Children’s heart and prematurity: a current view of the problem
- Authors: Pavlyukova E.N.1, Kolosova M.V.2, Neklyudova G.V.1, Alexeeva E.O.1, Karpov R.S.1
-
Affiliations:
- Research Institute of Cardiology, Tomsk National Research Medical Center of the Russian Academy of Sciences
- Siberian State Medical University
- Issue: Vol 105, No 2 (2024)
- Pages: 284-298
- Section: Reviews
- URL: https://ogarev-online.ru/kazanmedj/article/view/257051
- DOI: https://doi.org/10.17816/KMJ303607
- ID: 257051
Cite item
Abstract
Improved survival of children born with low, extremely low and very low body weight in modern conditions due to increased nursing capabilities, optimization of treatment and increased efficiency of resuscitation measures has led to the need for greater understanding of the importance of assessing the cardiovascular system’s state beyond the neonatal period. With approximately 10% of infants worldwide being born preterm, there is an increasing need for further research into optimal regimens, lifestyle and clinical interventions that can benefit and modify cardiovascular morphology and function in this growing population. Modern theoretical postulates on the physiology and pathophysiology of the child’s heart include ideas about the key process of cardiac biomechanics — diastole, during which the earliest disturbances, that precede the formation of systolic dysfunction, occur. Assessment of the pumping properties of the left ventricle in systole and diastole is a fundamental methodological technique for an in-depth understanding of the pathophysiological mechanisms of cardiovascular system’s emerging diseases, their early diagnosis and assessment of the complex therapy’s effectiveness. However, despite the widespread use of standard echocardiography to assess systolic and diastolic function, its traditional parameters have limitations in terms of diagnostic accuracy and effectiveness in practice. Expanding knowledge about new pathogenetic mechanisms of the cardiac dysfunction formation in conditions of prematurity at the current stage of cardiology development using the “trace spot” technology (two-dimensional speckle tracking echocardiography) will be very useful for scientists studying the mechanics formation of the child’s heart after premature birth, and for doctors of various specialties in early diagnosis of heart diseases.
Full Text
##article.viewOnOriginalSite##About the authors
Elena N. Pavlyukova
Research Institute of Cardiology, Tomsk National Research Medical Center of the Russian Academy of Sciences
Author for correspondence.
Email: pavluk@cardio-tomsk.ru
ORCID iD: 0000-0002-3081-9477
SPIN-code: 5794-3627
Scopus Author ID: 6507428859
ResearcherId: P-8477-2016
M.D., D. Sci. (Med.), Prof., Head of Depart., Depart. of Atherosclerosis and Chronic Coronary Heart Disease, Research Institute of Cardiology
Russian Federation, TomskMarina V. Kolosova
Siberian State Medical University
Email: kolosova_mv@inbox.ru
ORCID iD: 0000-0002-5550-5925
SPIN-code: 1982-4987
M.D., D. Sci. (Med.), Prof.,Depart. of Children's Diseases
Russian Federation, TomskGalina V. Neklyudova
Research Institute of Cardiology, Tomsk National Research Medical Center of the Russian Academy of Sciences
Email: lv-gal@mail.ru
ORCID iD: 0000-0002-7556-9379
SPIN-code: 9958-8105
PhD Stud., Research Institute of Cardiology
Russian Federation, TomskEvgeniya O. Alexeeva
Research Institute of Cardiology, Tomsk National Research Medical Center of the Russian Academy of Sciences
Email: alexeeva_777@mail.ru
ORCID iD: 0000-0003-0335-9126
PhD Stud., Research Institute of Cardiology
Russian Federation, TomskRostislav S. Karpov
Research Institute of Cardiology, Tomsk National Research Medical Center of the Russian Academy of Sciences
Email: karpov@cardio-tomsk.ru
ORCID iD: 0000-0002-7011-4316
SPIN-code: 8263-2641
M.D., D. Sci. (Med.), Academician of the Russian Academy of Sciences, Scientific Supervisor, Research Institute of Cardiology
Russian Federation, TomskReferences
- El-Khuffash A, Jain A, Lewandowski AJ, Levy P. Preventing disease in the 21st century: Early breast milk exposure and later cardiovascular health in premature infants. Pediatr Res. 2020;87:385–390. doi: 10.1038/s41390-019-0648-5.
