Магнитно-резонансная томография как инструмент дифференциальной диагностики при поражении ствола головного мозга у детей

Обложка

Цитировать

Полный текст

Аннотация

В данном обзоре литературных данных мы рассматриваем магнитно-резонансную томографию как инструмент дифференциальной диагностики поражения ствола головного мозга у детей. Показано, что поражение ствола мозга, как изолированное, так и связанное с супратенториальными изменениями, возникает при широком спектре патологических состояний — при острых нарушениях мозгового кровообращения, дисметаболических нарушениях, воспалительных процессах как инфекционной, так и неинфекционной (аутоиммунной, паранеопластической) этиологии, нейродегенеративных заболеваниях, опухолях. Небольшой размер ствола, а также менее четкое различие между серым и белым веществом и определенное ограничение мультипараметрической магнитно-резонансной томографии в случае исследования стволовых структур часто приводят к затруднениям в проведении дифференциальной диагностики. Иногда большое диагностическое значение приобретают топография очага и интенсивность сигнала от него. Для целей дифференциальной диагностики основополагающее значение, тем не менее, играют клинические, эпидемиологические и лабораторные исследования.

Об авторах

Наталья Викторовна Марченко

Детский научно-клинический центр инфекционных болезней Федерального медико-биологического агентства

Email: gmv2006@mail.ru
ORCID iD: 0000-0002-2684-9980
SPIN-код: 9813-1529

к.м.н., зав. отделением лучевой диагностики

Россия, Санкт-Петербург

Владислав Борисович Войтенков

Детский научно-клинический центр инфекционных болезней Федерального медико-биологического агентства; Академия постдипломного образования ФГБУ «Федеральный научно-клинический центр специализированных видов медицинской помощи и медицинских технологий Федерального медико-биологического агентства России»

Автор, ответственный за переписку.
Email: vlad203@inbox.ru
ORCID iD: 0000-0003-0448-7402
SPIN-код: 6190-6930

к.м.н., зав. отделением функциональных методов диагностики; доцент кафедры нервных болезней 

Россия, Санкт-Петербург; Москва

Наталья Викторовна Скрипченко

Детский научно-клинический центр инфекционных болезней Федерального медико-биологического агентства

Email: snv@niidi.ru
ORCID iD: 0000-0001-8927-3176
SPIN-код: 7980-4060

д.м.н., профессор, зам. директора по научной работе

Россия, Санкт-Петербург

Мария Алексеевна Бедова

Детский научно-клинический центр инфекционных болезней Федерального медико-биологического агентства

Email: dr.bedova@yandex.ru
ORCID iD: 0000-0001-8924-5300
SPIN-код: 9667-3210

врач-невролог, м.н.с. отдела функциональных и лучевых методов диагностики

Россия, Санкт-Петербург

Ольга Олеговна Курзанцева

Академия постдипломного образования ФГБУ «Федеральный научно-клинический центр специализированных видов медицинской помощи и медицинских технологий Федерального медико-биологического агентства России»

