50 years in search of the «longevity» gene

Cover Page

Cite item

Full Text

Abstract

In many countries of the world mean life expectancy has lately significantly increased from 50 to 70-80 years. Twin studies have shown that genetic differences account for about 25% of the variance in adult human lifespan. However, the association with the life expectancy was proven for the only candidate gene - apolipoprotein gene, playing a great role in regulating lipoproteins metabolism. E2 allele of this gene is much more prevalent compared to E4 allele in people over 100. In animal models, single-gene mutations in genes involved in insulin/insulin-like growth factor-1 abnormal activation pathway and target of rapamycin signaling pathway have considerably extended the lifespan. The key link in regulating the insulin/insulin-like growth factor-1 abnormal activation pathway is the human forkhead box O3A transcription factor. A clear rel ationship between the lifespan and GG genotype of this gene in Japanese, German and French population was found. However, although candidate longevity genes are defined, their effects on the lifespan are still to be confirmed. Questions of gene products’ mutual influence and gene penetration are still undecided. Ethnical and geographical associations of different polymorphic alleles with aging and longevity are not completely clear. Therefore, further search and genetic and phenogenetic markers examination determining the lifespan is needed. Na+-Li+-сountertransport speed in the erythrocyte membrane, which is a genetically determined intermediate phenotype, may be one of those markers.

