Вариант Omicron коронавируса SARS-CoV-2 и его разновидности / субварианты

Обложка

Цитировать

Полный текст

Аннотация

Коронавирус SARS-CoV-2 уже три года циркулирует среди людей, заражая сотни миллионов человек. Многочисленные сообщения со всего мира свидетельствуют о том, что в настоящее время большинство инфекций вызвано различными вариантами Omicron, преобладающими над всеми ранее появившимися вариантами. Геном штамма Omicron накопил десятки мутаций, которые увеличивают приспособляемость вируса и являются причиной возникновения новых вариантов и субвариантов с повышенной контагиозностью, трансмиссивностью и способностью уклоняться от иммунного ответа. Это ставит под угрозу защиту, обеспечиваемую вакцинами, или гуморальный иммунитет, индуцированный предыдущими инфекциями. Несмотря на то, что биология SARS-CoV-2 хорошо изучена, его способность инфицировать, размножаться и распространяться среди населения зависит от конкретного иммунного контекста в разные периоды пандемии. Предполагается, что новые варианты возникают в результате хронической инфекции у лиц с ослабленным иммунитетом. Внутрилинейная рекомбинация обеспечивает вирусу фенотипические преимущества от отдалённо родственных циркулирующих вариантов. Один из последних субвариантов Omicron, который получил название «Kraken» из-за беспрецедентно высокой трансмиссивности, является потомком рекомбинантной линии. Вирус непрерывно эволюционирует в направлении уклонения от вируснейтрализующих антител, поэтому ведётся постоянная работа по созданию новых более эффективных вакцин и других противовирусных средств.

Об авторах

Сергей Григорьевич Щербак

Городская больница № 40 Курортного административного района; Санкт-Петербургский государственный университет

Email: b40@zdrav.spb.ru
ORCID iD: 0000-0001-5036-1259
SPIN-код: 1537-9822

д.м.н., профессор

Россия, Санкт-Петербург; Санкт-Петербург

Дмитрий Александрович Вологжанин

Городская больница № 40 Курортного административного района; Санкт-Петербургский государственный университет

Email: volog@bk.ru
ORCID iD: 0000-0002-1176-794X
SPIN-код: 7922-7302

д.м.н.

Россия, Санкт-Петербург; Санкт-Петербург

Александр Сергеевич Голота

Городская больница № 40 Курортного административного района

Автор, ответственный за переписку.
Email: golotaa@yahoo.com
ORCID iD: 0000-0002-5632-3963
SPIN-код: 7234-7870

к.м.н., доцент

Россия, Санкт-Петербург

Андрей Михайлович Сарана

Санкт-Петербургский государственный университет; Комитет по здравоохранению Администрации Санкт-Петербурга

Email: asarana@mail.ru
ORCID iD: 0000-0003-3198-8990
SPIN-код: 7922-2751

к.м.н., доцент

Россия, Санкт-Петербург; Санкт-Петербург

Станислав Вячеславович Макаренко

Городская больница № 40 Курортного административного района; Санкт-Петербургский государственный университет