- Vrselja A, Pillow JJ, Black MJ. Effect of preterm birth on cardiac and cardiomyocyte growth and the consequences of antenatal and postnatal glucocorticoid treatment. J Clin Med. 2021;10(17):3896. doi: 10.3390/jcm10173896.
- Bates ML, Levy PT, Nuyt AM, Goss KN, Lewandowski AJ, McNamara PJ. Adult cardiovascular health risk and cardiovascular phenotypes of prematurity. J Pediatr. 2020;227:17–30. doi: 10.1016/j.jpeds.2020.09.019.
- Yubbu P, Kauffman H, Calderon-Anyosa R, Montero AE, Sato T, Matsubara D, Banerjee A. Peak apical recoil rate is a simplified index of left ventricular untwist: validation and application for assessment of diastolic function in children. Int J Cardiovasc. 2022;38:1505–1516. doi: 10.1007/s10554-022-02587-y.
- Kovalenko VN, Yabluchansky NI. Heart diastole (physiology, changes in pathological conditions). Vestnik Kharkovskogo natsionalnogo universiteta im VN Karazina. Seriya “Meditsina”. 2003;(6):5–14. (In Russ.) EDN: SHKJMD.
- Sabatino J, Castaldi B, Di Salvo G. How to measure left ventricular twist by two-dimensional speckle-tracking analysis. Eur Heart J Cardiovasc Imaging. 2021;229(9):961–963. doi: 10.1093/ehjci/jeab108.
- De Waal K, Costley N, Phad N, Crendal E. Left ventricular diastolic dysfunction and diastolic heart failure in preterm infants. Pediatr Cardiol. 2019;40(8):1709–1715. doi: 10.1007/s00246-019-02208-x.
- Cohen ED, Yee M, Porter GA Jr, Ritzer E, McDavid AN, Brookes PS, Pryhuber GS, O'Reilly MA. Neonatal hyperoxia inhibits proliferation and survival of atrial cardiomyocytes by suppressing fatty acid synthesis. JCI Insight. 2021;6(5):e140785. doi: 10.1172/jci.insight.140785.
- Tan CMJ, Lewandowski AJ. The transitional heart: From early embryonic and fetal development to neonatal life. Fetal Diagn Ther. 2020;47(5):406–419. doi: 10.1159/000501906.
- Zafra-Rodríguez P, Méndez-Abad P, Lubián-López SP, Benavente-Fernández I. NT-proBNP as an early marker of diastolic ventricular dysfunction in very-low-birth-weight infants. Pediatr Cardiol. 2019;40(6):1165–1170. doi: 10.1007/s00246-019-02125-z.
- Shi Y, Ji J, Wang C. Exploring the NT-proBNP expression in premature infants with patent ductus arteriosus (PDA) by echocardiography. Pak J Med Sci. 2021;37(6):1615–1619. doi: 10.12669/pjms.37.6-СТ.4853.
- Lapidaire W, Clark C, Fewtrell MS, Lucas A, Leeson P, Lewandowski AJ. The preterm heart-brain axis in young adulthood: The impact of birth history and modifiable risk factors. J Clin Med. 2021;10(6):1285. doi: 10.3390/jcm10061285.
- Greer C, Troughton RW, Adamson PD, Harris SL. Preterm birth and cardiac function in adulthood. Heart. 2022;108(3):172–177. doi: 10.1136/heartjnl-2020-318241.
- Crump C, Howell EA, Stroustrup A, McLaughlin MA, Sundquist J, Sundquist K. Association of preterm birth with risk of ischemic heart disease in adulthood. JAMA Pediatr. 2019;173(8):736–743. doi: 10.1001/jamapediatrics.2019.1327.
