Prospects for the study of transposons in the pathogenesis of autoimmune diseases
- Authors: Mustafin R.N.1
-
Affiliations:
- Bashkir State Medical University
- Issue: Vol 103, No 6 (2022)
- Pages: 986-995
- Section: Reviews
- URL: https://ogarev-online.ru/kazanmedj/article/view/104291
- DOI: https://doi.org/10.17816/KMJ104291
- ID: 104291
Cite item
Abstract
One of the mechanisms for the development of autoimmune diseases is changes in epigenetic regulation, the root causes of which have not yet been established. At the same time, data on the role of transposons as sources of long noncoding ribonucleic acids (RNA) and microRNAs involved in the development of immune pathology have been accumulated. In evolution, transposable elements have become the basis for the emergence of V(D)J recombination and regulation of HLA genes. Pathological transposon activation has been revealed in type 1 diabetes mellitus, rheumatoid arthritis, systemic lupus erythematosus, Aicardi–Goutieres and Sjögren’s syndromes. The influence of exogenous viruses on the development of autoimmune diseases may be due to their interactions with transposons. Transposable elements themselves are able to activate the antiviral immune response, stimulating the hyperproduction of interferon. An assumption about changes in the activation of transposons as drivers of autoimmune pathology was made, which is reflected in the expression of non-coding RNAs, which are key epigenetic factors. The analysis of the transposon-derived microRNA database (MDTE DB) made it possible to identify 13 microRNAs associated with autoimmune diseases: systemic scleroderma (miR-31, miR-609, miR-3162), juvenile rheumatoid arthritis (miR-151), systemic lupus erythematosus (miR-198, miR-342), psoriasis (miR-224, miR-378) and myasthenia gravis (miR-421, miR-551a, miR-612, miR-891b), multiple sclerosis (miR-584 ), which serves as a proof of the proposed hypothesis. Since changes in epigenetic factors under the influence of transposons are reversible and are reflected in the expression of certain non-coding RNAs, targeted therapy using microRNAs and their analogues as tools is a promising direction in the development of specific treatment for autoimmune diseases.
Full Text
##article.viewOnOriginalSite##About the authors
Rustam N. Mustafin
Bashkir State Medical University
Author for correspondence.
Email: ruji79@mail.ru
ORCID iD: 0000-0002-4091-382X
SPIN-code: 4810-2535
Scopus Author ID: 56603137500
ResearcherId: S-2194-2018
Cand. Sci. (Biol.), Assoc. Prof., Depart. of Medical Genetics and Fundamental Medicine
Russian Federation, Ufa, RussiaReferences
- Karagianni P, Tzioufas AG. Epigenetic perspectives on systemic autoimmune disease. J Autoimmun. 2019;104:102315. doi: 10.1016/j.jaut.2019.102315.
- Chalertpet K, Pin-On P, Aporntewan C, Patchsung M, Ingrungruanglert P, Israsena N, Mutirangura A. Argonaute 4 as an effector protein in RNA-directed DNA methylation in human cells. Front Genet. 2019;10:645. doi: 10.3389/fgene.2019.00645.
- Samantarrai D, Dash S, Chhetri B, Mallick B. Genomic and epigenomic cross-talks in the regulatory landscape of miRNAs in breast cancer. Mol Cancer Res. 2013;11(4):315–328. doi: 10.1158/1541-7786.MCR-12-0649.
- Wei G, Qin S, Li W, Chen L, Ma F. MDTE DB: a database for microRNAs derived from Transposable element. IEEE/ACM Trans Comput Biol Bioinform. 2016;13:1155–1160. doi: 10.1109/TCBB.2015.2511767.
- Johnson R, Guigo R. The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs. RNA. 2014;20:959–976. doi: 10.1261/rna.044560.114.
- Lu X, Sachs F, Ramsay L, Jacques PE, Goke J, Bourque G, Ng HH. The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity. Nat Struct Mol Biol. 2014;21:423–425. doi: 10.1038/nsmb.2799.
- Honson DD, Macfarlan TS. A lncRNA-like role for LINE1s in development. Dev Cell. 2018;46:132–134. doi: 10.1016/j.devcel.2018.06.022.
- De Koning AP, Gu W, Castoe TA, Batzer MA, Pollock DD. Repetitive elements may comprise over two-thirds of the human genome. PLOS Genetics. 2011;7(12):e1002384. doi: 10.1371/journal.pgen.1002384.
- Grandi N, Tramontano E. Human endogenous retroviruses are ancient acquired elements still shaping innate immune responses. Front Immunol. 2018;9:2039. doi: 10.3389/fimmu.2018.02039.
- Macchietto MG, Langlois RA, Shen SS. Virus-induced transposable element expression up-regulation in human and mouse host cells. Life Sci Alliance. 2020;3(2):e201900536. DOI: 0.26508/lsa.201900536.