Email: st.makarenko@gmail.com
ORCID iD: 0000-0002-1595-6668
SPIN-код: 8114-3984

ассистент

Россия, Санкт-Петербург; Санкт-Петербург

Список литературы

  1. Jung C, Kmiec D, Koepke L, et al. Omicron: what makes the latest SARS-CoV-2 variant of concern so concerning? J Virol. 2022;96(6):e0207721. doi: 10.1128/jvi.02077-21
  2. Carabelli AM, Peacock TP, Thorne LG, et al. SARS-CoV-2 variant biology: Immune escape, transmission and fitness. Nat Rev Microbiol. 2023;21(3):162–177. doi: 10.1038/s41579-022-00841-7
  3. Afshar ZM, Pirzaman AT, Karim B, et al. SARS-CoV-2 Omicron (B.1.1.529) variant: A challenge with COVID-19. Diagnostics. 2023;13(3):559. doi: 10.3390/diagnostics13030559
  4. Kozlov M. Omicron’s feeble attack on the lungs could make it less dangerous. Nature. 2022;601(7892):177. doi: 10.1038/d41586-022-00007-8
  5. McMahan K, Giffin V, Tostanoski LH, et al. Reduced pathogenicity of the SARS-CoV-2 Omicron variant in hamsters. Med (NY). 2022;3(4):262–268.e4. doi: 10.1016/j.medj.2022.03.004
  6. Callaway E. Heavily mutated Omicron variant puts scientists on alert. Nature. 2021;600(7887):21. doi: 10.1038/d41586-021-03552-w
  7. Chatterjee S, Bhattacharya M, Nag S, et al. A detailed overview of SARS-CoV-2 Omicron: Its sub-variants, mutations and pathophysiology, clinical characteristics, immunological landscape, immune escape, and therapies. Viruses. 2023; 15(1):167. doi: 10.3390/v15010167
  8. Tuekprakhon A, Nutalai R, Dijokaite-Guraliuc A, et al. Antibody escape of SARS-CoV-2 Omicron BA. 4 and BA. 5 from vaccine and BA.1 serum. Cell. 2022;185(14):2422–2433.e13. doi: 10.1016/j.cell.2022.06.005
  9. Zhou Y, Zhi H, Teng Y. The outbreak of SARS-CoV-2 Omicron lineages, immune escape, and vaccine effectivity. J Med Virol. 2023;95(1):e28138. doi: 10.1002/jmv.28138
  10. Arora P, Kempf A, Nehlmeier I, et al. Omicron sublineage BQ.1.1 resistance to monoclonal antibodies. Lancet Infect Dis. 2023;23(1):22–23. doi: 10.1016/S1473-3099(22)00733-2
  11. Wang Q, Iketani S, Li Z, et al. Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants. Cell. 2023;186(2):279–286.e8. doi: 10.1016/j.cell.2022.12.018
  12. Bruel T, Stefic K, Nguyen Y, et al. Longitudinal analysis of serum neutralization of SARS-CoV-2 Omicron BA.2, BA.4, and BA.5 in patients receiving monoclonal antibodies. Cell Rep Med. 2022;3(12):100850. doi: 10.1016/j.xcrm.2022.100850
  13. Qu P, Evans JP, Faraone JN, et al. Enhanced neutralization resistance of SARS-CoV-2 Omicron subvariants BQ.1, BQ.1.1, BA.4.6, BF.7, and BA.2.75.2. Cell Host Microbe. 2023;31(1):9–17. doi: 10.1016/j.chom.2022.11.012
  14. Chakraborty C, Saha A, Bhattacharya M, et al. Natural selection of the D614G mutation in SARS-CoV-2 Omicron (B.1.1.529) variant and its subvariants. Mol Ther Nucleic Acids. 2023;31:437–439. doi: 10.1016/j.omtn.2023.01.013
  15. Xia S, Wang L, Jiao F, et al. SARS-CoV-2 Omicron subvariants exhibit distinct fusogenicity, but similar sensitivity, to pan-CoV fusion inhibitors. Emerg Microbes Infect. 2023;12(1):2178241. doi: 10.1080/22221751.2023.2178241
  16. Cao Y, Yisimayi A, Jian F, et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. Nature. 2022;608 (7923):593–602. doi: 10.1038/s41586-022-04980-y