- Crump C. Preterm birth and mortality in adulthood: A systematic review. J Perinatol. 2020;40(6):833–843. doi: 10.1038/s41372-019-0563- у.
- Risnes K, Bilsteen JF, Brown P, Pulakka A, Andersen AMN, Opdahl S, Sandin S. Mortality among young adults born preterm and early term in 4 Nordic nations. JAMA Netw Open. 2021;4(1):e2032779–e2032779. doi: 10.1001/jamanetworkopen.2020.32779.
- Sedmera D, Thompson RP, Campione M, Aranega A, Franco D, Miquerol L, Siekmann AF. Morphogenesis of cardiovascular structures: On form and function. Oxford: The ESC Textbook of Cardiovascular Development; 2018. 331 р.
- Bussmann N, Afif EK, Breatnach CR, McCallion N, Franklin O, Singh GK, Levy PT. Left ventricular diastolic function influences right ventricular — pulmonary vascular coupling in premature infants. Early Hum Dev. 2019;128:35–40. doi: 10.1016/j.earlhumdev.2018.11.006.
- Phad N, de Waal K. Biplane left ventricular ejection fraction in preterm infants. Echocardiography. 2020;37(8):1265–271. doi: 10.1111/echo.14784.
- Lewandowski AJ, Augustine D, Lamata P, Davis EF, Lazdam M, Francis J, Smith NP. Preterm heart in adult life: cardiovascular magnetic resonance reveals distinct differences in left ventricular mass, geometry, and function. Circulation. 2013;127(2):197–206. doi: 10.1161/CIRCULATIONAHA.112.126920.
- Lamata P, Lazdam M, Ashcroft A, Lewandowski AJ, Leeson P, Smith N. Computational mesh as a descriptor of left ventricular shape for clinical diagnosis. Computing in Cardiology. 2013;40:571–574.
- Harris SL, Bray H, Troughton R, Elliott J, Frampton C, Horwood J, Darlow BA. Cardiovascular outcomes in young adulthood in a population-based very low birth weight cohort. J Pediatr. 2020;225:74–79. doi: 10.1016/j.jpeds.2020.06.023.
- Chang HY, Chang JH, Peng CC, Hsu CH, Ko MH, Hung CL, Chen MR. Subclinical changes in left heart structure and function at preschool age in very low birth weight preterm infants. Front Cardiovasc Med. 2022;9:879952–879952. doi: 10.3389/fcvm.2022.879952.
- Erickson CT, Patel MD, Choudhry S, Bisselou KS, Sekarski T, Craft M, Levy PT. Persistence of right ventricular dysfunction and altered morphometry in asymptomatic preterm infants through one year of age: Cardiac phenotype of prematurity. Cardiol Young. 2019;29(7):945–953. doi: 10.1017/S1047951119001161.
- Phad NS, de Waal K, Holder C. Dilated hypertrophy: a distinct pattern of cardiac remodeling in preterm infants. Pediatr Res. 2020;87:146–152. doi: 10.1038/s41390-019-0568-4.
- Mohlkert LA, Hallberg J, Broberg O, Sjöberg G, Rydberg A, Liuba P, Pegelow Halvorsen C. Right heart structure, geometry and function assessed by echocardiography in 6-year-old children born extremely preterm — A population-based cohort study. J Clin Med. 2020;10(1):122. doi: 10.3390/jcm10010122.
- Lewandowski AJ, Bradlow WM, Augustine D, Davis EF, Francis J, Singhal A, Leeson P. Right ventricular systolic dysfunction in young adults born preterm. Circulation. 2013;128(7):713–720. doi: 10.1161/CIRCULATIONAHA.113.002583.
- Mohamed A, Lamata P, Williamson W, Alsharqi M, Tan CM, Burchert H, Lewandowski AJ. Multimodality imaging demonstrates reduced right-ventricular function independent of pulmonary physiology in moderately preterm-born adults. JACC Cardiovasc Imaging. 2020;13(9):2046–2048. doi: 10.1016/j.jcmg.2020.03.016.
