Comparative analysis of cytokine and adipocytokine levels in patients with chronic obstructive pulmonary disease considering the presence of metabolic syndrome: a cross-sectional study
- Authors: Chernyshov N.A.1, Voronkova O.V.1, Prokonich D.A.1, Saprina T.V.1, Bukreeva E.B.1
-
Affiliations:
- Siberian State Medical University
- Issue: Vol 107, No 1 (2026)
- Pages: 31-39
- Section: Theoretical and clinical medicine
- URL: https://ogarev-online.ru/kazanmedj/article/view/382459
- DOI: https://doi.org/10.17816/KMJ678947
- EDN: https://elibrary.ru/BAYEPG
- ID: 382459
Cite item
Abstract
BACKGROUND: Metabolic syndrome is frequently observed in combination with chronic obstructive pulmonary disease, underscoring the need to investigate its components, particularly chronic systemic inflammation as a pathogenic factor, and risk factors for unfavorable disease progression.
AIM: This study aimed to characterize changes in serum concentrations of cytokines and adipocytokines in individuals with chronic obstructive pulmonary disease considering the presence of metabolic syndrome.
METHODS: Thirty-three patients with chronic obstructive pulmonary disease were divided into two groups: without metabolic syndrome (n = 13; group 1) and with metabolic syndrome (n = 20; group 2). The control group consisted of 16 relatively healthy volunteers. Serum concentrations of adipocytokines (i.e., leptin, resistin, visfatin, and adiponectin) and cytokines (i.e., IL-4, IL-6, IL-8, IL-10, and MCP-1) were measured using enzyme-linked immunosorbent assay. Statistical analysis was performed using the Mann–Whitney test and Student’s t-test.
RESULTS: Compared with the control group, group 1 showed increased concentrations of MCP-1 [408.5 (341.1–526.7) pg/mL vs 195.0 (102.7–231.0) pg/mL in the control group; p = 0.001], IL-6 [4.09 (3.18–9.44) pg/mL vs 1.02 (0.50–2.14) pg/mL in the control group; p = 0.001], IL-8 [13.37 (12.66–13.75) pg/mL vs 4.96 (3.96–5.74) pg/mL in the control group; p = 0.001], and IL-10 [9.34 (3.50–20.68) pg/mL vs 1.70 (0.71–10.02) pg/mL in the control group; p = 0.001], as well as resistin [10.35 (6.56–13.44) ng/mL vs 4.93 (2.78–7.50) ng/mL in the control group; p = 0.001], visfatin [85.63 (76.00–91.75) ng/mL vs 55.34 (27.21–73.62) ng/mL in the control group; p = 0.001], adiponectin [13.95 (5.28–20.83) µg/mL vs 4.40 (3.48–8.56) µg/mL in the control group; p = 0.041], and leptin [9.16 (6.67–15.44) ng/mL vs 5.05 (4.43–7.49) ng/mL in the control group; p = 0.007]. Group 2 demonstrated increased concentrations of MCP-1 [457.3 (339.7–541.0) pg/mL vs 195.0 (102.7–231.0) pg/mL in the control group; p = 0.001], IL-6 [5.42 (4.35–6.91) pg/mL vs 1.02 (0.50–2.14) pg/mL in the control group; p = 0.001], and IL-8 [13.51 (12.34–15.52) pg/mL vs 4.96 (3.96–5.74) pg/mL in the control group; p = 0.001], as well as resistin [9.97 (6.58–11.80) ng/mL vs 4.93 (2.78–7.50) ng/mL in the control group; p = 0.003], visfatin [81.24 (72.15–92.26) ng/mL vs 55.34 (27.21–73.62) ng/mL in the control group; p = 0.002], and adiponectin [9.61 (5.40–14.98) µg/mL vs 4.40 (3.48–8.56) µg/mL in the control group; p = 0.041].
CONCLUSION: The unidirectional pattern of changes in adipocytokine concentrations in individuals with chronic obstructive pulmonary disease — with and without metabolic syndrome — indicates that these proteins may be common markers of chronic inflammation.