  17. Hansen CH, Friis NU, Bager P, et al. Risk of reinfection, vaccine protection, and severity of infection with the BA.5 omicron subvariant: A nation-wide population-based study in Denmark. Lancet Infect Dis. 2023;23(2):167–176. doi: 10.1016/S1473-3099(22)00595-3
  18. Wang Y, Long Y, Wang F, et al. Characterization of SARS-CoV-2 recombinants and emerging Omicron sublineages. Int J Med Sci. 2023;20(1):151–162. doi: 10.7150/ijms.79116
  19. Arora P, Cossmann A, Schulz SR, et al. Neutralisation sensitivity of the SARS-CoV-2 XBB.1 lineage. Lancet Infect Dis. 2023;23(2):147–148. doi: 10.1016/S1473-3099(22)00831-3
  20. Mohapatra RK, Kandi V, Tuli HS, et al. The recombinant variants of SARS-CoV-2: Concerns continues amid COVID-19 pandemic. J Med Virol. 2022;94(8):3506–3508. doi: 10.1002/jmv.27780
  21. Shrestha LB, Foster C, Rawlinson W. et al. Evolution of the SARS-CoV-2 omicron variants BA.1 to BA.5: Implications for immune escape and transmission. Rev Med Virol. 2022; 32(5):e2381. doi: 10.1002/rmv.2381
  22. Kim MK, Lee B, Choi Y, et al. Clinical characteristics of 40 patients infected with the SARS-CoV-2 Omicron variant in Korea. J Korean Med Sci. 2022;37(3):e31. doi: 10.3346/jkms.2022.37.e31
  23. Fall A, Eldesouki RE, Sachithanandham J, et al. The displacement of the SARS-CoV-2 variant Delta with Omicron: An investigation of hospital admissions and upper respiratory viral loads. EBio Med. 2022;79:104008. doi: 10.1016/j.ebiom.2022.104008
  24. Tostmann A. Time to consider unusual or severe headache and fatigue as indicator symptoms for COVID-19 testing? Euro Surveill. 2022;27(1):2101188. doi: 10.2807/1560-7917.ES.2022.27.1.2101188
  25. Kneidinger N, Hecker M, Bessa V, et al. Outcome of lung transplant recipients infected with SARS-CoV-2/Omicron/B.1.1.529: A Nationwide German study. Infection. 2022;9:1–9. doi: 10.1007/s15010-022-01914-8
  26. Hyams C, Challen R, Marlow R, et al. Severity of Omicron (B.1.1.529) and Delta (B.1.617.2) SARS-CoV-2 infection among hospitalised adults: A prospective cohort study in Bristol, United Kingdom. medRxiv. 2023. doi: 10.1101/2022.06.29.22277044
  27. World Health Organization; ECDC. Assessment of the further emergence and potential impact of the SARS-CoV-2 omicron variant of concern in the context of ongoing transmission of the Delta variant of concern in the EU/EEA, 18th.
  28. CDC COVID-19 Response Team. SARS-CoV-2 B.1.1.529 (Omicron) Variant-United States, December 1–8, 2021. MMWR Morb Mortal Wkly Rep. 2021;70(50):1731–1734. doi: 10.15585/mmwr.mm7050e1
  29. Cloete J, Kruger A, Masha M, et al. Paediatric hospitalisations due to COVID-19 during the first SARS-CoV-2 Omicron (B.1.1.529) variant wave in South Africa: A multicentre observational study. Lancet Child Adolesc Health. 2022;6(5):294–302. doi: 10.1016/S2352-4642(22)00027-X
  30. Wolter N, Jassat W, Walaza S, et al. Early assessment of the clinical severity of the SARS-CoV-2 Omicron variant in South Africa: A data linkage study. Lancet. 2022;399(10323):437–446. doi: 10.1016/S0140-6736(22)00017-4
  31. Abdullah F, Myers J, Basu D, et al. Decreased severity of disease during the first global Omicron variant Covid-19 outbreak in a large hospital in Tshwane, South Africa. Int J Infect Dis. 2022;116:38–42. doi: 10.1016/j.ijid.2021.12.357
  32. Meo SA, Meo AS, Al-Jassir FF, Klonoff DC. Omicron SARS-CoV-2 new variant: Global prevalence and biological and clinical characteristics. Eur Rev Med Pharmacol Sci. 2021;25(24): 8012–8018. doi: 10.26355/eurrev_202112_27652