- Mohamed A, Lamata P, Williamson W, Alsharqi M, Tan CMJ, Burchert H, Lewandowski AJ. Right ventricular morphology and function analysis in moderately preterm-born young adults. Eur Heart J. 2020;41(2):ehaa946-0303. doi: 10.1093/ehjci/ehaa946.0303.
- Greer C, Harris SL, Troughton R, Adamson PD, Horwood J, Frampton C, Darlow BA. Right ventricular structure and function in young adults born preterm at very low birth weight. J Clin Med. 2021;10(21):4864. doi: 10.3390/jcm10214864.
- Corrado PA, Barton GP, Macdonald JA, François CJ, Eldridge MW, Goss KN, Wieben O. Altered right ventricular filling at four-dimensional flow MRI in young adults born prematurely. Radiol Cardiothorac Imaging. 2021;3(3):e200618. doi: 10.1148/ryct.2021200618.
- Abushaban L, Rathinasamy J, Sharma PN, Vel MT. Normal reference ranges for the left ventricular mass and left ventricular mass index in preterm infants. Ann Pediatr Cardiol. 2020;13(1):25. doi: 10.4103/apc.APC_171_18.
- Cox DJ, Bai W, Price AN, Edwards AD, Rueckert D, Groves AM. Ventricular remodeling in preterm infants: computational cardiac magnetic resonance atlasing shows significant early remodeling of the left ventricle. Pediatr Res. 2019;85(6):807–815. doi: 10.1038/s41390-018-0171-0.
- Zaharie GC, Hăşmăşanu MG, Blaga L, Matyas M, Mureșan D, Bolboacă SD. Cardiac left heart morphology and function in newborns with intrauterine growth restriction: Relevance for long-term assessment. Med Ultrason. 2019;21(1):62–68. doi: 10.11152/mu-1667.
- Lewandowski AJ, Raman B, Bertagnolli M, Mohamed A, Williamson W, Pelado JL, Leeson P. Association of preterm birth with myocardial fibrosis and diastolic dysfunction in young adulthood. J Am Coll Cardiol. 2021;78(7):683–692 doi: 10.1016/j.jacc.2021.05.053.
- Jimbo S, Noto N, Okuma H, Kato M, Komori A, Ayusawa M, Morioka I. Normal reference values for left atrial strains and strain rates in school children assessed using two-dimensional speckle-tracking echocardiography. Heart Vessels. 2020;35(9):1270–1280. doi: 10.1007/s00380-020-01594-0.
- Hope KD, Wang Y, Banerjee MM, Montero AE, Pandian NG, Banerjee A. Left atrial mechanics in children: insights from new applications of strain imaging. Int J Cardiovasc Imaging. 2019;35:57–65. doi: 10.1007/s10554-018-1429-7.
- De Waal K, Phad N, Boyle A. Left atrium function and deformation in very preterm infants with and without volume load. Echocardiography. 2018;35(11):1818–1826. doi: 10.1111/echo.14140.
- Kang SJ, Jung H, Hwang SJ, Kim HJ. Right atrial strain in preterm infants with a history of bronchopulmonary dysplasia. J Cardiovasc Imaging. 2022;30(2):112. doi: 10.4250/jcvi.2021.0126.
- Aldana-Aguirre JC, Eckersley L, Hyderi A, Hirose A, Boom JVD, Kumaran K, Hornberger LK. Influence of extreme prematurity and bronchopulmonary dysplasia on cardiac function. Echocardiography. 2021;38(9):1596–1603. doi: 10.1111/echo.15178.
- Blanca AJ, Duijts L, van Mastrigt E, Pijnenburg MW, Ten Harkel DJD, Helbing WA, Koopman LP. Right ventricular function in infants with bronchopulmonary dysplasia and pulmonary hypertension: A pilot study. Pulm Circ. 2019;9(1):2045894018816063. doi: 10.1177/2045894018816063.