About the authors
Nikita A. Chernyshov
Siberian State Medical University
Author for correspondence.
Email: nchernyschov@mail.ru
ORCID iD: 0000-0002-4008-5606
SPIN-code: 7863-9900
Assistant Lecturer, Depart. of Biology and Genetics
Russian Federation, TomskOlga V. Voronkova
Siberian State Medical University
Email: voronkova-ov@yandex.ru
ORCID iD: 0000-0001-9478-3429
SPIN-code: 8005-8110
MD, Dr. Sci. (Medicine), Assistant Professor, Head, Depart. of Biology and Genetics
Russian Federation, TomskDarya A. Prokonich
Siberian State Medical University
Email: polyanskaya_darya7@mail.ru
ORCID iD: 0000-0003-4750-4364
SPIN-code: 9577-9944
Assistant Lecturer, Depart. of Faculty Therapy with courses in Endocrinology and Clinical Pharmacology
Russian Federation, TomskTatyana V. Saprina
Siberian State Medical University
Email: tanja.v.saprina@mail.ru
ORCID iD: 0000-0001-9011-8720
SPIN-code: 2841-2371
MD, Dr. Sci. (Medicine), Assistant Professor, Professor, Depart. of Faculty Therapy with courses in Endocrinology and Clinical Pharmacology
Russian Federation, TomskEkaterina B. Bukreeva
Siberian State Medical University
Email: kbukreeva@mail.ru
ORCID iD: 0000-0002-7699-5492
SPIN-code: 6553-9690
MD, Dr. Sci. (Medicine), Professor, Depart. of Propaedeutics of Internal Diseases with a course of Therapy at the Pediatric Faculty
Russian Federation, TomskReferences
- Seliverstov PV, Bakaeva SR, Shapovalov VV. A telemedicine system in the assessment of risks for socially significant chronic non-communicable diseases. Vrach. 2020;31(10):68–73. doi: 10.29296/25877305-2020-10-13 EDN: FPZNMV
- Kim OT, Dadaeva VA, Nurullina GI, et al. Chronic inflammation in case of obesity-associated diseases. The Russian Journal of Preventive Medicine. 2025;28(1):115–121. doi: 10.17116/profmed202528011115 EDN: EXPRCZ
- Ovsjannikov ES, Avdeev SN, Budnevskij AV. Systemic inflammation in patients with chronic obstructive pulmonary disease and obesity. Terapevticheskiy arkhiv. 2020;92(3):13–18. doi: 10.26442/00403660.2020.03.000265 EDN: EXZWYY
- Santos NC, Miravitlles M, Camelier AA, et al. Prevalence and Impact of Comorbidities in Individuals with Chronic Obstructive Pulmonary Disease: A Systematic Review. Tuberculosis and Respiratory Diseases (Seoul). 2022;85(3):205–220. doi: 10.4046/trd.2021.0179 EDN: KVGSHQ
- Sergeeva VA. Respiratory pathophysiology in obesity. Pulmonologiya. 2021;31(6):808–815. doi: 10.18093/0869-0189-2021-31-6-808-815 EDN: CUYQZW
- Shestopalov AV, Ganenko LA, Grigor'eva TV, et al. Adipokines and myokines as indicators of obese phenotypes and their association with the gut microbiome diversity indices. Vestnik RGMU. 2023;(1):49–58. doi: 10.24075/vrgmu.2023.004
- Chuchalin AG, Avdeev SN, Aisanov ZR, et al. Federal guidelines on diagnosis and treatment of chronic obstructive pulmonary disease. Pulmonologiya. 2022;32(3):356–392. doi: 10.18093/0869-0189-2022-32-3-356-392 EDN: ANYVUN
- Fahed G, Aoun L, Bou Zerdan M, et al. Metabolic Syndrome: Updates on Pathophysiology and Management in 2021. Int J Mol Sci. 2022;23(2):786. doi: 10.3390/ijms23020786 EDN: NKHLKM