  33. Bhattacharya M, Chatterjee S, Sharma AR, et al. Delta variant (B.1.617.2) of SARS-CoV-2: Current understanding of infection, transmission, immune escape, and mutational landscape. Folia Microbiol. 2023;68(1):17–28. doi: 10.1007/s12223-022-01001-3
  34. Jassat W, Mudara C, Vika C, et al. A cohort study of post-COVID-19 condition across the Beta, Delta, and Omicron waves in South Africa: 6-month follow-up of hospitalized and nonhospitalized participants. Int J Infect Dis. 2023;128:102–111. doi: 10.1016/j.ijid.2022.12.036
  35. Soriano JB, Murthy S, Marshall JC, et al. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect Dis. 2022;22(4):e102–e107. doi: 10.1016/S1473-3099(21)00703-9
  36. Antonelli M, Pujol JC, Spector TD, et al. Risk of long COVID associated with delta versus omicron variants of SARS-CoV-2. Lancet. 2022;399(10343):2263–2264. doi: 10.1016/S0140-6736(22)00941-2
  37. Wise J. Covid-19: Long covid risk is lower with omicron than delta, researchers find. BMJ. 2022;377:o1500. doi: 10.1136/bmj.o1500
  38. Duong BV, Larpruenrudee P, Fang T, et al. Is the SARS CoV-2 Omicron variant deadlier and more transmissible than Delta variant? Int J Environ Res Public Health. 2022;19(8):4586. doi: 10.3390/ijerph19084586
  39. Le TT, Vasanthakumaran T, Thi Hien HN, et al. SARS-CoV-2 Omicron and its current known unknowns: A narrative review. Rev Med Virol. 2023;33(1):e2398. doi: 10.1002/rmv.2398
  40. Riediker M, Briceno-Ayala L, Ichihara G, et al. Higher viral load and infectivity increase risk of aerosol transmission for Delta and Omicron variants of SARS-CoV-2. Swiss Med Wkly. 2022;152:w30133. doi: 10.4414/SMW.2022.w30133
  41. Chen J, Wang R, Gilby NB, Wei GW. Omicron variant (B.1.1.529): Infectivity, vaccine breakthrough, and antibody resistance. J Chem Inf Model. 2022;62(2):412–422. doi: 10.1021/acs.jcim.1c01451
  42. Pascarella S, Ciccozzi M, Bianchi M, et al. The electrostatic potential of the Omicron variant spike is higher than in Delta and Delta-plus variants: A hint to higher transmissibility? J Med Virol. 2022;94(4):1277–1280. doi: 10.1002/jmv.27528
  43. Araf Y, Akter F, Tang YD, et al. Omicron variant of SARS-CoV-2: Genomics, transmissibility, and responses to current COVID-19 vaccines. J Med Virol. 2022;94(5):1825–1832. doi: 10.1002/jmv.27588
  44. Bhattacharya M, Chatterjee S, Lee SS, Chakraborty C. Therapeutic applications of nanobodies against SARS-CoV-2 and other viral infections: Current update. Int J Biol Macromol. 2023;229:70–80. doi: 10.1016/j.ijbiomac.2022.12.284
  45. Johnson BA, Zhou Y, Lokugamage KG, et al. Nucleocapsid mutations in SARS-CoV-2 augment replication and pathogenesis. PLoS Pathog. 2022;18(6):e1010627. doi: 10.1371/journal.ppat.1010627
  46. Lubinski B, Jaimes JA, Whittaker GR. Intrinsic furin-mediated cleavability of the spike S1/S2 site from SARS-CoV-2 variant B.1.1.529 (Omicron). bioRxiv. 2022. doi: 10.1101/2022.04.20.488969
  47. Allen H, Tessier E, Turner C, et al. Comparative transmission of SARS-CoV-2 Omicron (B.1.1.529) and Delta (B.1.617.2) variants and the impact of vaccination: National cohort study, England. Epidemiol Infect. 2023;1–20. doi: 10.1017/S0950268823000420