- Yoshida-Montezuma Y, Stone E, Iftikhar S, De Rubeis V, Andreacchi AT, Keown-Stoneman C, Anderson LN. The association between late preterm birth and cardiometabolic conditions across the life course: A systematic review and meta-analysis. Paediat Perinat Epidemiol. 2022;36(2):264–275. doi: 10.1111/ppe.12831.
- Bensley JG, Moore L, De Matteo R, Harding R, Black MJ. Impact of preterm birth on the developing myocardium of the neonate. Pediatr Res. 2018;83(4):880. doi: 10.1038/pr.2017.324.
- Knott MH, Haskell SE, Strawser PE, Rice OM, Bonthius NT, Movva VC, Roghair RD. Neonatal growth restriction slows cardiomyocyte development and reduces adult heart size. Anat Rec. 2018;301(8):1398–1404. doi: 10.1002/ar.23851.
- El-Khuffash A, McNamara PJ. Hemodynamic assessment and monitoring of premature infants. Clin Perinatol. 2017;44(2):377–393. doi: 10.1016/j.clp.2017.02.001.
- Kulida LV, Malysheva MV, Peretyatko LP, Saryeva OP, Protsenko EV. Morphopathology of myocardial hypoxic-ischemic injuries in newborns at 22–27 weeks’ gestation. Archive of pathology. 2021;83(4):29-34. (In Russ.) doi: 10.17116/patol20218304129.
- Markovskiy VD, Myroshnychenko MS, Pliten ON. Pathomorphology of the heart of fetuses and newborns with different variants of intrauterine growth retardation. Perinatologiya i pediatriya. 2012;(2):75277. (In Russ.) EDN: TTKIWL.
- Korkushko OV. Modern concepts of myocardial ischemia syndrome. Krovoobіg ta gemostaz. 2003;(1):8–17. (In Russ.)
- Rybakova MС, Kuznetsova IA. The role of apoptosis in ischemic damage to the myocardium. Archive of pathology. 2005;67(5):23–25. (In Russ.) EDN: HSSYJD.
- Gargin VV, Myroshnychenko MS. Morphofunctional peculiarities of the heart in foetus and newborn with intrauterine growth retardation in 27–35 terms of gestation. Perinatologiya i pediatriya. 2010;(2):130–132. (In Russ.) EDN: TUYRQD.
- Shnitkov AM, Konkina EA, Shnitkova EV. Structural and functional features of cardiovascular system of foetus and newborns at placental insufficiency. Vestnik novykh meditsinskikh tekhnologiy. 2013;20(4):154–160. (In Russ.) EDN: RSXGJL.
- Markovskiy VD, Gargin VV, Miroshnichenko MS. Macroscopic and microscopic features of fetal and newborn hearts with intrauterine development delay at 36–41 weeks gestation. Klіnіchna anatomіya ta operativna khіrurgіya. 2010;(1):77–80. (In Russ.)
- Humberg A, Fortmann I, Siller B, Kopp MV, Herting E, Göpel W, Härtel C. Preterm birth and sustained inflammation: Consequences for the neonate. Semin Immunopathol. 2020;42:451. doi: 10.1007/s00281-020-00803-2.
- Trainini J, Lowenstein J, Beraudo M, Wernicke M, Trainini A, Llabata VM, Carreras CF. Myocardial torsion and cardiac fulcrum. Morphologie. 2021;105(348):15. doi: 10.1016/j.morpho.2020.06.010.
- Picazo-Angelin B, Zabala-Argüelles JI, Anderson RH, Sánchez-Quintana D. Anatomy of the normal fetal heart: The basis for understanding fetal echocardiography. Ann Pediatr Cardiol. 2018;11(2):164–173. doi: 10.4103/apc.APC_152_17.