- Hikichi M, Mizumura K, Maruoka S, et al. Pathogenesis of chronic obstructive pulmonary disease (COPD) induced by cigarette smoke. J Thorac Dis. 2019;11(17):2129–2140. doi: 10.21037/jtd.2019.10.43
- Longo M, Zatterale F, Naderi J, et al. Adipose Tissue Dysfunction as Determinant of Obesity-Associated Metabolic Complications. Int J Mol Sci. 2019;20(9):2358. doi: 10.3390/ijms20092358 EDN: HXMRQA
- Singh S, Anshita D, Ravichandiran V. MCP-1: Function, regulation, and involvement in disease. Int Immunopharmacol. 2021;101(Pt B):107598. doi: 10.1016/j.intimp.2021.107598 EDN: MNHHFG
- Chahirou Y, Mesfioui A, Ouichou A, et al. Adipokines: mechanisms of metabolic and behavioral disorders. Obesity and metabolism. 2018;15(3):14–20. doi: 10.14341/OMET9430 EDN: YOCAAX
- Lohmann AE, Goodwin PJ, Chlebowski RT, et al. Association of obesity-related metabolic disruptions with cancer risk and outcome. Journal of Clinical Oncology. 2016;34(35):4249–4255. doi: 10.1200/JCO.2016.69.6187 EDN: YXDIQP
- Farooq R, Amin S, Hayat Bhat M, et al. Type 2 diabetes and metabolic syndrome - adipokine levels and effect of drugs. Gynecological Endocrinology. 2017;33(1):75–78. doi: 10.1080/09513590.2016.1207165
- Zorena K, Jachimowicz-Duda O, Ślęzak D, et al. Adipokines and Obesity. Potential Link to Metabolic Disorders and Chronic Complications. Int J Mol Sci. 2020;21(10):3570. doi: 10.3390/ijms21103570 EDN: LTRRTQ
- Li Y, Yang Q, Cai D, et al. Resistin, a Novel Host Defense Peptide of Innate Immunity. Front Immunol. 2021;12:699807. doi: 10.3389/fimmu.2021.699807 EDN: IGBFUE
- Obradovic M, Sudar-Milovanovic E, Soskic S, et al. Leptin and Obesity: Role and Clinical Implication. Front Endocrinol. 2021;12:585887. doi: 10.3389/fendo.2021.585887 EDN: SUWWDB
- Wang S, Baidoo SE, Liu Y, et al. T cell-derived leptin contributes to increased frequency of T helper type 17 cells in female patients with Hashimoto's thyroiditis. Clin Exp Immunol. 2013;171(1):63–68. doi: 10.1111/j.1365-2249.2012.04670.x
- Suzukawa M, Nagase H, Ogahara I, et al. Leptin Enhances Survival and Induces Migration, Degranulation, and Cytokine Synthesis of Human Basophils. J Immunol. 2011;186(9):5254–5260. doi: 10.4049/jimmunol.1004054
- Neumann E, Hasseli R, Ohl S, et al. Adipokines and Autoimmunity in Inflammatory Arthritis. Cells. 2021;10(2):216. doi: 10.3390/cells10020216 EDN: TDALRV
- Chang ML, Yang Z, Yang SS. Roles of Adipokines in Digestive Diseases: Markers of Inflammation, Metabolic Alteration and Disease Progression. Int J Mol Sci. 2020;21(21):8308. doi: 10.3390/ijms21218308 EDN: RBLTUI
- Huber K, Szerenos E, Lewandowski D, et al. The Role of Adipokines in the Pathologies of the Central Nervous System. Int J Mol Sci. 2023;24(19):14684. doi: 10.3390/ijms241914684
- Kiełbowski K, Bakinowska E, Ostrowski P, et al. The Role of Adipokines in the Pathogenesis of Psoriasis. Int J Mol Sci. 2023;24(7):6390. doi: 10.3390/ijms24076390 EDN: VADFYK
Supplementary files