- Mavragani CP, Nezos A, Sagalovskiy I, Seshan S, Kirou KA, Crow MK. Defective regulation of L1 endogenous retroelements in primary Sjogren’s syndrome and systemic lupus erythematosus: Role of methylating enzymes. J Autoimmun. 2018;88:75–82. 10.1016/j.jaut.2017.10.004.
- Jiao H, Wachsmuth L, Kumari S, Schwarzer R, Lin J, Eren RO, Fisher A, Lane R, Young GR, Kassiotis G, Kaiser WJ, Pasparakis M. Z-nucleic-acid sensing triggers ZBP1-dependent necroptosis and inflammation. Nature. 2020;580(7803):391–395. doi: 10.1038/s41586-020-2129-8.
- Nakaya Y, Lilue J, Stavrou S, Moran EA, Ross SR. AIM2-like receptors positively and negatively regulate the interferon response induced by cytosolic DNA. mBio. 2017;8(4):e00944-17. doi: 10.1128/mBio.00944-17.
- Mustelin T, Ukadike KC. How retroviruses and retrotranspososns in our genome may contribute to autoimmunity in rheumatological conditions. Front Immunol. 2020;11:593891. doi: 10.3389/fimmu.2020.593891.
- Mustafin RN, Khusnutdinova EK. Non-coding parts of genomes as the basis of epigenetic heredity. Vavilov journal of genetics and breeding. 2017;21(6):742–749. (In Russ.) doi: 10.18699/VJ17.30-o.
- Fitzgerald KA, Caffrey DR. Long noncoding RNAs in innate and adaptive immunity. Curr Opin Immunol. 2014;26:140–146. doi: 10.1016/j.coi.2013.12.001.
- Wang Y, Wang Y, Luo W, Song X, Huang L, Xiao J, Jin F, Ren Z, Wang Y. Roles of long non-coding RNAs and emerging RNA-binding proteins in innate antiviral responses. Theranostics. 2020;10(20):9407–9424. doi: 10.7150/thno.48520.
- Mariotti B, Servaas NH, Rossato M, Tamassia N, Cassatella MA, Cossu M, Beretta L, van der Kroef M, Radstake TRDJ, Bazzoni F. The long non-coding RNA NRIR drives IFN-response in monocytes: Implication for systmic sclerosis. Front Immunol. 2019;10:100. doi: 10.3389/fimmu.2019.00100.
- Kumar DBU, Williams A. Long non-coding RNAs in immune regulation and their potential as therapeutic targets. Int Immunopharmacol. 2020;81:106279. doi: 10.1016/j.intimp.2020.106279.
- Vlachogiannis N, Gatsiou A, Silvestris DA, Stamatelopoulos K, Tektonidou MG, Gallo A, Sfikakis PP, Stellos K. Increased adenosine-to-inosine RNA editing in rheumatoid arthritis. J Autoimmun. 2020;106:102329. doi: 10.1016/j.jaut.2019.102329.
- Jackson R, Kroehling L, Khitun A, Bailis W, Jarret A, York AG, Khan OM, Brewer JB, Slavoff S, Flavell RA. The translation of non-canonical open reading frames controls mucosal immunity. Nature. 2018;564:434–438. doi: 10.1038/s41586-018-0794-7.
- Hube F, Francastel C. Coding and non-coding RNAs, the frontier has never been so blurred. Front Genet. 2018;9:140. doi: 10.3389/fgene.2018.00140.
- Candeias MM, Malbert-Colas L, Powell DJ, Daskalogianni C, Maslon MM, Naski N, Bourougaa K, Calvo F, Fahraeus R. P53 mRNA controls p53 activity by managing Mdm2 functions. Nat Cell Biol. 2008;10(9):1098–1105. doi: 10.1038/ncb1770.
- Evangelatos G, Fragoulis GE, Koulouri V, Lambrou GI. MicorRNAs in rheumatoid arthritis: From pathogenesis to clinical impact. Autoimmun Rev. 2019;18(11):102391. doi: 10.1016/j.autrev.2019.102391.
- Nziza N, Duroux-Richard I, Apparailly F. MicroRNAs in juvenile idiopathic arthritis: Can we learn more about pathophisiological mechanisms. Autoimmun Rev. 2019;18(8):796–804. doi: 10.1016/j.autrev.2019.06.006.
- Thiel J, Alter C, Luppus S, Eckstein A, Tan S, Fuhrer D, Pastille E, Westendorf AM, Buer J, Hansen W. MicroRNA-183 and microRNA-96 are associated with autoimmune responses by regulating T cell activation. J Autoimmun. 2019;96:94–103. doi: 10.1016/j.jaut.2018.08.010.
