Achievements and prospects of cellular technologies based on the activated lymphocytes in the treatment of malignant tumors

Cover Page

Cite item

Full Text

Abstract

This article reviews the immune system and its role in the relationship between the tumor and the body of a patient with tumor diseases. It is about controlling homeostasis by recognizing and eliminating genetically alien substances (antigens). Antitumor treatment is now not only considered as an “instrument” for eliminating and destroying tumor cells, but also its ability to change/restore impaired functions of the immune system attracts attention. The used antitumor treatment is widely known to be immunosuppressive, stress and radiation effects also cause and/or enhance immunosuppression. In this work, the authors provide literature data demonstrating current status and problems of cellular immunotherapy of malignant tumors with the use of activated lymphocytes, and the role of antigen-specific T-lymphocytes as one of its most important agents is reviewed. Currently, among the immunotherapeutic methods, a special place is occupied by approaches involving the use of autologous or allogenic ex vivo stimulated immunocompetent cells (adoptive immunotherapy). The importance of complex influence on various links (T-, B-, NK-cell) and stages (presentation, recognition, proliferation, differentiation, migration, activation, effector functions) of the immune response is considered. The emergence of targeted drugs based on antibodies, as well as vaccines, especially dendritic cells, has provoked the emergence of a new wave of interest in the formation of specific antitumoral immune response mediated by T lymphocytes, so the introduction of the latter can be classified as a kind of targeted therapy. The value of antigen-specific T-lymphocytes in the formation of antitumor immunity is shown, which emphasizes the importance not only of CD8+, but also of CD4+ T-lymphocytes. In addition, there are suggestions of the possible significance of both T- and B-cells for developing a strategy of cellular immunotherapy. The literature data suggest that not only cytotoxic lymphocytes, but also T-helpers and even B-lymphocytes can be effective as antigen-specific lymphocytes as a component of antitumor treatment. The authors consider the possibility of obtaining antigen-specific T cells, as well as their further storage. The possibility of elimination or selective inhibition of regulatory T-cells during adoptive immunotherapy aimed at removing the suppressor effect on cytotoxic lymphocytes is studied. Various strategies for the use of cell therapy are also discussed.