Email: science@medprofedu.ru
SPIN-код: 6971-0232

к.м.н., доцент, ученый секретарь Ученого совета

Россия, Москва

Список литературы

  1. Ишков С.В., Левошко Л.И. Новые данные о проекционной анатомии отделов ствола головного мозга на основе компьютерно-томографических исследований // Морфология. — 2017. — Т.152. — №5. — С. 25–28. [Ishkov SV, Levoshko LI. New data on the projection anatomy of the brainstem parts based on computed tomography studies. Morphology. 2017;152(5):25–28. (In Russ).]
  2. Bastianello S, Bozzao A, Paolillo A, et al. Fast spin-echo and fast fluid-attenuated inversion-recovery versus conventional spin-echo sequences for MR quantification of multiple sclerosis lesions. AJNR Am J Neuroradiol. 1997;18(4):699–704.
  3. Li C, Yan JL, Torheim T, et al. Low perfusion compartments in glioblastoma quantified by advanced magnetic resonance imaging and correlated with patient survival. Radiother Oncol. 2019;134:17–24. doi: 10.1016/j.radonc.2019.01.008.
  4. Kawanaka Y, Ando K, Ishikura R, et al. Delayed appearance of transient hyperintensity foci on T1-weighted magnetic resonance imaging in acute disseminated encephalomyelitis. Jpn J Radiol. 2019;37(4):277–282. doi: 10.1007/s11604-018-00808-w.
  5. Cai M, Zhang XF, Qiao HH, et al. Susceptibility-weighted imaging of the venous networks around the brain stem. Neuroradiology. 2015;57(2):163–169. doi: 10.1007/s00234-014-1450-z.
  6. Beller E, Keeser D, Wehn A, et al. T1-MPRAGE and T2-FLAIR segmentation of cortical and subcortical brain regions-an MRI evaluation study. Neuroradiology. 2019;61(2):129–136. doi: 10.1007/s00234-018-2121-2.
  7. Quattrocchi CC, Errante Y, Rossi Espagnet MC, et al. Magnetic resonance imaging differential diagnosis of brainstem lesions in children. World J Radiol. 2016;8(1):1–20. doi: 10.4329/wjr.v8.i1.1.
  8. Войтенков В.Б., Карташев А.В. Ретикулярная формация головного мозга в норме и патологии. — СПб.: Реноме, 2013. — 115 с. [Voitenkov VB, Kartashev AV. Retikuliarnaia formatsiia golovnogo mozga v norme i patologii. St. Petersburg: Renome; 2013. 115 р. (In Russ).]
  9. Lagman-Bartolome AM, Pontigon AM, Moharir M, et al. Basilar artery strokes in children: good outcomes with conservative medical treatment. Dev Med Child Neurol. 2013;55(5):434–439. doi: 10.1111/dmcn.12092.
  10. Toi H, Uno M, Harada M. et al. Diagnosis of acute brain-stem infarcts using diffusion-weighed MRI. Neuroradiology. 2003;45(6):352–356. doi: 10.1007/s00234-002-0897-5.
  11. Uziel G, Ghezzi D, Zeviani M. Infantile mitochondrial encephalopathy. Semin Fetal Neonatal Med. 2011;16(4):205–215. doi: 10.1016/j.siny.2011.04.003.
  12. Wong LJ. Mitochondrial syndromes with leukoencephalopathies. Semin Neurol. 2012;32(1):55–61. doi: 10.1055/s-0032-1306387.
  13. Nishino I, Spinazzola A, Hirano M. Thymidine phosphorylase gene mutations in MNGIE, a human mitochondrial disorder. Science. 1999;283(5402):689–692. doi: 10.1126/science.283.5402.689.
  14. Tang S, Wang J, Lee NC, et al. Mitochondrial DNA polymerase gamma mutations: an ever expanding molecular and clinical spectrum. J Med Genet. 2011;48(10):669–681. doi: 10.1136/jmedgenet-2011-100222.
  15. Scheper GC, van der Klok T, van Andel RJ, et al. Mitochondrial aspartylt-RNA synthetase deficiency causes leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation. Nat Genet. 2007;39(4):534–539. doi: 10.1038/ng2013.
  16. Uluc K, Baskan O, Yildirim KA, et al. Leukoencephalopathy with brain stem and spinal cord involvement and high lactate: a genetically proven case with distinct MRI findings. J Neurol Sci. 2008;273(1-2):118–122. doi: 10.1016/j.jns.2008.06.002.
  17. Cavanagh JB. Selective vulnerability in acute energy deprivation syndromes. Neuropathol Appl Neurobiol. 1993;19(6):461–470. doi: 10.1111/j.1365-2990.1993.tb00474.x.
  18. Nagai T, Goto Y, Matsuoka T, et al. Leigh encephalopathy: histologic and biochemical analyses of muscle biopsies. Pediatr Neurol. 1992;8(5):328–332. doi: 10.1016/0887-8994(92)90084-c.
  19. Chen L, Cui Y, Jiang D, et al. Management of Leigh syndrome: Current status and new insights. Clin Genet. 2018;93(6):1131–1140. doi: 10.1111/cge.13139.
