Содержание нейронспецифической енолазы и нейротрофического фактора роста в пуповинной крови здоровых доношенных детей после операции планового кесарева сечения и спонтанных родов

Обложка


Цитировать

Полный текст

Аннотация

Изучено содержание нейрoнспецифической енолазы (NSE) и нейротрофического фактора роста (BDNF) в сыворотке пуповинной крови здоровых доношенных детей после операции планового кесарева сечения и спонтанных родов. Установлено, что их уровень в пуповинной крови после операции кесарева сечения ниже, чем после срочных родов. В статье обсуждаются причины и возможные последствия низкого содержания BDNF у детей, извлеченных операцией планового кесарева сечения до 39-й недели беременности.

Об авторах

Антонина Юрьевна Морозова

ФГБНУ «НИИ АГиР им. Д. О. Отта»

Email: amor2703@gmail.com
аспирант

Юлия Павловна Милютина

ФГБНУ «НИИ АГиР им. Д. О. Отта»

Email: milyutina1010@mail.ru
д. м. н., с. н. с.

Александр Вартанович Арутюнян

ФГБНУ «НИИ АГиР им. Д. О. Отта»

Email: alexarutiunjan@gmail.com
д. б. н., профессор, в. н. с., заслуженный деятель науки РФ

Инна Ивановна Евсюкова

ФГБНУ «НИИ АГиР им. Д. О. Отта»

Email: eevs@yandex.ru
д. м. н., профессор, руководитель отделения физиологии и патологии новорожденных детей