About the authors

D N Chugunova

Kazan State Medical University, Russia

Email: d0129@yandex.ru

V N Oslopov

Kazan State Medical University, Russia

References

  1. Анисимов В.Н. Молекулярные и физиологические механизмы старения. - СПб.: Наука, 2003. - 468 с.
  2. Глотов О.С., Баранов В.С. Генетический полиморфизм, мультифакториальные болезни и долголетие // Мед. генетика. - 2007. - Т. 6, №4. - С. 17-30.
  3. Макаров М.А., Ослопов В.Н. Результаты длительного наблюдения за динамикой заболеваемости первичной артериальной гипертензией в мужской когорте в зависимости от функционального состояния клеточных мембран // Практ. мед. - 2011. - №4. - С. 49-52.
  4. Малыгина Н.А., Костомарова И.В., Криводубская Т.Ю. и др. Анализ полиморфизма гена ангиотензин-превращающего фермента у больных ишемической болезнью сердца и гипертонией // Кардиология. - 2000. - №4. - С. 19-22.
  5. Постнов Ю.В., Орлов С.Н. Первичная гипертензия как патология клеточных мембран. - М.: Медицина, 1987. - 192 с.
  6. Хавинсон В.Х., Анисимов С.В., Малинин В.В., Анисимов В.Н. Пептидная регуляция генома и старение. - М.: изд-во РАМН, 2005. - 208 с.
  7. Andersen-Ranberg K. Healthy centenarians do not exist, but autonomous centenarians do: a population-based study of morbidity among Danish Centenarians // J. Am. Geriatr. Soc. - 2001. - Vol. 49. - P. 900-908.
  8. Anisimov S.V., Volkova M.V., Lenskaya L.V. Age-associated accumulation of the apolipoprotein C-III gene T-455C polymorphism C allele in a Russian population // J. Gerontol. A. Biol. Sci. Med. Sci. - 2001. - Vol. 56. - P. 27-32.
  9. Bathum L. No evidence for an association between extreme longevity and microsomal transfer protein polymorphisms in a longitudinal study of 1651 nonagenarians // Eur. J. Hum. Genet. - 2005. - Vol. 13. - P. 1154-1158.
  10. Bathum L. Association of mutations in the hemochromatosis gene with shorter life expectancy // Arch. Intern. Med. - 2001. - Vol. 16. - P. 2441-2444.
  11. Bathum L. Apolipoprotein E genotypes: relationship to cognitive functioning, cognitive decline, and survival in nonagenarians // J. Am. Geriatr. Soc. - 2006. - Vol. 54. - P. 654-658.
  12. Berzlanovich A.M. Do centenarians die healthy? An autopsy study // J. Gerontol. A. - 2005. - Vol. 60. - P. 862-865.
  13. Beutler E. Penetrance of 845G>A (C282Y) HFE hereditary haemochromatosis mutation in the USA // Lancet. - 2002. - Vol. 359. - P. 211-218.
  14. Blanche H., Cabanne L., Sahbatou M., Thomas G. A study of French centenarians: are ACE and APOE associated with longevity? // CR Acad. Sci. III. - 2001. - Vol. 324. - P. 129-135.
  15. Bonafe M. Polymorphic variants of insulin-like growth factor I (IGF-I) receptor and phosphoinositide 3-kinase genes affect IGF-I plasma levels and human longevity: cues for an evolutionarily conserved mechanism of lifespan control // J. Clin. Endocrinol. Metab. - 2003. - Vol. 88. - P. 3299-3304.
  16. Christiansen L. Modest implication of interleukin-6 promoter polymorphisms in longevity // Mech. Ageing. - 2004. - Vol. 125. - P. 391-395.
  17. Coppin H. Longevity and carrying the C282Y mutation for haemochromatosis on the HFE gene: case control study of 492 French centenarians // BMJ. - 2003. - Vol. 327. - P. 132-133.
  18. De Maat M.P. Genetic influence on inflammation variables in the elderly // Arterioscler. Thromb. Vasc. Biol. - 2004. - Vol. 24. - P. 2168-2173.
  19. De Craen A.J. Heritability estimates of innate immunity: an extended twin study // Genes Immun. - 2005. - Vol. 6. - P. 167-170.
  20. Finch C.E., Ruvkun G. Genetics of aging // Annu. Rev. Genomics. Hum. Genet. - 2001. - Vol. 2. - P. 435-462.
  21. Finch C.E., Crimmins E.M. Inflammatory exposure and historical changes in human life-spans // Science. - 2004. - Vol. 305. - P. 1736-1739.
  22. Francheschi C. Inflamm-aging. An evolutionary perspective on immunosenescence // Ann. NY Acad. Sci. - 2000. - Vol. 908. - P. 244-254.
  23. Flachsbart F. Association of FOXO3A variation with human longevity confirmed in German centenarians // Proc. Natl. Acad. Sci. USA. - 2009. - Vol. 106, N 8. - P. 2700-2705.
  24. Frederiksen H. Angiotensin I-converting enzyme (ACE) gene polymorphism in relation to physical performance, cognition and survival-a follow-up study of elderly Danish twins // Ann. Epidemiol. - 2003. - Vol. 13. - P. 57-65.
  25. Garasto S., Rose G., Derango F. et al. The study of APOA1, APOC3 and APOA4 variability in healthy ageing people reveals another paradox in the oldest old subjects // Ann. Human Gen. - 2003. - Vol. 67. - P. 54-62.
