Neuron-specific enolase and brain-derived neurotrophic factor levels in umbilical cord blood in full-term newborns with intrauterine growth retardation
- Authors: Morozova A.Y.1, Milyutina Y.P.1, Kovalchuk-Kovalevskaya O.V.1, Arutjunyan A.V.1, Evsyukova I.I.1
-
Affiliations:
- The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott
- Issue: Vol 68, No 1 (2019)
- Pages: 29-36
- Section: Original study articles
- URL: https://ogarev-online.ru/jowd/article/view/11418
- DOI: https://doi.org/10.17816/JOWD68129-36
- ID: 11418
Cite item
Abstract
Neuron-specific enolase (NSE) and brain-derived neurotrophic factor (BDNF) levels in umbilical cord blood in full-term newborns with asymmetrical intrauterine growth retardation resulted from chronic placental insufficiency have been studied. Not only a 2.0–2.5-fold increase in the blood NSE level, but also a reduction in BDNF levels were observed, indicating brain damage combined with the lack of adequate compensatory capabilities. With an increase in the duration of intrauterine fetal development under conditions of chronic hypoxia, the degree of damage to neuronal structures increases. This article discusses the mechanisms of the revealed changes, as well as the diagnostic and prognostic significance of the use of biochemical markers.
Full Text
##article.viewOnOriginalSite##About the authors
Antonina Yu. Morozova
The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott
Author for correspondence.
Email: amor2703@gmail.com
Post-Graduate Student
Russian Federation, Saint PetersburgYulia P. Milyutina
The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott
Email: milyutina1010@mail.ru
PhD, Senior Researcher
Russian Federation, Saint PetersburgOlga V. Kovalchuk-Kovalevskaya
The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott
Email: kovkolga@yandex.ru
MD, PhD. The Department of Physiology and Pathology of Newborns
Russian Federation, Saint PetersburgAlexandr V. Arutjunyan
The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott
Email: alexarutiunjan@gmail.com
PhD, DSci (Biology), Professor, Honoured Scholar of the Russian Federation, Leading Researcher
Russian Federation, Saint PetersburgInna I. Evsyukova
The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott
Email: eevs@yandex.ru
MD, PhD, DSci (Medicine), Professor, Leading Researcher. The Department of Physiology and Pathology of Newborns
Russian Federation, Saint PetersburgReferences
- Баранов А.А., Маслова О.И., Намазова-Баранова Л.С. Онтогенез нейрокогнитивного развития детей и подростков // Вестник РАМН. — 2012. — Т. 67. — № 8. — С. 26–33. [Baranov AA, Maslova OI, Namazova-Baranova LS. Ontogenesis of neurocognitive development of children and adolescents. Annals of the Russian Academy of Medical Sciences. 2012;67(8):26-33. (In Russ.)]. https://doi.org/10.15690/vramn.v6718.346.
- Евсюкова И.И., Фоменко Б.А., Андреева А.А., и др. Особенности адаптации новорожденных детей с задержкой внутриутробного развития // Журнал акушерства и женских болезней. — 2003. — T. 52. — № 4. — C. 23–27. [Evsyukova II, Fomenko BA, Andreeva AA, et al. Osobennosti adaptatsii novorozhdennykh detey s zaderzhkoy vnutriutrobnogo razvitiya. Journal of Obstetrics and Women’s Diseases. 2003;52(4):23-27. (In Russ.)]
- de Bie HM, Oostrom KJ, Delemarre-van de Waal HA. Brain development, intelligence and cognitive outcome in children born small for gestational age. Horm Res Paediatr. 2010;73(1):6-14. https://doi.org/10.1159/000271911.
- Lapillonne A. Intrauterine growth retardation and adult outcome. Bull Acad Natl Med. 2011;195(3):477-484.
- Каркашадзе Г.А., Савостьянов К.В., Макарова С.Г., и др. Нейрогенетические аспекты гипоксически-ишемических перинатальных поражений центральной нервной системы // Вопросы современной педиатрии. — 2016. — T. 15. — № 5. — C. 440–451. [Karkashadze GA, Savostianov KV, Makarova SG, et al. Neurogenetic Aspects of Perinatal Hypoxic-Ischemic Affections of the Central Nervous System. Current pediatrics. 2016;15(5):440-451. (In Russ.)]. https://doi.org/10/15690/vsp.v1515.1618.
