8):1691–1706. doi: 10.1111/j.1476-5381.2011.01312.x
  104. Gawryluk JW, Wang J, Andreazza AC, et al. Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders. Int J Neuropsychopharmacol. 2010;14(01):123–130. doi: 10.1017/S1461145710000805
  105. Chen W, Yan X, Song X, et al. Effects of Fzd6 on intestinal flora and neuroinflammation in lipopolysaccharide-induced depression-like mice. J Affect Disord. 2025;372:160–172. doi: 10.1016/j.jad.2024.12.011 EDN: EQSSJM
  106. Markov DD, Yatsenko KA, Inozemtseva LS, et al. Systemic N-terminal fragments of adrenocorticotropin reduce inflammation- and stress-induced anhedonia in rats. Psychoneuroendocrinology. 2017;82:173–186. doi: 10.1016/j.psyneuen.2017.04.019 EDN: XNKFRE
  107. Ng A, Tam WW, Zhang MW, et al. IL-1β, IL-6, TNF- α and CRP in Elderly Patients with Depression or Alzheimer's disease: Systematic Review and Meta-Analysis. Sci Reports. 2018;8(1):12050. doi: 10.1038/s41598-018-30487-6 EDN: YKODQL
  108. Williams LM. Precision psychiatry: a neural circuit taxonomy for depression and anxiety. Lancet Psychiatry. 2016;3(5):472–480. doi: 10.1016/S2215-0366(15)00579-9
  109. Leonard B, Maes M. Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neurosci Biobehav Rev. 2012;36(2):764–785. doi: 10.1016/j.neubiorev.2011.12.005 EDN: PMUICH
  110. Dominguez huarcaya LR, Dominguez ríos MF. The role of microglia in depression. Microenviron Microecol Res. 2023;5(3):12. doi: 10.53388/MMR2023012 EDN: YMLVVU
  111. Ahmad A, Khalid S. Therapeutic Aspects of Probiotics and Prebiotics. Diet, Microbiome Health. 2018;53–91. doi: 10.1016/B978-0-12-811440-7.00003-X
  112. Wang H, He Y, Sun Z, et al. Microglia in depression: an overview of microglia in the pathogenesis and treatment of depression. J Neuroinflammation. 2022;19(1):132. doi: 10.1186/s12974-022-02492-0 EDN: OAIYEX
  113. Valcheva R, Dieleman LA. Prebiotics: Definition and protective mechanisms. Best Pr Res Clin Gastroenterol. 2016;30(1):27–37. doi: 10.1016/j.bpg.2016.02.008
  114. Khaledi M, Sameni F, Gholipour A, et al. Potential role of gut microbiota in major depressive disorder: A review. Heliyon. 2024;10(12):e33157. doi: 10.1016/j.heliyon.2024.e33157 EDN: ZLMUGE
  115. Ballas HS, Wilfur SM, Freker NA, et al. Oxytocin Attenuates the Stress-Induced Reinstatement of Alcohol-Seeking in Male Rats: Role of the Central Amygdala. Biomedicines. 2021;9(12):1919. doi: 10.3390/biomedicines9121919 EDN: HLKXOH
  116. Azagra-Boronat I, Rodríguez-Lagunas MJ, Castell M, et al. Prebiotics for Gastrointestinal Infections and Acute Diarrhea. Diet Interv Gastrointest Dis. 2019;179–191. doi: 10.1016/b978-0-12-814468-8.00014-4
  117. Green J, Castle D, Berk M, et al. Faecal microbiota transplants for depression - Who gives a crapsule? Aust New Zealand J Psychiatry. 2019;53(8):732–734. doi: 10.1177/0004867419839776
  118. Wigner P, Czarny P, Galecki P, et al. The molecular aspects of oxidative & nitrosative stress and the tryptophan catabolites pathway (TRYCATs) as potential causes of depression. Psychiatry Res. 2018;262:566–574. doi: 10.1016/j.psychres.2017.09.045 EDN: YDLTAL