About the authors

E Yu Zlatnik

Rostov Research Institute of Oncology

Author for correspondence.
Email: elena-zlatnik@mail.ru
Rostov-on-Don, Russia

A O Sitkovskaya

Rostov Research Institute of Oncology

Email: elena-zlatnik@mail.ru
Rostov-on-Don, Russia

E M Nepomnyashchaya

Rostov Research Institute of Oncology

Email: elena-zlatnik@mail.ru
Rostov-on-Don, Russia

Ph R Dzhandigova

Rostov Research Institute of Oncology

Email: elena-zlatnik@mail.ru
Rostov-on-Don, Russia

L N Vashchenko

Rostov Research Institute of Oncology

Email: elena-zlatnik@mail.ru
Rostov-on-Don, Russia

References

  1. Pages F., Berger A., Camus M., et al. Effector memory T cells, early metastasis, and survival in colorectal cancer. N. Engl. J. Med. 2005; 353 (25): 2654–2666. doi: 10.1056/NEJMoa051424.
  2. Berezhnaya N.M., Chekhun V.F. Immunologiya zlokachestvennogo rosta. (Immunology of malignant growth.) Kiev. 2005: 792. (In Russ.)
  3. Mushkarina T.Yu., Kuz’mina E.G. Multidimensional analysis of immunity with the role of T-regulatory cells in radiation damage to the lungs. Meditsinskiy akademicheskiy zhurnal. 2016; (4): 161–162. (In Russ.)
  4. Dunn G.P., Old L.J., Schreiber R.D. The Three Es of Cancer Immunoediting. Annu. Rev. Immunol. 2004; 22 (1): 329–360. doi: 10.1146/annurev.immunol.22.012703.104803.
  5. Kim R., Emi M., Tanabe K. Cancer immunoediting from immune surveillance to immune escape. Immunology. 2007; 121 (1): 1–14. doi: 10.1111/j.1365-2567.2007.02587.x.
  6. Perel’muter V.M., Tashireva L.A., Manskikh V.N. et al. Immunosuppressive reactions in the microenvironment are heterogeneous, plastic, determine the antitumor effect or aggressive behavior of the tumor. Zhurnal obshchey biologii. 2017; 78 (5): 15–36. (In Russ.)
  7. Kozlov V.A. Suppressor cells — the basis of the immunopathogenesis of cancer. Voprosy onkologii. 2016; 3: 390–396. (In Russ.)
  8. Kasagi Sh., Zhang P., Che L. et al. In Vivo-Generated Antigen-Specific Regulatory T Cells Treat Autoimmunity Without Compromising Antibacterial Immune Response. Sci. Transl. Med. 2014; 6 (241): 241ra78. doi: 10.1126/scitranslmed.3008895.
  9. Zlatnik E.Yu., Przhedetskiy Yu.V., Kochuev S.S. et al. Immunologic factors in tissues of cutaneous melanoma depending on its thickness. Meditsinskiy vestnik Severnogo Kavkaza. 2018; 1: 44–49. (In Russ.)
  10. Klebanoff Ch.A., Khong H.T., Antony P.A. et al. Sinks, suppressors and antigen presenters: how lymphodepletion enhances T cell-mediated tumor immunotherapy. Trends Immunol. 2005; 26 (2): 111–117. DOI: 10.1016/
  11. j.it.2004.12.003.
  12. Balkwill F.R., Capasso M., Hagemann Th. The tumor microenvironment at a glance. J. Cell. Sci. 2012; 125 (23): 5591–5596. doi: 10.1242/jcs.116392.
  13. Tadokoro C.E., Shakhar G., Shen S. et al. Regulatory T cells inhibit stable contacts between CD4+ T cells and dendritic cells in vivo. J. Exp. Med. 2006; 203: ­505–511. doi: 10.1084/jem.20050783.
  14. Ryabov V.V., Gombozhapova A.E., Rogovskaya Yu.V. et al. Functional plasticity of monocytes/macrophages in post-infarction cardiac regeneration and remodeling. Immunologiya. 2016; 37 (6): 305–312. (In Russ.)
  15. Monastyrskaya E.A., Lyamina S.V., Malyshev I.Yu. M1 and M2 phenotypes of activated macrophages and their role in the immune response and pathology. Patogenez. 2008; 6 (4): 31–39. (In Russ.)
  16. Sahno L.V., Shevela E.Ya., Tikhonova M.A. et al. Molecular mechanisms of immunosuppressive activity of M2 macrophages. Immunologiya. 2016; 37 (6): 312–315. (In Russ.)
  17. Pollard J.W. Tumor-educated macrophages promote tumor progression and metastasis. Nature Reviews Cancer. 2004; 4 (1): 71–78. doi: 10.1038/nrc1256.
  18. Müerköster S., Wegehenkel K., Arlt A. et al. Tumor stroma interactions induce chemoresistance in pancreatic ductal carcinoma cells involving increased secretion and paracrine effects of nitric oxide and interleukin-1beta. Cancer Res. 2004; 64 (4): 1331–1337. doi: 10.1158/0008-5472.CAN-03-1860.
  19. Thornton A.M., Donovan E.E., Piccirillo C.A., Shevach E.M. Cutting edge: IL-2 is critically required for the in vitro activation of CD4+CD25 + T cell suppressor function. J. Immunol. 2004; 172: 6519–6523. doi: 10.4049/jimmunol.172.11.6519.
  20. Kit O.I., Zlatnik E.Yu., Nikipelova E.A. et al. The relationship between ploidy and the parameters of local immunity in tumors of the large intestine. Molekulyarnaya meditsina. 2016; 1: 26–30. (In Russ.)