  48. Lyngse FP, Kirkeby CT, Denwood M, et al. Household transmission of SARS-CoV-2 Omicron variant of concern subvariants BA.1 and BA.2 in Denmark. Nat Commun. 2022; 13(1):5760. doi: 10.1038/s41467-022-33498-0
  49. Meng B, Abdullahi A, Ferreira I, et al. Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature. 2022;603(7902):706–714. doi: 10.1038/s41586-022-04474-x
  50. Zhao H, Lu L, Peng Z, et al. SARS-CoV-2 Omicron variant shows less efficient replication and fusion activity when compared with Delta variant in TMPRSS2-expressed cells. Emerg Microbes Infect. 2022;11(1):277–283. doi: 10.1080/22221751.2021.2023329
  51. Willett BJ, Grove J, MacLean OA, et al. SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway. Nat Microbiol. 2022;(8):1161–1179. doi: 10.1038/s41564-022-01143-7
  52. Suzuki R, Yamasoba D, Kimura I, et al. Attenuated fusogenicity and pathogenicity of SARS-CoV-2 Omicron variant. Nature. 2022;603(7902):700–705. doi: 10.1038/s41586-022-04462-1
  53. COVID-19 Forecasting Team. Past SARS-CoV-2 infection protection against re-infection: A systematic review and meta-analysis. Lancet. 2023. doi: 10.1016/S0140-6736(22)02465-5
  54. Dewald F, Pirkl M, Ahmadov E, et al. Impaired humoral immunity to BQ.1.1 in convalescent and vaccinated patients. medRxiv. 2023. doi: 10.1101/2022.12.31.22284088
  55. Suryawanshi R, Ott M. SARS-CoV-2 hybrid immunity: Silver bullet or silver lining? Nat Rev Immunol. 2022;22(10):591–592. doi: 10.1038/s41577-022-00771-8
  56. Goldberg Y, Mandel M, Bar-On YM, et al. Protection and waning of natural and hybrid immunity to SARS-CoV-2. N Engl J Med. 2022;386(23):2201–2212. doi: 10.1056/NEJMoa2118946
  57. Xia H, Zou J, Kurhade C, et al. Neutralization and durability of 2 or 3 doses of the BNT162b2 vaccine against Omicron SARS-CoV-2. Cell Host Microbe. 2022;30(4):485–488. doi: 10.1016/j.chom.2022.02.015
  58. Gruell H, Vanshylla K, Tober-Lau P, et al. mRNA booster immunization elicits potent neutralizing serum activity against the SARS-CoV-2 Omicron variant. Nat Med. 2022;28(3): 477–480. doi: 10.1038/s41591-021-01676-0
  59. Wilkinson SA, Richter A, Casey A, et al. Recurrent SARS-CoV-2 mutations in immunodeficient patients. Virus Evol. 2022; 8(2):veac050. doi: 10.1093/ve/veac050
  60. Wang Q, Guo Y, Iketani S, et al. Antibody evasion by SARS-CoV-2 Omicron subvariants BA.2.12.1, BA.4 and BA.5. Nature. 2022;608(7923):603–608. doi: 10.1038/s41586-022-05053-w
  61. Cerutti G, Guo Y, Liu L, et al. Cryo-EM structure of the SARS-CoV-2 Omicron spike. Cell Rep. 2022;38(9):110428. doi: 10.1016/j.celrep.2022.110428
  62. Agerer B, Koblischke M, Gudipati V, et al. SARS-CoV-2 mutations in MHC-I-restricted epitopes evade CD8+ T cell responses. Sci Immunol. 2021;6(57):eabg6461. doi: 10.1126/sciimmunol.abg6461
  63. Dolton G, Rius C, Hasan MS, et al.; COVID-19 Genomics UK (COG-UK) consortium. Emergence of immune escape at dominant SARS-CoV-2 killer T cell epitope. Cell. 2022; 185(16):2936–2951.e19. doi: 10.1016/j.cell.2022.07.002
  64. Tarke A, Coelho CH, Zhang Z, et al. SARS-CoV-2 vaccination induces immunological T cell memory able to cross-recognize variants from Alpha to Omicron. Cell. 2022;185(5):847–859.e11. doi: 10.1016/j.cell.2022.01.015
  65. Wellington D, Yin Z, Yu Z, et al. SARS-CoV-2 mutations affect proteasome processing to alter CD8+ T cell responses. bioRxiv. 2022. doi: 10.1101/2022.04.08.487623