  20. Veiga MG, Marecos C, Duarte ST, et al. Leigh syndrome with atypical cerebellar lesions. eNeurological Sci. 2019;16:100–107. doi: 10.1016/j.ensci.2019.100197.
  21. Bindu PS, Taly AB, Sonam K, et al. Bilateral hypertrophic olivary nucleus degeneration on magnetic resonance imaging in children with Leigh and Leigh-like syndrome. Br J Radiol. 2014;87:2013047. doi: 10.1259/bjr.20130478.
  22. Quattrocchi CC, Longo D, Delfino LN, et al. MR differential diagnosis of acute deep grey matter pathology in paediatric patients. Pediatr Radiol. 2013;43(6):743–761. doi: 10.1007/s00247-012-2491-2.
  23. Sparaco M, Bonilla E, Di Mauro S, Powers J.M. Neuropathology of mitochondrial encephalomyopathies due to mitochondrial DNA defects. J Neuropathol Exp Neurol. 1993;52(1):1–10. doi: 10.1097/00005072-199301000-00001.
  24. Ito S, Shirai W, Asahina M, Hattori T. Clinical and brain MR imaging features focusing on the brain stem and cerebellum in patients with myoclonic epilepsy with ragged-red fibers due to mitochondrial A8344G mutation. AJNR Am J Neuroradiol. 2008;29(2):392–395 doi: 10.3174/ajnr.A0865.
  25. Valanne L, Ketonen L, Majander A, et al. Neuroradiologic findings in children with mitochondrial disorders. AJNR Am J Neuroradiol. 1998;19(2):369–377.
  26. Castillo M, Kwock L, Green C. MELAS syndrome: imaging and proton MR spectroscopic findings. AJNR Am J Neuroradiol. 1995;16(2):233–239.
  27. Kori A, Hori I, Tanaka T, et al. Transition from Leigh syndrome to MELAS syndrome in a patient with heteroplasmic MT-ND3 m.10158T>C. Brain Dev. 2019;41(9):803–807. doi: 10.1016/j.braindev.2019.05.006.
  28. Schicks J, Schöls L, van der Knaap MS, Synofzik M. Teaching NeuroImages: MRI guides genetics: leukoencephalopathy with brainstem and spinal cord involvement (LBSL). Neurology. 2013;80(16):e176–e177. doi: 10.1212/WNL.0b013e31828cf846.
  29. Yelam A, Nagarajan E, Chuquilin M, Govindarajan R. Leucoencephalopathy with brain stem and spinal cord involvement and lactate elevation: a novel mutation in the DARS2 gene. BMJ Case Rep. 2019;12(1):32–35. doi: 10.1136/bcr-2018-227755.
  30. Lan MY, Chang YY, Yeh TH, et al. Leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation (LBSL) with a novel DARS2 mutation and isolated progressive spastic paraparesis. J Neurol Sci. 2017;372:229–231. doi: 10.1016/j.jns.2016.11.058.
  31. Chinoy A, Wright NB, Bone M, Padidela R. Severe hypokalaemia in diabetic ketoacidosis: a contributor to central pontinemyelinolysis? Endocrinol Diabetes Metab Case Rep. 2019;2019(1):30–35. doi: 10.1530/EDM-19-0034.
  32. Bansal LR, Zinkus T. Osmotic demyelination syndrome in children. Pediatr Neurol. 2019;97:12–17. doi: 10.1016/j.pediatrneurol.2019.03.018.
  33. Alleman AM. Osmotic demyelination syndrome: central pontine myelinolysis and extrapontine myelinolysis. Semin Ultrasound CT MR. 2014;35(2):153–159. doi: 10.1053/j.sult.2013.09.009.
  34. Fuller K, Guerrero C, Kyin M, et al. The role of the interdisciplinary team in subacute rehabilitation for central pontine myelinolysis. Disabil Rehabil. 2019;1:1–7. doi: 10.1080/09638288.2019.1579261.
  35. Milh M, Villeneuve N, Chapon F, et al. Transient brain magnetic resonance imaging hyperintensity in basal ganglia and brain stem of epileptic infants treated with vigabatrin. J Child Neurol. 2009;24(3):305–315. doi: 10.1177/0883073808324219.
  36. Dracopoulos A, Widjaja E, Raybaud C, et al. Vigabatrin-associated reversible MRI signal changes in patients with infantile spasms. Epilepsia. 2010;51(7):1297–1304. doi: 10.1111/j.1528-1167.2010.02564.x.
  37. Skripchenko NV, Ivanova GP, Skripchenko EY, Murina EA. Panencephalitis in children in modern conditions: clinical, etiological and MRI-aspects. Zh Nevrol PsikhiatrIm S S Korsakova. 2019;119(6):20-31. doi: 10.17116/jnevro201911906120.
  38. Skripchenko EY, Ivanova GP, Karev VE, Skripchenko NV. [Difficulties of differential diagnosis of organic injury of the nervous system in children. (In Russ).]. Zh Nevrol PsikhiatrIm S S Korsakova. 2018;118(5):25–30. doi: 10.17116/jnevro20181185225.