- Henry TW, Mendoza FA, Jimenez SA. Role of microRNA in the pathogenesis of systemic sclerosis tissue fibrosis and vasculopathy. Autoimmun Rev. 2019;18(11):102396. doi: 10.1016/j.autrev.2019.102396.
- Chen JQ, Papp G, Szodoray P, Zeher M. The role of microRNAs in the pathogenesis of autoimmune diseases. Autoimmun Rev. 2016;15(12):1171–1180. doi: 10.1016/j.autrev.2016.09.003.
- Piket E, Zheleznyakova GY, Kular L, Jagodic M. Small non-coding RNAs as important players, biomarkers and therapeutic targets in multiple sclerosis: A comprehensive overview. J Autoimmun. 2019;101:17–25. doi: 10.1016/j.jaut.2019.04.002.
- Cron MA, Maillard S, Delisle F, Samson N, Truffault F, Foti M, Fadel E, Guihaire J, Berrih-Aknin S, Panse RL. Analysis of microRNA expression in the thymus of Myasthenia Gravis patients open new research avenues. Autoimmun Rev. 2018;17(6):588–600. doi: 10.1016/j.autrev.2018.01.008.
- Wohlers I, Bertram L, Lill CM. Evidence for a potential role of miR-1908-5p and miR-3614-5p in autoimmune disease risk using integrative bioinformatics. J Autoimmun. 2018;94:83–89. doi: 10.1016/j.jaut.2018.07.010.
- Mustafin RN. Hypothesis on the origin of viruses from transposons. Molecular Genetics, Microbiology and Virology. 2018;33:223–232. doi: 10.3103/S0891416818040067.
- Dreyfus DH. Autoimmune disease: A role for new anti-viral therapies. Autoimmun Rev. 2011;11(2):88–97. doi: 10.1016/j.autrev.2011.08.005.
- Balandraud N, Roudier J, Roudier C. Epstein–Barr virus and rheumatoid arthritis. Autoimmun Rev. 2004;3(5):362–367. doi: 10.1016/j.autrev.2004.02.002.
- Jog NR, McClain MT, Heinlen LD, Gross T, Towner R, Guthridge JM, Axtell RC, Pardo G, Harley JB, James JA. Epstein–Barr virus nuclear antigen 1 (EBNA-1) peptides recognized by adult multiple sclerosis patient sera induce neurologic symptoms in a murine model. J Autoimmun. 2020;106:102332. doi: 10.1016/j.jaut.2019.102332.
- Nielsen PR, Kragstrup TW, Deleuran BW, Benros ME. Infections as risk factor for autoimmune diseases — A nationwide study. J Autoimmun. 2016;74:176–181. doi: 10.1016/j.jaut.2016.05.013.
- Anaya JM, Rodriguez Y, Monsalve DM, Vega D, Ojeda E, Gonzalez-Bravo D, Rodriguez-Jimenez M, Pinto-Diaz CA, Chaparro P, Gunturiz ML, Ansari AA, Gershwin ME, Molano-Gonzalez N, Ramirez-Santana C, Acosta-Ampudia Y. A comprehensive analysis and immunobiology of autoimmune neurological syndromes during the Zika virus outbreak in Cucuta, Colombia. J Autoimmun. 2017;77:123–138. doi: 10.1016/j.jaut.2016.12.007.
- Sabouri S, Benkahla MA, Kiosses WB, Rodriguez-Calvo T, Zapardiel-Gonzalo J, Castillo E, von Herrath MG. Human herpesvirus-6 is present at higher levels in the pancreatic tissues of donors with type 1 diabetes. J Autoimmun. 2020;107:102378. doi: 10.1016/j.jaut.2019.102378.
- Beretta-Piccoli BT, Ripellino P, Gobbi C, Cerny A, Baserga A, Bartolomeo CD, Bihl F, Deleonardi G, Melidona L, Grondona AG, Mieli-Vergani G, Vergani D, Muratori L. Swiss Autoimmune Hepatitis Cohort Study Group. J Autoimmun. 2018;94:1–6. doi: 10.1016/j.jaut.2018.07.006.
- Palazzi C, Buskila D, D’Angelo S, D’Amico E, Olivieri I. Autoantibodies in patients with chronic hepatitis C virus infection: pitfalls for the diagnosis of rheumatic diseases. Autoimmun Rev. 2012;11(9):659–663. doi: 10.1016/j.autrev.2011.11.011.
- Temajo NO, Howard N. The virus-induced HSPs regulate the apoptosis of operates APCs that results in autoimmunity, not in homeostasis. Autoimmun Rev. 2014;13(10):1013–1019. doi: 10.1016/j.autrev.2014.08.030.
- Lescale C, Deriano L. The RAG recombinase: beyond breaking. Mech Ageing Dev. 2017;165(Part A):3–9. doi: 10.1016/j.mad.2016.11.003.