  119. Rudzki L, Ostrowska L, Pawlak D, et al. Probiotic Lactobacillus Plantarum 299v decreases kynurenine concentration and improves cognitive functions in patients with major depression: A double-blind, randomized, placebo controlled study. Psychoneuroendocrinology. 2019;100:213–222. doi: 10.1016/j.psyneuen.2018.10.010
  120. Sergeev YA, Beyer EV. Neuropsychopharmacological Aspects of Antibiotic Action. Antibiotics and chemotherapy. 2025;70(1–2):113–123. doi: 10.37489/0235-2990-2025-70-1-2-113-123 EDN: ZDBXUZ
  121. Desbonnet L, Clarke G, Traplin A, et al. Gut microbiota depletion from early adolescence in mice: Implications for brain and behaviour. Brain, Behav Immun. 2015;48:165–173. doi: 10.1016/j.bbi.2015.04.004
  122. Bercik P, Denou E, Collins J, et al. The Intestinal Microbiota Affect Central Levels of Brain-Derived Neurotropic Factor and Behavior in Mice. Gastroenterology. 2011;141(2):599–609.e3. doi: 10.1053/j.gastro.2011.04.052
  123. Schmidtner AK, Slattery DA, Gläsner J, et al. Minocycline alters behavior, microglia and the gut microbiome in a trait-anxiety-dependent manner. Transl Psychiatry. 2019;9(1):223. doi: 10.1038/s41398-019-0556-9 EDN: WLVUXO
  124. Liu Y, Wang H, Gui S, et al. Proteomics analysis of the gut-brain axis in a gut microbiota-dysbiosis model of depression. Transl Psychiatry. 2021;11(1):568. doi: 10.1038/s41398-021-01689-w EDN: WTJWYA
  125. Vindigni SM, Surawicz CM. Fecal Microbiota Transplantation. Gastroenterol Clin North Am. 2017;46(1):171–185. doi: 10.1016/j.gtc.2016.09.012
  126. Kurokawa S, Kishimoto T, Mizuno S, et al. The effect of fecal microbiota transplantation on psychiatric symptoms among patients with irritable bowel syndrome, functional diarrhea and functional constipation: An open-label observational study. J Affect Disord. 2018;235:506–512. doi: 10.1016/j.jad.2018.04.038
  127. Chinna meyyappan A, Forth E, Milev R. Microbial Ecosystem Therapeutic-2 Intervention in People With Major Depressive Disorder and Generalized Anxiety Disorder: Phase 1, Open-Label Study. Interact J Med Res. 2022;11(1):e32234. doi: 10.2196/32234 EDN: PLXBPG
  128. Ma Y, Liu T, Li X, et al. Estrogen receptor β deficiency impairs gut microbiota: a possible mechanism of IBD-induced anxiety-like behavior. Microbiome. 2022;10(1):160. doi: 10.1186/s40168-022-01356-2 EDN: MCXXJR
  129. Rukavishnikov GV, Leonova LV, Kaysanov ED, et al. The antidepressants effects on microbiota: unobvious possibilities. V.M. Bekhterev Review Of Psychiatry And Medical Psychology. 2021;55(4):8–14. doi: 10.31363/2313-7053-2021-55-4-8-14 EDN: IYMVFX
  130. Boustany A, Onwuzo S, Zeid HKA, et al. Antidepressant medications are associated with increased risk of hospital-acquired clostridioides difficile infection: a population-based study. Arq Gastroenterol. 2023;60(3):309–314. doi: 10.1590/S0004-2803.230302023-21 EDN: TSROUK
  131. Boustany A, Feuerstadt P, Tillotson G. The 3 Ds: Depression, Dysbiosis, and Clostridiodes difficile. Adv Ther. 2024;41(11):3982–3995. doi: 10.1007/s12325-024-02972-0 EDN: ISXXZO

Supplementary files

Supplementary Files
Action
1. JATS XML

© 2026 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.



Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).