  21. Shiao S.L., Ganesan A.P., Rugo H.S., Coussens L.M. Immune microenvironments in solid tumors: new targets for therapy. Genes. Dev. 2011; 25 (24): 2559–2572. doi: 10.1101/gad.169029.111.
  22. Rosenberg S.A., Restifo N.P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science. 2015; 348 (6230): 62–68. doi: 10.1126/science.aaa4967.
  23. de Rham C., Ferrari-Lacraz S., Jendly S. et al. The proinflammatory cytokines IL-2, IL-15 and IL-21 modulate the repertoire of mature human natural killer cell receptors. Arthritis Res. Ther. 2007; 9 (6): R125. doi: 10.1186/ar2336.
  24. Tabakov D.V., Zabotina T.N., Borunova A.A. et al. Heterogeneity of populations of NK and NKT lymphocytes in healthy donors. Meditsinskaya immunologiya. 2017; 19 (4): 401–408. (In Russ.)
  25. Viale R., Ware R., Maricic I. et al. NKT Cell Subsets Can Exert Opposing Effects in Auto­immunity, Tumor Surveillance and Inflammation. Curr. Immunol. Rev. 2012; 8 (4): 287–296. DOI: 10.2174/
  26. Geukes Foppen M.H., Donia M., Svane I.M., Haanen J.B. Tumor-infiltrating lymphocytes for the treatment of metastatic cancer. Mol. Oncol. 2015; 9 (10): ­1918–1935. doi: 10.1016/j.molonc.2015.10.018.
  27. Disis M.L., Bernhard H., Jaffee E.M. Use of tumour-responsive T cells as cancer treatment. Lancet. 2009; 373 (9664): 673–683. doi: 10.1016/S0140-6736(09)60404-9.
  28. June C.H. Adoptive T cell therapy for cancer in the clinic. J. Clin. Invest. 2007; 117 (6): 1466–1476. doi: 10.1172/JCI32446.
  29. Kiselevskiy M.V. Adoptive immunotherapy for malignant neoplasms. Vestnik RAMN. 2003; 1: 40–44. (In Russ.)
  30. Dillman R.O., Duma C.M., Ellis R.A. et al. Intralesional lymphokine-activated killer cells as adjuvant therapy for primary glioblastoma. J. Immunother. 2009; 32 (9): ­914–919. doi: 10.1097/CJI.0b013e3181b2910f.
  31. Nagasawa D.T., Fong Ch., Yew A. et al. Passive Immunotherapeutic Strategies for the Treatment of Malignant Gliomas. Neurosurg. Clin. N. Am. 2012; 23 (3): 481–495. doi: 10.1016/j.nec.2012.04.008.
  32. Wang L.X., Shu S.Y., Plautz G.E. Host lymphodepletion augments T cell adoptive immunotherapy through enhanced intratumoral proliferation of effector cells. Cancer Res. 2005; 65: 9547–9554. doi: 10.1158/0008-5472.CAN-05-1175.
  33. Titov K.S., Shubina I.Zh., Volkov S.M. et al. Immunotherapy of tumor serosites. In: Opukholevye serozity: plevrity, astsity, perikardity. (Tumor serosites: pleurisy, ascites, pericarditis.) Moscow: Prakticheskaya medicina. 2011; 233–258. (In Russ.)
  34. Manzo T., Heslop H.E., Rooney C.M. Antigen-Specific T Cell Therapies for Cancer. Hum. Mol. Genet. 2015; 24 (R1): R67–R73. doi: 10.1093/hmg/ddv270.
  35. Kit O.I., Nikipelova E.A., Shaposhnikov A.V. et al. Inflammation and colon cancer. Molecular and immunological mechanisms. Voprosy onkologii. 2018; 64 (1): 34–40. (In Russ.)
  36. Crespo J., Sun H., Welling T.H. et al. T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr. Opin. Immunol. 2013; 25: 214–221. doi: 10.1016/j.coi.2012.12.003.
  37. Cohen C.J., Gartner J.J., Horovitz-Fried M. et al. Isolation of neoantigen-specific T cells from tumor and peripheral lymphocytes. J. Clin. Invest. 2015; 125 (10): ­3981–3991. doi: 10.1172/JCI82416.
  38. Reissfelder Ch., Stamova S., Gossmann Ch. et al. Tumor-specific cytotoxic T lymphocyte activity determines colorectal cancer patient prognosis. J. Clin. Invest. 2015; 125 (2): 739–751. doi: 10.1172/JCI74894.
  39. Scurr M.J., Brown C.M., Costa Bento D.F. et al. Assessing the Prognostic Value of Preoperative Carcinoembryonic Antigen-specific T-cell Responses in Colorectal Cancer. J. Natl. Cancer Inst. 2015; 107 (4): djv001. doi: 10.1093/jnci/djv001.
  40. Liu S.H., Zhang M., Zhang W.G. Strategies of antigen-specific T-cell-based immunotherapy for cancer. Cancer Biother. Radiopharm. 2005; 20 (5): 491–501. doi: 10.1089/cbr.2005.20.491.
  41. Dang Y., Knutson K.L., Goodell V. et al. Tumor Antigen-Specific T-Cell Expansion Is Greatly Facilitated by In vivo Priming. Clin. Cancer. Res. 2007; 13 (6): 1883–1891. doi: 10.1158/1078-0432.CCR-06-2083.
  42. Mannino M.H., Zhu Z., Xiao H. et al. The paradoxical role of IL-10 in immunity and cancer. Cancer Lett. 2015; 367 (2): 103–107. doi: 10.1016/j.canlet.2015.07.009.
  43. Wennhold K., Thelen M., Schlößer H.A. et al. Using Antigen-Specific B Cells to Combine Antibody and T Cell-Based Cancer Immunotherapy. Cancer Immunol. Res. 2017; 5 (9): 730–743. doi: 10.1158/2326-6066.CIR-16-0236.