- Baschat AA, Viscardi RM, Hussey-Gardner B, et al. Infant neurodevelopment following fetal growth restriction: relationship with antepartum surveillance parameters. Ultrasound Obstet Gynecol. 2009;33(1):44-50. https://doi.org/10.1002/uog.6286.
- Lees C, Marlow N, Arabin B, et al. Perinatal morbidity and mortality in early-onset fetal growth restriction: cohort outcomes of the trial of randomized umbilical and fetal flow in Europe (TRUFFLE). Ultrasound Obstet Gynecol. 2013;42(4):400-408. https://doi.org/10.1002/uog.13190.
- Rodriguez-Guerineau L, Perez-Cruz M, Gomez Roig MD, et al. Cardiovascular adaptation to extrauterine life after intrauterine growth restriction. Cardiol Young. 2018;28(2):284-291. https://doi.org/10.1017/S1047951117001949.
- Yanney M, Marlow N. Paediatric consequences of fetal growth restriction. Semin Fetal Neonatal Med. 2004;9(5):411-418. https://doi.org/10.1016/j.siny.2004.03.005.
- Евсюкова И.И., Ковальчук-Ковалевская О.В., Маслянюк Н.А., Додхоев Д.С. Особенности циклической организации сна и продукции мелатонина у доношенных новорожденных детей с задержкой внутриутробного развития // Физиология человека. — 2013. — T. 39. — № 6. — C. 63–71. [Evsyukova II, Koval’chuk-Kovalevskaya OV, Maslyanyuk NA, Dodkhoev DS. Features of cyclic sleep organization and melatonin production in full-term newborns with intrauterine growth retardation. Fiziol Cheloveka. 2013;39(6):63-71. (In Russ.)]. https://doi.org/10.7868/S0131164613060040.
- Морозова А.Ю., Арутюнян А.В., Милютина Ю.П., и др. Динамика изменения содержания нейротрофических факторов в структурах головного мозга крыс в раннем онтогенезе после пренатальной гипоксии // Нейрохимия. — 2018. — T. 35. — № 3. — C. 256–263. [Morozova АY, Arutyunyan AV, Milyutina YP, et al. The Dynamics of the Contents of Neurotrophic Factors in Early Ontogenyin the Brain Structures of Rats Subjected to Prenatal Hypoxia. Neurochemistry. 2018;35(3):256-63. (In Russ.)]. https://doi.org/10.1134/S1027813318030081.
- Ergaz Z, Avgil M, Ornoy A. Intrauterine growth restriction-etiology and consequences: what do we know about the human situation and experimental animal models? Reprod Toxicol. 2005;20(3):301-322. https://doi.org/10.1016/j.reprotox.2005.04.007.
- Rees S, Harding R, Walker D. An adverse intrauterine environment: implications for injury and altered development of the brain. Int J Dev Neurosci. 2008;26(1):3-11. https://doi.org/10.1016/j.ijdevneu.2007.08.020.
- Задворнов А.А., Голомидов А.В., Григорьев Е.В. Биомаркеры перинатального поражения центральной нервной системы // Неонатология. — 2017. — № 1. — C. 47–57. [Zadvornov AA, Golomidov AV, Grigoriev EV. Biomarkers of perinatal lesions of the central nervous system. Neonatologiia. 2017;(1):47-57. (In Russ.)]
- Bennett MR, Lagopoulos J. Stress and trauma: BDNF control of dendritic-spine formation and regression. Prog Neurobiol. 2014;112:80-99. https://doi.org/10.1016/j.pneurobio.2013.10.005.
- Celtik C, Acunas B, Oner N, Pala O. Neuron-specific enolase as a marker of the severity and outcome of hypoxic ischemic encephalopathy. Brain Dev. 2004;26(6):398-402. https://doi.org/10.1016/j.braindev.2003.12.007.
- Costantine MM, Weiner SJ, Rouse DJ, et al. Umbilical cord blood biomarkers of neurologic injury and the risk of cerebral palsy or infant death. Int J Dev Neurosci. 2011;29(8):917-922. https://doi.org/10.1016/j.ijdevneu.2011.06.009.
- Giuseppe D, Sergio C, Pasqua B, et al. Perinatal Asphyxia in Preterm Neonates Leads to Serum Changes in Protein S-100 and Neuron Specific Enolase. Curr Neurovasc Res. 2009;6(2):110-116. https://doi.org/10.2174/ 156720209788185614.
- Velipasaoglu M, Yurdakok M, Ozyuncu O, et al. Neural injury markers to predict neonatal complications in intrauterine growth restriction. J Obstet Gynaecol. 2015;35(6):555-560. https://doi.org/10.3109/01443615.2014.978848.