  26. Geesaman B.J. Haplotype-based identification of a microsomal transfer protein marker associated with the human lifespan // Proc. Natl. Acad. Sci. USA. - 2003. - Vol. 100. - P. 14115-14120.
  27. Gerdes L.U. Estimation of apolipoprotein E genotype-specific relative mortality risks from the distribution of genotypes in centenarians and middle-aged men: apolipoprotein E gene is a «frailty gene», not a «longevity gene» // Genet. Epidemiol. - 2000. - Vol. 19. - P. 202-210.
  28. Gudmundsson G. Inheritance of human longevity in Iceland // Eur. J. Hum. Genet. - 2000. - Vol. 8. - P. 743-749.
  29. Hjelmborg J.V. Genetic influence on human lifespan and longevity // Human Genet. - 2006. - Vol. 119. - P. 312-321.
  30. Humphries S.E., Luong L.A., Ogg M.S. et al. The interleukin-6 -174G/C promoter polymorphism is associated with risk of coronary heart disease and systolic blood pressure in healthy men // Eur. Heart J. - 2001. - Vol. 22. - P. 2243-2252.
  31. Hurme M., Lehtimaki T., Jylha M. et al. Interleukin-6 -174G/C polymorphism and longevity: a follow-up study // Mech. Ageing. - 2005. - Vol. 26. - P. 417-418.
  32. Johnson T.E. Increased life-span of age-1 mutants in Caenorhabditis elegans and lower Gompertz rate of aging // Science. - 1990. - Vol. 249, N 4971. - P. 908-912.
  33. Kenyon С., Dorman J.B., Albinder B., Shroyer T. The age-1 and daf-2 genes function in a common pathway to control the lifespan of Caenorhabditis elegans // Genetics. - 1995. - Vol. 4. - P. 1399-1406.
  34. Kerber R.A. Familial excess longevity in Utah genealogies // J. Gerontol. A. - 2001. - Vol. 56. - P. 130-139.
  35. Klass M.R. A method for the isolation of longevity mutants in the nematode Caenorhabditis elegans and initial results // Mech. Ageing. - 1983. - Vol. 22. - P. 279-286.
  36. Kleindorp R., Flachsbart F., Puca A.A. et al. Candidate gene study of FOXO1, FOXO4, and FOXO6 reveals no association with human longevity in Germans // Aging Cell. - 2011. - Vol. 4. - P. 622-628.
  37. Lio D. Inflammation, genetics, and longevity: further studies on the protective effects in men of IL-10 -1082 promoter SNP and its interaction with TNF-α -308 promoter SNP // J. Med. Genet. - 2003. - Vol. 40. - P. 296-299.
  38. Luft F.C. Bad genes, good people, association, linkage, longevity and the prevention of cardiovascular disease // Clin. Exp. Pharmacol. Physiol. - 1999. - Vol. 26. - P. 576-579.
  39. Medawar P.B., Lewis H.K. An unsolved problem of biology. In: Uniqueness of the Individual // New York Basic books, 1952. - 284 p.
  40. Nauck M. The interleukin-6 G(-174)C promoter polymorphism in the LURIC cohort: no association with plasma interleukin-6, coronary artery disease, and myocardial infarction // J. Mol. Med. - 2002. - Vol. 80. - P. 507-513.
  41. Nebel A. No association between microsomal triglyceride transfer protein (MTP) haplotype and longevity in humans // Proc. Natl. Acad. Sci. USA. - 2005. - Vol. 102. - P. 7906-7909.
  42. Perls T., Kunkel L.M., Puca A.A. The genetics of exceptional human longevity // J. of Molec. Neur. - 2002. - Vol. 19. - P. 233-238.
  43. Schachter F. Genetic associations with human longevity at the APOE and ACE loci // Nat. Genet. - 1994. - Vol. 6. - P. 29-32.
  44. Schoenmaker M. Evidence of genetic enrichment for exceptional survival using a family approach: the Leiden Longevity Study // Eur. J. Hum. Genet. - 2005. - Vol. 14. - P. 79-84.
  45. Silve M.H., Jilinskaia E., Perls T.T. Cognitive functional status of age-confirmed centenarians in a population-based study // J. Gerontol. B. Psychol. Sci. Soc. Sci. - 2001. - N 56. - P. 134-140.
  46. Skytthe A. Longevity studies in Genom EU twin // Twin Res. - 2003. - Vol. 6. - P. 448-454.
  47. Van Heemst D. Reduced insulin/IGF-1 signalling and human longevity // Aging Cell. - 2005. - Vol. 4. - P. 79-85.
  48. Willcox B.J. FOXO3A genotype is strongly associated with human longevity // Proc. Natl. Acad. Sci. USA. - 2008. - Vol. 105, N 37. - P. 13 987-13 992.
  49. Williams G.C. Pleiotropy, natural selection and the evolution of senescence // Evolution. - 1957. - Vol. 11. - P. 398-411.
  50. Weindruch R., Walford R.L. The retardation of aging and disease by dietary restriction on the transcriptional profile of skeletal muscle from rhesus monkeys // Proc. Nat. Acad. Sci. - 2001. - Vol. 98. - P. 5093-5098.
  51. World health statistics, 2010. World Health Organization. - Geneva, 2010. - 177 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

© 2012 Chugunova D.N., Oslopov V.N.

Creative Commons License

This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.





Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».