  66. Arshad N, Laurent-Rolle M, Ahmed WS, et al. SARS-CoV-2 accessory proteins ORF7a and ORF3a use distinct mechanisms to downregulate MHC-I surface expression. Proc Natl Acad Sci USA. 2023;120(1):e2208525120. doi: 10.1073/pnas.2208525120
  67. Moriyama M, Lucas C. SARS-CoV-2 subvariants evolved to promote further escape from MHC-I recognition. bioRxiv. 2022. doi: 10.1101/2022.05.04.490614
  68. Keeton R, Tincho MB, Ngomti A, et al. T cell responses to SARS-CoV-2 spike cross-recognize Omicron. Nature. 2022;603(7901):488–492. doi: 10.1038/s41586-022-04460-3
  69. De la Vega MA, Polychronopoulou E, Xiii A, et al. SARS-CoV-2 infection-induced immunity reduces rates of reinfection and hospitalization caused by the Delta or Omicron variants. Emerg Microbes Infect. 2023;12(1):e2169198. doi: 10.1080/22221751.2023.2169198
  70. Schmidt F, Muecksch F, Weisblum Y, et al. Plasma neutralization of the SARS-CoV-2 Omicron variant. N Engl J Med. 2022;386(6):599–601. doi: 10.1056/NEJMc2119641
  71. Dejnirattisai W, Huo J, Zhou D, et al. SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses. Cell. 2022;185(3):467–484.e415. doi: 10.1016/j.cell.2021.12.046
  72. Hoffmann M, Krüger N, Schulz S, et al. The Omicron variant is highly resistant against antibody-mediated neutralization: Implications for control of the COVID-19 pandemic. Cell. 2022; 185(3):447–456.e411. doi: 10.1016/j.cell.2021.12.032
  73. Ren SY, Wang WB, Gao RD, Zhou AM. Omicron variant (B.1.1.529) of SARS-CoV-2: Mutation, infectivity, transmission, and vaccine resistance. World J Clin Cases. 2022;10(1):1–11. doi: 10.12998/wjcc.v10.i1.1
  74. Ai J, Zhang H, Zhang Y, et al. Omicron variant showed lower neutralizing sensitivity than other SARS-CoV-2 variants to immune sera elicited by vaccines after boost. Emerg Microbes Infect. 2022;11(1):337–343. doi: 10.1080/22221751.2021.2022440
  75. Kherabi Y, Launay O, Nguyen LB, et al. COVID-19 vaccines against Omicron variant: Real-world data on effectiveness. Viruses. 2022;14(10):2086. doi: 10.3390/v14102086 104
  76. Higdon MM, Baidya A, Walter KK, et al. Duration of effectiveness of vaccination against COVID-19 caused by the omicron variant. Lancet Infect Dis. 2022;22(8):1114–1116. doi: 10.1016/S1473-3099(22)00409-1
  77. Fang Z, Peng L, Filler R, et al. Omicron-specific mRNA vaccination alone and as a heterologous booster against SARS-CoV-2. Nat Commun. 2022;13(1):3250. doi: 10.1038/s41467-022-30878-4
  78. Jiang N, Wang L, Hatta M, et al. Bivalent mRNA vaccine improves antibody-mediated neutralization of many SARS-CoV-2 Omicron lineage variants. bioRxiv. 2023. doi: 10.1101/2023.01.08.523127
  79. Fang Z, Monteiro VS, Hahn AM, et al. Bivalent mRNA vaccine booster induces robust antibody immunity against Omicron lineages BA.2, BA.2.12.1, BA.2.75 and BA.5. Cell Discov. 2022;8(1):108. doi: 10.1038/s41421-022-00473-4
  80. Bhattacharya M, Sharma AR, Dhama K, et al. Hybrid immunity against COVID-19 in different countries with a special emphasis on the Indian scenario during the Omicron period. Int Immunopharmacol. 2022;108:108766. doi: 10.1016/j.intimp.2022.108766
  81. Chalkias S, Harper C, Vrbicky K, et al. A Bivalent Omicron-containing booster vaccine against Covid-19. N Engl J Med. 2022;387(14):1279–1291. doi: 10.1056/NEJMoa2208343