- Kosharnyy VV, Slobodyan AN, Abdul-Ogly LV, Kozlov SV, Dem'yanenko IA, Dubovik KI, Rutgayzer VG. Osobennosti formoobrazovaniya stenki serdtsa i ego prostranstvennoy orientatsii na etapakh prenatal'nogo ontogeneza. (Features of the formation of the heart wall and its spatial orientation at the stages of prenatal ontogenesis.) Dnepr: “Serednyak T.K.”; 2017. 148 р. (In Russ.)
- Thornburg KL. The programming of cardiovascular disease. J Dev Orig Health Dis. 2015;6(5):366–376. doi: 10.1017/S2040174415001300.
- Radi R, Cassina A, Hodara R. Nitric oxide and peroxyntrite interactions with mitochondria. Biol Chem. 2002;383:401–409.33. doi: 10.1515/BC.2002.044.
- Andreeva AA, Yakushenko NS, Oparina TI. Mechanisms of dysfunction of the cardiovascular system in newborns with intrauterine growth retardation and long-term consequences. Journal of obstetrics and women's diseases. 2011;60(3):32–36. (In Russ.) EDN: OFSQHT.
- Gao Y, Dasgupta C, Huang L, Song R, Zhang Z, Zhang L. Multi-omics integration reveals short and long-term effects of gestational hypoxia on the heart development. Cells. 2019;8(12):1608. doi: 10.3390/cells8121608.
- Paradis AN, Gay MS, Wilson CG, Zhang L. Newborn hypoxia/anoxia inhibits cardiomyocyte proliferation and decreases cardiomyocyte endowment in the developing heart: Role of endothelin-1. PloS One. 2015;10(2):e0116600. doi: 10.1371/journal.pone.0116600.
- Botting KJ, McMillen IC, Forbes H, Nyengaard JR, Morrison JL. Chronic hypoxemia in late gestation decreases cardiomyocyte number but does not change expression of hypoxia-responsive genes. J Am Heart Assoc. 2014;3(4):e000531. doi: 10.1161/JAHA.113.000531.
- Bubb KJ, Cock ML, Black MJ, Dodic M, Boon WM, Parkington HC, Tare M. Intrauterine growth restriction delays cardiomyocyte maturation and alters coronary artery function in the fetal sheep. J Physiol. 2007;578:871–881. doi: 10.1113/jphysiol.2006.121160.
- Tong W, Xue Q, Li Y, Zhang L. Maternal hypoxia alters matrix metalloproteinase expression patterns and causes cardiac remodeling in fetal and neonatal rats. Am J Physiol Heart Circ Physiol. 2011;301:H2113–H2121. doi: 10.1152/ajpheart.00356.2011.
- Sidorov AG. Morphological basis of myocardial electrical instability in newborns who have undergone perinatal hypoxia. Vestnik aritmologii. 2000;(19):57–60. (In Russ.) EDN: HSPKTF.
- Bamber AR, Pryce J, Cook A, Ashworth M, Sebire NJ. Myocardial necrosis and infarction in newborns and infants. Forensic Sci Med Pathol. 2013;9(4):521–527. doi: 10.1007/s12024-013-9472-0.
- Oh KS, Bender TM, Bowen A, Godine L, Park SC. Transient myocardial ischemia of the newborn infant. Pediatr Radiol. 1985;15(1):29–33. doi: 10.1007/BF02387849.
- El-Sabrout H, Ganta S, Guyon P, Ratnayaka K, Vaughn G, Perry J, El-Said H. Neonatal myocardial infarction: A proposed algorithm for coronary arterial thrombus management. Circ Cardiovasc Interv. 2022;15(5):e011664. doi: 10.1161/circinterventions.121.011664.
- Primhak RA, Jedeikin R, Ellis G, Makela SK, Gillan JE, Swyer PR, Rowe RD. Myocardial ischaemia in aphyxia neonatorum. Acta Paediatr Scand. 1985;74(4):595–600. doi: 10.1111/j.1651-2227.1985.tb11036.x.
- Farru O, Rizzardini M, Guzman N. Transient myocardial ischemia in newborn infants. Arch Mal Coeur Vaiss. 1986;79(5):633–638. PMID: 3092762.