- Huang S, Tao X, Yuan S, Zhang Y, Li P, Beilinson HA, Zhang Y, Yu W, Pontarotti P, Escriva H, Petillon YL, Liu X, Chen S, Schatz DG, Xu A. Discovery of an active RAG transposon illuminates the origins of V(D)J recombination. Cell. 2016;166(1):102–114. doi: 10.1016/j.cell.2016.05.032.
- Chuong EB, Elde NC, Feschotte C. Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science. 2016;351(6277):1083–1087. doi: 10.1126/science.aad5497.
- Chuong EB. The placenta goes viral: Retroviruses control gene expression in pregnancy. PLoS Biol. 2018;16(10):e3000028. doi: 10.1371/journal.pbio.3000028.
- Heinrich MJ, Purcell CA, Pruijssers AJ, Zhao Y, Spurlock CF 3rd, Sriram S, Ogden KM, Dermody TS, Scholz MB, Crooke PS 3rd, Karijolich J, Aune TM. Endogenous double-stranded Alu RNA elements stimulate IFN-responses in relapsing remitting multiple sclerosis. J Autoimmun. 2019;100:40–51. doi: 10.1016/j.jaut.2019.02.003.
- Zhao K, Du J, Li P, Wang S, Wang Y, Hou J, Kang J, Zheng W, Hua S, Yu X. LINE1 contributes to autoimmunity through both RIG-I- and MDA5-mediated RNA sensing pathways. J Autoimmun. 2018;90:105–115. doi: 10.1016/j.jaut.2018.02.007.
- Leiter EH. Type C retrovirus production by pancreatic beta cells. Association with accelerated pathogenesis in C3H-db/db (“Diabetes”) mice. Am J Pathol. 1985;119(1):22–32. PMID: 2984941.
- Hao W, Serreze DV, McCulloch DK, Neifing JL, Palmer JP. Insulin (auto)antibodies from human IDDM cross-react with retroviral antigen p73. J Autoimmun. 1993;6(6):787–798. doi: 10.1006/jaut.1993.1064.
- Reynier F, Verjat T, Turrel F, Imbert PE, Marotte H, Mougin B, Miossec P. Increase in human endogenous retrovirus HERV-K (HML-2) viral load in active rheumatoid arthritis. Scand J Immunol. 2009;70(3):295–299. doi: 10.1111/j.1365-3083.2009.02271.x.
- Mameli G, Erre GL, Caggiu E, Mura S, Cossu D, Bo M, Cadoni ML, Piras A, Mundula N, Colombo E, Buscetta G, Passiu G, Sehi LA. Identification of a HERV-K env surface peptide highly recognized in Rheumatoid Arthritis (RA) patients: a cross-sectional case-control study. Clin Exp Immunol. 2017;189(1):127–131. doi: 10.1111/cei.12964.
- Carter V, LaCava J, Taylor MS, Liang SY, Mustelin C, Ukadike KC, Bengtsson A, Lood C, Mustelin T. High prevalence and disease correlation of autoantibodies against p40 encoded by long interspersed nuclear elements in systemic lupus erythematosus. Arthritis Rheumatol. 2020;72(1):89–99. doi: 10.1002/art.41054.
- Leroy V, Kihara M, Baudino L, Brighouse G, Evans LH, Izui S. Sgp3 and TLR7 stimulation fifferentially alter the expression profile of modifies polytropic retroviruses implicated in murine systemic lupus. J Autoimmun. 2012;38(4):361–368. doi: 10.1016/j.jaut.2012.03.002.
- Ito K, Baudino L, Kihara M, Leroy V, Vyse TJ, Evans LH, Izui S. Three Sgp loci act independently as well as synergistically to elevate the expression of specific endogenous retroviruses implicated in murine lupus. J Autoimmun. 2013;43:10–17. doi: 10.1016/j.jaut.2013.01.014.
- Thomas CA, Tejwani L, Trujillo CA, Negraes PD, Herai RH, Mesci P, Macia A, Crow YJ, Muotri AR. Modeling of TREX1-dependent autoimmune disease using human stem cells highlights L1 accumulation as a source of neuroinflammation. Cell Stem Cell. 2017;21(3):319–331. doi: 10.1016/j.stem.2017.07.009.
- De Cecco M, Criscione SW, Peterson AL, Neretti N, Sedivy JM, Kreiling JA. Transposable elements become active and mobile in the genomes of aging mammalian somatic tissues. Aging (Albany NY). 2013;5:867–883. doi: 10.18632/aging.100621.
- Boren E, Gershwin ME. Inflamm-aging: autoimmunity, and the immune-risk phenotype. Autoimmun Rev. 2004;3(5):401–406. doi: 10.1016/j.autrev.2004.03.004.
Supplementary files