  44. Sennikov S.V., Lopatnikova Yu.A., Kuznetsova M.S. et al. Method for production of in vitro populations of activated antigenspecific antitumor-tumor cytotoxic t-lymphocytes specific to tumor-associated antigen epitopes. Patent for invention №RU 2619186 S1. Byull. No 14 issued on 12.05.2017. (In Russ.)
  45. Galeano Nino J.L., Kwan R.Y.Q., Weninger W., Biro M. Antigen-specific T cells fully conserve antitumour function following cryopreservation. Immunol Cell. Biol. 2016; 94: 411–418. doi: 10.1038/icb.2015.105.
  46. Chodon T., Comin-Anduix B., Chmielowski B. et al. Adoptive transfer of MART-1 T-cell receptor transgenic lymphocytes and dendritic cell vaccination in patients with metastatic melanoma. Clin. Cancer Res. 2014; 20: ­2457–2465. doi: 10.1158/1078-0432.CCR-13-3017.
  47. McGray A.J., Hallett R., Bernard D. et al. Immunotherapy-induced CD8+ T cells instigate immune suppression in the tumor. Mol. Ther. 2014; 22: 206–218. doi: 10.1038/mt.2013.255.
  48. Chikileva I.O., Velizheva N.P., Shubina I.Zh., Titov K.S., Kiselevskiy M.V. The content of CD4 + CD25 + FOXP3 + T-regulatory lymphocytes in the population of lymphokine-activated killers. Vestnik RONTs im. N.N. Blokhina. 2008; (3): 16–25. (In Russ.)
  49. Marabelle A., Kohrt H., Sagiv-Barfi I. et al. Depleting tumorspecific T regs at a single site eradicates disseminated tumors. J. Clin. Invest. 2013; 123: 2447–2463. doi: 10.1172/JCI64859.
  50. Morgan R.A., Dudley M.E., Wunderlich J.R. et al. Cancer regression in patients after transfer of ­genetically ­engineered lymphocytes. Science. 2006; 314 (5796): ­126–129. doi: 10.1126/science.1129003.
  51. Pavlova A.A., Maschan M.A., Ponomarev V.B. Adoptive immunotherapy with genetically modified T-lymphocytes expressing chimeric antigenic receptors. Onkogematologiya. 2017; 12 (1): 17–32. (In Russ.)
  52. Deng Zh., Wu Ya., Ma W., Zhang Sh., Zhang Yu-Q. Adoptive T-cell therapy of prostate cancer targeting the cancer stem cell antigen EpCAM. BMC Immunol. 2015; 16: 1. DOI.10.1186/s12865-014-0064-x.
  53. Lee D.W., Barrett D.M., Mackall C., Orentas R., Grupp S.A. The Future Is Now: Chimeric Antigen Receptors as New Targeted Therapies for Childhood Cancer. Clin. Cancer. Res. 2012; 18 (10): 2780–2790. doi: 10.1158/1078-0432.CCR-11-1920.
  54. Ahmed N., Brawley V.S., Hegde M. et al. Human Epidermal Growth Factor Receptor 2 (HER2) –Specific Chimeric Antigen Receptor-Modified T Cells for the Immunotherapy of HER2-Positive Sarcoma. J. Clin. Oncol. 2015; 33 (15): 1688–1696. doi: 10.1200/JCO.2014.58.0225.
  55. Rosenberg S.A., Yang J.C., Sherry R.M. et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin. Cancer Res. 2011; 17: 4550–4557. doi: 10.1158/1078-0432.CCR-11-0116.
  56. Kitano S., Tsuji T., Liu C. et al. Enhancement of tumor-reactive cytotoxic CD4+ T cell responses after ipilimumab treatment in four advanced melanoma patients. Cancer Immunol. Res. 2013; 1 (4): 235–244. doi: 10.1158/2326-6066.CIR-13-0068.
  57. Carluccio S., Delbue S., Signorini L. et al. Generation of tumor-specific cytotoxic T-lymphocytes from the peripheral blood of colorectal cancer patients for adoptive T-cell transfer. J. Cell Physiol. 2015; 230 (7): 1457–1465. doi: 10.1002/jcp.24886.
  58. Chernykh E.R., Leplina O.YU., Ostanin A.A. et al. Method for immunotherapy of cerebral malignant tumors. Patent for invention № RU 2262941 S2. Byull. №30 issued on 27.10.2005. (In Russ.)
  59. Hong Yu-P., Li Zi-D., Prasoon P., Zhang Q. Immunotherapy for hepatocellular carcinoma: From basic research to clinical use. World J. Hepatol. 2015; 7 (7): ­980–992. doi: 10.4254/wjh.v7.i7.980.
  60. John L.B., Devaud C., Duong C.P. et al. Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene- modified T cells. Clin. Cancer Res. 2013; 19: 5636–5646. doi: 10.1158/1078-0432.CCR-13-0458.
  61. Sverdlov E.D. The multidimensional complexity of cancer: simple solutions are needed. Review. Biokhimiya. 2016; (7): 962–970. (In Russ.)

Supplementary files

Supplementary Files
Action
1. JATS XML

© 2018 Zlatnik E.Y., Sitkovskaya A.O., Nepomnyashchaya E.M., Dzhandigova P.R., Vashchenko L.N.

Creative Commons License

This work is licensed
under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.





Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».