Список литературы

  1. Баканов М. И., Алатырцев В. В., Подкопаев В. Н. Креатинкиназа-ВВ и нейронспецифическая енолаза в цереброспинальной жидкости у новорожденных детей с перинатальными поражениями центральной нервной системы. Педиатрия. 1999; 2: 4-8.
  2. Блинов Д. В., Терентьев А. А. Характеристика биохимических маркеров нарушения проницаемости гематоэнцефалического барьера и функционирования центральной нервной системы. Нейрохимия. 2013; 30 (3): 179-92.
  3. Голосная Г. С., Петрухин А. С., Красильщикова Т. М., Албагачиева Д. И., Эрлих А. Л., Трепилец С. В. и соавт. Взаимодействие нейротрофических и проапоптотических факторов в патогенезе гипоксического поражения головного мозга у новорожденных. Педиатрия. 2010; 89 (1): 20-5.
  4. Кореновский Ю. В., Ельчанинова С. А. Биохимические маркеры гипоксических перинатальных поражений центральной нервной системы у новорожденных (обзор литературы). Клиническая лабораторная диагностика. 2012; 2: 3-7.
  5. Мухтарова С. Н. Значение определения нейронспецифической енолазы в оценке тяжести гипоксически-ишемических поражений мозга у новорожденных. Медицинские новости Грузии. 2010; 181 (4): 49-54.
  6. Bannett M., Lagopoulos J. Stress and trauma: BDNF control of dendritic-spine formation and regression. Prog. Neurobiol. 2014; 112: 80-99.
  7. Celtik C., Acunaş B., Oner N. et al. Neuron-specific enolase as a marker of the severity and outcome of hypoxic ischemic encephalopathy. Brain Development. 2004; 26 (6): 398-402.
  8. Chouthai N. S., Sampers J., Desai N. et al. Changes in neurotrophin levels in umbilical cord blood from infants with different gestational ages and clinical conditions. Pediatr. Res. 2003; 53 (6): 965-9.
  9. Costantine M. M., Weiner S. J., Rouse D. J. et al. Umbilical cord biomarkers of neurologic injury and the risk of cerebral palsy or infant death. Dev.Neurosci. 2011; 29 (8): 917-22.
  10. Dhobale M. Neurotrophins: role in adverse pregnancy outcome. Devl. Neuroscience. 2014; 37: 8-14.
  11. Douglas-Escobar M., Weiss M. D. Biomarkers of hypoxic-ischemic encephalopathy in newborns. Front. Neurol. 2012; 144 (2): 1-5.
  12. Flock A., Weber S. K., Ferrari N. et al. Determinants of brain-derived neurotrophic factor (BDNF) in umbilical cord and maternal serum. Psychoneuroendocrinology. 2016; 63: 191-7.
  13. Fujita K., Tatsumi K., Kondoh E. et al. Differential expression and the anti-apoptotic effect of human placental neurotrophins and their receptors. Placenta. 2011; 32: 737-44.
  14. Grow J., Barks J. D. Pathogenesis of hypoxic-ischemic cerebral injury in the term infant: current concepts. Clin Perinatol. 2002; 29 (4): 585-602.
  15. Haddad J., Vilge V., Juif J. G. et al. Beta-nerve growth factor levels in newborn cord sera. Pediatr. Res. 1994; 35: 637-9.
  16. Hamilton B. E., Hoyert D. I., Martin J. A. et al. Annual summaryof vital statistics: 2010-2011. Pediatrics. 2013; 131: 548-58.
  17. Hartman W., HelanM., Smelter D. et al. Role of Hypoxia-Induced Brain Derived Neurotrophic Factor in Human Pulmonary Artery Smooth Muscle. PloS ONE. 2015; 10 (7): e012I9489.
  18. Inoue S. A clinical study on neuron-specific enolase activities in cerebrospinal fluid of neonates. No To Hattatsu. 1992; 24 (6): 548-53.
  19. Irestedt l., Dahlin I., Hertzberg T., Sollevl A. et al. Adenosine Concentration in Umbilical Cord Blood of Newborn Infants after Vaginal Delivery and Cesarean Section. Pediatric. Res.1989; 26 (2): 106-8.
  20. Jauch E. C., Lindsell C., Broderick J. et al. Association of serial biochemical markers with acute ischemic stroke: the National Institute of Neurological Disorders and Stroke recombinant tissue plasminogen activator Stroke Study. Stroke. 2006; 37 (10): 2508-13.
  21. Karege F., Schwald M., Cisse M. Postnatal developmental profile of brain-derived neurotrophic factor in rat brain and platelets. Neurosci Lett. 2002; 328: 261-8.
  22. Kelmanson I. Emotional andbehavioural features of preschool children born by caesarean deliveries at maternal request. Eur. J. Dev. Psychol. 2013; 10: 676-90.
  23. Leal G., Comprido D., Duarte C. B. BDNF-induced local protein synthesis and synaptic plasticity. Neuropharmacology. 2014; 76: 639-56.
  24. Malamitsi-Puchner A., Economou E., Rigopoulou A. et al. Perinatal changes of brain-derived neurotrophic factor in pre- and fullterm neonates. Early Hum. 2004; 76: 17-22.
  25. Matoba N., Yu Y., Mestan K. et al. Differential pattern of 27 cord blood ummune biomarkers across ge4stational age. Pediatrics. 2009; 123: 1320-8.
  26. Matthews V. B., Astrom M.-V., Chan M. H. S. et al. Brain derived neutrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMPK. Diabetologia. 2009; 52: 1409-18.
  27. Meuchel L. W., Thompson M. A., Cassivi S. D. et al. Neurotrophins induce nitric oxide generation in human pulmonary artery endothelial cells. Cardiovascular Research. 2011; 91: 668-6.
  28. Morel A. A., Bailey S. M., Shaw G. et al. Measurement of novel biomarkers of neuronal injury and cerebral oxygenation after routine vaginal delivery versus cesarean section in term infants. Perinat. Med. 2014; 42 (6): 705-9.
  29. Ng P. C., Lam H. S. Biomarkers in Neonatology: The Next Generation of Tests. Neonatology. 2012; 102: 145-1.
  30. Ohmiya M., Shudai T., Nitta A. et al. Brain-derived neurotrophic factor alters cell migration of particular progenitors in the developing mouse cerebral cortex. Neuroscience Letters. 2002; 317: 21-4.
  31. Olza-Fernandez I., Gabriel M. A. M., Gil-Sanchez A. et al. Neuroendocrinology of childbirth and mother-child attachment: The basis of an etiopathogenic model of perinatal neurobiological disorders. Frontiers in Neuroendocrinology. 2014; 35: 459-72.
  32. Pan W., Banks W. A., Fasold M. B. et al. Transport of brain-derived neurotrophic factor across the blood-brain barrier. Neuropharmacology. 1998; 37: 1553-61.
  33. Panja D., Bramham C. R. BDNF mechanisms in late LTP formation: a synthesis and break down. Neuropharmacology. 2014; 76: 664-76.
  34. Parkhurst C.N., Yang G., Ninan I. et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell. 2013; 155 (7): 1596-609.
  35. Pedersen B. K., Pedersen M., Krabbe K. S. et al. Role of exercise-induced brain-derived neurotrophic factor production in the regulation of energy homeosyasis in mammals. Exp. Physiol. 2009; 94 (12): 1153-60.
  36. Shu C., Xiao L., Tang J. et al. Blunted Behavioral and Molecular Responses to Chronic Mild Stress in Adult Rats with Experience of Infancy Maternal Separation. Tohoku J. Exper. Med. 2015; 235: 81-7.
  37. Smith P. A. BDNF: no gain without pain? Neuroscience. 2014; 283: 107-23.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Морозова А.Ю., Милютина Ю.П., Арутюнян А.В., Евсюкова И.И., 2015

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».