- Bathina S, Das UN. Brain-derived neurotrophic factor and its clinical implications. Arch Med Sci. 2015;11(6):1164-1178. https://doi.org/10.5114/aoms.2015.56342.
- Kesslak JP, Chuang KR, Berchtold NC. Spatial learning is delayed and brain-derived neurotrophic factor mRNA expression inhibited by administration of MK-801 in rats. Neurosci Lett. 2003;353(2):95-98. https://doi.org/10.1016/j.neulet.2003.08.078.
- Lykissas M, Batistatou A, Charalabopoulos K, Beris A. The Role of Neurotrophins in Axonal Growth, Guidance, and Regeneration. Curr Neurovasc Res. 2007;4(2):143-151. https://doi.org/10.2174/156720207780637216.
- Karege F, Schwald M, Cisse M. Postnatal developmental profile of brain-derived neurotrophic factor in rat brain and platelets. Neurosci Lett. 2002;328(3):261-264. https://doi.org/10.1016/s0304-3940(02)00529-3.
- Chouthai NS, Sampers J, Desai N, Smith GM. Changes in neurotrophin levels in umbilical cord blood from infants with different gestational ages and clinical conditions. Pediatr Res. 2003;53(6):965-969. https://doi.org/10.1203/01.PDR.0000061588.39652.26.
- Malamitsi-Puchner A, Economou E, Rigopoulou O, Boutsikou T. Perinatal changes of brain-derived neurotrophic factor in pre- and fullterm neonates. Early Hum Dev. 2004;76(1):17-22. https://doi.org/10.1016/j.earlhumdev.2003.10.002.
- Matoba N, Yu Y, Mestan K, et al. Differential patterns of 27 cord blood immune biomarkers across gestational age. Pediatrics. 2009;123(5):1320-1328. https://doi.org/10.1542/peds.2008-1222.
- Flock A, Weber SK, Ferrari N, et al. Corrigendum to “Determinants of brain-derived neurotrophic factor (BDNF) in umbilical cord and maternal serumˮ. Psychoneuroendocrinology. 2017;78:257. https://doi.org/10.1016/j.psyneuen.2016.11.001.
- Ng PC, Lam HS. Biomarkers in neonatology: the next generation of tests. Neonatology. 2012;102(2):145-151. https://doi.org/10.1159/000338587.
- Морозова А.Ю., Милютина Ю.П., Арутюнян А.В., Евсюкова И.И. Содержание нейронспецифической енолазы и нейротрофического фактора роста в пуповинной крови здоровых доношенных детей после операции планового кесарева сечения и спонтанных родов // Журнал акушерства и женских болезней. — 2015. — T. 64. — № 6. — C. 38–42. [Morozova AY, Milyutina YP, Arutyunyan AV, Evsyukova II. The contents of neurospecific enolase and neurotrofic growth factor in the cord blood of healthy full-term newborns elective planned caesarean section surgery and spontaneous delivery. Journal of Obstetrics and Women’s Diseases. 2015;64(6):38-42. (In Russ.)]
- Mazarico E, Llurba E, Cumplido R, et al. Neural injury markers in intrauterine growth restriction and their relation to perinatal outcomes. Pediatr Res. 2017;82(3):452-457. https://doi.org/10.1038/pr.2017.108.
- Mazarico E, Llurba E, Cabero L, et al. Associations between neural injury markers of intrauterine growth-restricted infants and neurodevelopment at 2 years of age. J Matern Fetal Neonatal Med. 2018:1-7. https://doi.org/10.1080/ 14767058.2018.1460347.
- Голосная Г.С., Петрухин А.С., Красильщикова Т.М., и др. Взаимодействие нейротрофических и проапоптотических факторов в патогенезе гипоксического поражения головного мозга у новорожденных // Педиатрия. Журнал им. Г.Н. Сперанского. — 2010. — T. 89. — № 1. — C. 20–25. [Golosnaja GS, Petruhin AS, Krasil’shhikova TM, et al. Vzaimodeystvie neyrotroficheskikh i proapoptoticheskikh faktorov v patogeneze gipoksicheskogo porazheniya golovnogo mozga u novorozhdennykh. Pediatriia. 2010;89(1):20-25. (In Russ.)]