  82. Havers FP, Pham H, Taylor CA, et al. COVID-19-associated hospitalizations among vaccinated and unvaccinated adults 18 years or older in 13 US States, January 2021 to April 2022. JAMA Intern Med. 2022;182(10):1071–1081. doi: 10.1001/jamainternmed.2022.4299
  83. Ayoubkhani D, Bosworth ML, King S, et al. Risk of Long COVID in people infected with severe acute respiratory syndrome coronavirus 2 after 2 doses of a coronavirus disease 2019 vaccine: Community-based, matched cohort study. Open Forum Infect Dis. 2022;9(9):ofac464. doi: 10.1093/ofid/ofac464
  84. Qu P, Faraone JN, Evans JP, et al. Extraordinary evasion of neutralizing antibody response by Omicron XBB.1.5, CH.1.1 and CA.3.1 Variants. bioRxiv. 2023. doi: 10.1101/2023.01.16.524244
  85. Duan M, Duan H, An Y, et al. A booster of Delta-Omicron RBD-dimer protein subunit vaccine augments sera neutralization of Omicron sub-variants BA.1/BA.2/BA.2.12.1/BA.4/BA.5. Emerg Microbes Infect. 2023;12(1):e2179357. doi: 10.1080/22221751.2023.2179357
  86. Takashita E, Yamayoshi S, Simon V, et al. Efficacy of antibodies and antiviral Drugs against Omicron BA.2.12.1, BA.4, and BA.5 subvariants. N Engl J Med. 2022;387(5):468–470. doi: 10.1056/NEJMc2207519
  87. Zhang G, Cong Y, Liu FL. et al. A nanomaterial targeting the spike protein captures SARS-CoV-2 variants and promotes viral elimination. Nat Nanotechnol. 2022;17(9):993–1003. doi: 10.1038/s41565-022-01177-2
  88. Li P, Wang Y, Lavrijsen M, et al. SARS-CoV-2 Omicron variant is highly sensitive to molnupiravir, nirmatrelvir, and the combination. Cell Res. 2022;32(3):322–324. doi: 10.1038/s41422-022-00618-w
  89. Arbel R, Wolff Sagy Y, Hoshen M, et al. Nirmatrelvir use and severe COVID-19 Outcomes during the Omicron surge. N Engl J Med. 2022;387(9):790–798. doi: 10.1056/NEJMoa2204919
  90. Vangeel L, Chiu W, De Jonghe S, et al. Remdesivir, Molnupiravir and Nirmatrelvir remain active against SARS-CoV-2 Omicron and other variants of concern. Antivir Res. 2022;198:105252. doi: 10.1016/j.antiviral.2022.105252
  91. VanBlargan LA, Errico JM, Halfmann PJ, et al. An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by therapeutic monoclonal antibodies. Nat Med. 2022;28(3): 490–495. doi: 10.1038/s41591-021-01678-y
  92. Escalera A, Gonzalez-Reiche AS, Aslam S, et al. Mutations in SARS-CoV-2 variants of concern link to increased spike cleavage and virus transmission. Cell Host Microbe. 2022;30(3):373–387. doi: 10.1016/j.chom.2022.01.006
  93. Newman J, Thakur N, Peacock TP, et al. Neutralizing antibody activity against 21 SARS-CoV-2 variants in older adults vaccinated with BNT162b2. Nat Microbiol. 2022;7(8):1180–1188. doi: 10.1038/s41564-022-01163-3
  94. Yue C, Song W, Wang L, et al. ACE2 binding and antibody evasion in enhanced transmissibility of XBB.1.5. Lancet Infect Dis. 2023;23(3):278–280. doi: 10.1016/S1473-3099(23)00010-5
  95. Tamura T, Ito J, Uriu K, et al. Virological characteristics of the SARS-CoV-2 XBB variant derived from recombination of two Omicron subvariants. bioRxiv. 2022. doi: 10.1101/2022.12.27.521986
  96. Uriu K, Ito J, Zahradnik J, et al. Enhanced transmissibility, infectivity, and immune resistance of the SARS-CoV-2 omicron XBB.1.5 variant. Lancet Infect Dis. 2023;23(3):280–281. doi: 10.1016/S1473-3099(23)00051-8

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Эко-Вектор, 2023

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».