- Hernandorena X, Dehan M, Roset F, Bléhaut B, Boulley AM, Imbert MC, Gabilan JC. Heart disorders following perinatal anoxia (author's transl). Arch Fr Pediatr. 1982;39(2):101–104. PMID: 7073429.
- Kilbride MH, Way GL, Merenstein GB, Winfield JM. Myocardial infarction in the neonate with normal heart and coronary arteries. Am J Dis Child. 1980;134(8):759–762. doi: 10.1001/archpedi.1980.02130200029010.
- Tometzki AJ, Pollock JC, Wilson N, Davis CF. Role of ECMO in neonatal myocardial infarction. Arch Dis Child Fetal Neonatal Ed. 1996;74(2):F143–F144.
- Kabra SK, Saxena S, Sharma U. Myocardial dysfunction in birth asphyxia. Indian J Pediatr. 1988;55(3):416–419. doi: 10.1007/BF02810364.
- Ferns S, Khan M, Firmin R, Peek G, Bu’Lock F. Neonatal myocardial infarction and the role of extracorporeal membrane oxygenation. Arch Dis Child Fetal Neonatal Ed. 2009;94(1):F54–F57. doi: 10.1136/adc.2006.113977.
- De Sa DJ. Myocardial changes in immature infants requiring prolonged ventilation. Arch Dis Child. 1977;52(2):138. doi: 10.1136/adc.52.2.138.
- AlHarbi KM. Myocardial infarction in newborn infant: A case report. Medical Science. 2006;13(1):77–82. doi: 10.4197/Med.13-1.7.
- Bernstein D, Finkbeiner WE, Soifer S, Teitel D. Perinatal myocardial infarction: A case report and review of the literature. Pediatr Cardiol. 1986;6(6):313–317. PMID: 3748837.
- Li H, Hu J, Liu Y, Wang X, Tang S, Chen X, Wei Y. Effects of prenatal hypoxia on fetal sheep heart development and proteomics analysis. Int J Clin Exp Pathol. 2018;11(4):1909. PMID: 31938297.
- Donnelly WH, Bucciarelli RL, Nelson RM. Ischemic papillary muscle necrosis in stressed newborn infants. J Pediatr. 1980;96(2):295–300. doi: 10.1016/S0022-3476(80)80833-X.
- Saha A, Roy S. Papillary muscles of left ventricle — morphological variations & it’s clinical relevance. Indian Heart J. 2018;70(6):894–900. doi: 10.1016/j.ihj.2017.12.003.
- Kaulitz R, Haen S, Sieverding L, Ziemer G. Intrauterine rupture of anterior tricuspid valve papillary muscle: Tricuspid valve chordae replacement on the first day of life. J Thorac Cardiovasc Surg. 2012;143(1):241–243. doi: 10.1016/j.jtcvs.2011.07.015.
- Min J, Kim ER, Yang CK, Kim WH, Jang WS, Cho S. Successful repair of critical tricuspid regurgitation secondary to a ruptured papillary muscle in a neonate. Korean J Thorac Cardiovasc Surg. 2014;47(4):398. doi: 10.5090/kjtcs.2014.47.4.398.
- Benvenuti LA, Aiello VD, Cury AJ, Ebaid M. Post-ischemic rupture of the anterior papillary muscle of the right ventricle associated with persistent pulmonary hypertension of the newborn: A case report. Am J Cardiovasc Pathol. 1992;4:79–84. PMID: 1627331.
- Trainini JC, Beraudo M, Wernicke M, Lowenstein J. Anatomical investigation of the cardiac apex. Rev Argent Cardiol. 2022;90:118–123. doi: 10.7775/rac.v90.i2.20498.
- Sanchez-Quintana D, Garcia-Martinez V, Climent V, Hurle JM. Morphological changes in the normal pattern of ventricular myoarchitecture in the developing human heart. Anat Rec. 1995;243:483–495. doi: 10.1002/ar.1092430411.