- Мухтарова С.Н. Значение определения нейроспецифической енолазы в оценке тяжести гипоксически-ишемических поражений мозга у новорожденных // Медицинские новости Грузии. — 2010. — T. 181. — № 4. — C. 49–54. [Mukhtarova SN. Znachenie opredeleniya neyrospetsificheskoy enolazy v otsenke tyazhesti gipoksicheski-ishemicheskikh porazheniy mozga u novorozhdennykh. Meditsinskie novosti Gruzii. 2010;181(4):49-54. (In Russ.)]
- Douglas-Escobar M, Weiss MD. Biomarkers of hypoxic-ischemic encephalopathy in newborns. Front Neurol. 2012;3:144. https://doi.org/10.3389/fneur.2012.00144.
- Yang JC, Zhu XL, Li HZ. Relationship between brainstem auditory evoked potential and serum neuron-specific enolase in neonates with asphyxia. Zhongguo Dang Dai Er Ke Za Zhi. 2008;10(6):697-700.
- Malamitsi-Puchner A, Nikolaou KE, Economou E, et al. Intrauterine growth restriction and circulating neurotrophin levels at term. Early Hum Dev. 2007;83(7):465-469. https://doi.org/10.1016/j.earlhumdev.2006.09.001.
- Rao R, Mashburn CB, Mao J, et al. Brain-derived neurotrophic factor in infants <32 weeks gestational age: correlation with antenatal factors and postnatal outcomes. Pediatr Res. 2009;65(5):548-552. https://doi.org/10.1203/PDR.0b013e31819d9ea5.
- Dieni S, Rees S. BDNF and TrkB protein expression is altered in the fetal hippocampus but not cerebellum after chronic prenatal compromise. Exp Neurol. 2005;192(2):265-273. https://doi.org/10.1016/j.expneurol.2004.06.003.
- Moreau JM, Ciriello J. Chronic intermittent hypoxia induces changes in expression of synaptic proteins in the nucleus of the solitary tract. Brain Res. 2015;1622:300-307. https://doi.org/10.1016/j.brainres.2015.07.007.
- Numakawa T, Matsumoto T, Ooshima Y, et al. Impairments in brain-derived neurotrophic factor-induced glutamate release in cultured cortical neurons derived from rats with intrauterine growth retardation: possible involvement of suppression of TrkB/phospholipase C-gamma activation. Neurochem Res. 2014;39(4):785-792. https://doi.org/10.1007/s11064-014-1270-x.
- Vedunova MV, Mishchenko TA, Mitroshina EV, Mukhina IV. TrkB-Mediated Neuroprotective and Antihypoxic Properties of Brain-Derived Neurotrophic Factor. Oxid Med Cell Longev. 2015;2015:453901. https://doi.org/10.1155/2015/ 453901.
- Canossa M, Giordano E, Cappello S, et al. Nitric oxide down-regulates brain-derived neurotrophic factor secretion in cultured hippocampal neurons. Proc Natl Acad Sci U S A. 2002;99(5):3282-3287. https://doi.org/10.1073/pnas.042504299.
- Boersma GJ, Lee RS, Cordner ZA, et al. Prenatal stress decreases Bdnf expression and increases methylation of Bdnf exon IV in rats. Epigenetics. 2014;9(3):437-447. https://doi.org/10.4161/epi.27558.
- Kundakovic M, Gudsnuk K, Herbstman JB, et al. DNA methylation of BDNF as a biomarker of early-life adversity. Proc Natl Acad Sci U S A. 2015;112(22):6807-6813. https://doi.org/10.1073/pnas.1408355111.
- Кореновский Ю.В., Ельчанинова С.А. Биохимические маркеры гипоксических перинатальных поражений центральной нервной системы у новорожденных // Клиническая лабораторная диагностика. — 2012. — № 2. — C. 3–7. [Korenovsky YuV, Yeltchaninova SA. The biochemical markers of hypoxic perinatal affections of central nervous system in newborns. Klin Lab Diagn. 2012;(2):3-7. (In Russ.)]
- Schlotz W, Phillips DI. Fetal origins of mental health: evidence and mechanisms. Brain Behav Immun. 2009;23(7):905-916. https://doi.org/10.1016/j.bbi.2009.02.001.
- Walker CK, Krakowiak P, Baker A, et al. Preeclampsia, placental insufficiency, and autism spectrum disorder or developmental delay. JAMA Pediatr. 2015;169(2):154-162. https://doi.org/10.1001/jamapediatrics.2014.2645.
- Wixey JA, Chand KK, Pham L, et al. Therapeutic potential to reduce brain injury in growth restricted newborns. J Physiol. 2018;596(23):5675-5686. https://doi.org/10.1113/JP275428.
Supplementary files