- Baptista CAC, DiDio LJA, Davis JT, Teofilovski-Parapid G. The cardiac apex and its superficial blood supply. Surg Radiol Anat. 1988;10:151–160. doi: 10.1007/BF02307825.
- Iribarren I, Hilario E, Álvarez A, Alonso-Alconada D. Neonatal multiple organ failure after perinatal asphyxia. An Pediatr (Engl Ed). 2022;97(4):280-e1. doi: 10.1016/j.anpede.2022.08.010.
- Breatnach CR, Forman E, Foran A, Monteith C, McSweeney L, Malone F, El-Khuffash A. Left ventricular rotational mechanics in infants with hypoxic ischemic encephalopathy and preterm infants at 36 weeks postmenstrual age: A comparison with healthy term controls. Echocardiography. 2017;34(2):232–239. doi: 10.1111/echo.13421.
- Donnelly WH. Ischemic myocardial necrosis and papillary muscle dysfunction in infants and children. Am J Cardiovasc Pathol. 1987;1(2):173–188. PMID: 3333139.
- Faa A, Xanthos T, Fanos V, Fanni D, Gerosa C, Pampaloni P, Iacovidou N. Hypoxia-induced endothelial damage and microthrombosis in myocardial vessels of newborn landrace/large white piglets. Biomed Res Int. 2014;201:619284–619284. doi: 10.1155/2014/619284.
- Karvonen R, Sipola M, Kiviniemi A, Tikanmäki M, Järvelin MR, Eriksson JG, Kajantie E. Cardiac autonomic function in adults born preterm. J Pediatr. 2019;208:96–103. doi: 10.1016/j.jpeds.2018.12.061.
- Simonova LV, Kotlukova NP, Gaydukova NV. Posthypoxic maladaptation of the cardiovascular system in newborns. Russian Bulletin of Perinatology and Pediatrics. 2001;(2):8–12. (In Russ.)
- Yee M, Cohen ED, Domm W, Porter GA Jr, McDavid AN, O'Reilly MA. Neonatal hyperoxia depletes pulmonary vein cardiomyocytes in adult mice via mitochondrial oxidation. Am J Physiol Lung Cell Mol Physiol. 2018;314(5):L846–L859. doi: 10.1152/ajplung.00409.2017.
- Ravizzoni Dartora D, Flahault A, Pontes CN, He Y, Deprez A, Cloutier A, Nuyt AM. Cardiac left ventricle mitochondrial dysfunction after neonatal exposure to hyperoxia: Relevance for cardiomyopathy after preterm birth. Hypertension. 2022;79(3):575–587. doi: 10.1161/HYPERTENSIONAHA.121.17979.
- Hirose A, Khoo NS, Aziz K, Al-Rajaa N, van den Boom J, Savard W, Hornberger LK. Evolution of left ventricular function in the preterm infant. J Am Soc Echocardiogr. 2015;28(3):302–308. doi: 10.1016/j.echo.2014.10.017.
- Bavineni M, Wassenaar TM, Agnihotri K, Ussery DW, Lüscher TF, Mehta JL. Mechanisms linking preterm birth to onset of cardiovascular disease later in adulthood. Eur Heart J. 2019;40(14):1107–1112. doi: 10.1093/eurheartj/ehz025.
- Park JJ, Park JB, Park JH, Cho GY. Global longitudinal strain to predict mortality in patients with acute heart failure. J Am Coll Cardiol. 2018;71(18):1947–1957. doi: 10.1016/j.jacc.2018.02.064.
- Pavlyukova EN, Kolosova MV, Neklyudova GV, Karpov RS. Vortex flows and left ventricular twist in children aged one to five years old, born prematurely with low, very low, and extremely low birth weight. Ultrazvukovaya i funktsionalnaya diagnostika. 2021;(4):38–56. (In Russ.) doi: 10.24835/1607-0771-2021-4-38-56.
Supplementary files