  39. Jubelt B, Mihai C, Li TM, Veerapaneni P. Rhombencephalitis / brainstem encephalitis. Curr Neurol Neurosci Rep. 2011;11(6):543–552. doi: 10.1007/s11910-011-0228-5.
  40. Wasay M, Diaz-Arrastia R, Suss RA, et al. St Louis encephalitis: a review of 11 cases in a 1995 Dallas, Tex, epidemic. Arch Neurol. 2000;57(1):114–118. doi: 10.1001/archneur.57.1.114.
  41. Kalita J, Misra UK. The substantianigra is also involved in Japanese encephalitis. AJNR Am J Neuroradiol. 2000;21(10):1978–1980.
  42. Reynaud L, Graf M, Gentile I, et al. A rare case of brainstem encephalitis by Listeria monocytogenes with isolated mesencephalic localization. Case report and review. Diagn Microbiol Infect Dis. 2007;58(1):121–123. doi: 10.1016/j.diagmicrobio.2006.11.001.
  43. Nogueira Delfino L, Fariello G, Lancella L, et al. Central nervous system tuberculosis in non-HIV-positive children: a singlecenter, 6 year experience. Radiol Med. 2012;117(4):669–678. doi: 10.1007/s11547-011-0743-0.
  44. Ramalho J, Castillo M. Case of the season: brainstem abscess. Semin Roentgenol. 2008;43(3):168–170. doi: 10.1053/j.ro.2008.03.001.
  45. Akhaddar A, Mahi M, Harket A, et al. Brainstem tuberculoma in a postpartum patient. J Neuroradiol. 2007;34(5):345–346. doi: 10.1016/j.neurad.2007.09.001.
  46. Tan IL, Mowry EM, Steele SU, et al. Brainstem encephalitis: etiologies, treatment, and predictors of outcome. J Neurol. 2013;260(9):2312–2319. doi: 10.1007/s00415-013-6986-z.
  47. Odaka M, Yuki N, Hirata K. Anti-GQ1b IgG antibody syndrome: clinical and immunological range. J Neurol Neurosurg Psychiatry. 2001;70(1):50–55. doi: 10.1136/jnnp.70.1.50.
  48. Shahrizaila N, Yuki N. Bickerstaff brainstem encephalitis and Fisher syndrome: anti-GQ1b antibody syndrome. J Neurol Neurosurg Psychiatry. 2013;84(5):576–583. doi: 10.1136/jnnp-2012-302824.
  49. Ito M, Kuwabara S, Odaka M, et al. Bickerstaff’s brainstem encephalitis and Fisher syndrome form a continuous spectrum: clinical analysis of 581 cases. J Neurol. 2008;255(5):674–682. doi: 10.1007/s00415-008-0775-0.
  50. Steer AC, Starr M, Kornberg AJ. Bickerstaff brainstem encephalitis associated with Mycoplasma pneumoniae infection. J Child Neurol. 2006;21(6):533–534. doi: 10.1177/08830738060210061401.
  51. Wang GF, Li W, Li K. Acute encephalopathy and encephalitis caused by influenza virus infection. Curr Opin Neurol. 2010;23(3):305–311. doi: 10.1097/wco.0b013e328338f6c9.
  52. Gika AD, Rich P, Gupta S, et al. Recurrent acute necrotizing encephalopathy following influenza A in a genetically predisposed family. Dev Med Child Neurol. 2010;52(1):99–102. doi: 10.1111/j.1469-8749.2009.03405.x.
  53. Caldemeyer KS, Smith RR, Harris TM, Edwards MK. MRI in acute disseminated encephalomyelitis. Neuroradiology. 1994;36(3):216–220. doi: 10.1007/bf00588134.
  54. Rossi A. Imaging of acute disseminated encephalomyelitis. Neuroimaging Clin N Am. 2008;18(1):149–161. doi: 10.1016/j.nic.2007.12.007.
  55. Lu Z, Zhang B, Qiu W, et al. Comparative brain stem lesions on MRI of acute disseminated encephalomyelitis, neuromyelitis optica, and multiple sclerosis. PLoS One. 2011;6(8):e22766. doi: 10.1371/journal.pone.0022766.
  56. Atzori M, Battistella PA, Perini P, et al. Clinical and diagnostic aspects of multiple sclerosis and acute monophasic encephalomyelitis in pediatric patients: a single centre prospective study. Mult Scler. 2009;15(3):363–370. doi: 10.1177/1352458508098562.
  57. Yousry TA, Grossman RI, Filippi M. Assessment of posterior fossa damage in MS using MRI. J Neurol Sci. 2000;172(Suppl 1):S50–S53. doi: 10.1016/s0022-510x(99)00279-8.
  58. Polman CH, Reingold SC, Banwell B, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011;69(2):292–302. doi: 10.1002/ana.22366.
  59. Лобзин Ю.В., Скрипченко Н.В., Иванова Г.П., Команцев В.Н. Диссеминированный лейкоэнцефалит и рассеянный склероз: причинно-следственная взаимосвязь // Саратовский научно-медицинский журнал. — 2013. — Т.9. — №2. — С. 170–178. [Lobzin IuV, Skripchenko NV, Ivanova GP, Komantsev VN. Disseminirovannyi leikoentsefalit i rasseiannyi skleroz: prichinno-sledstvennaia vzaimosviaz’. Saratov journal of medical scientific research. 2013;9(2):170–178. (In Russ).]
  60. Chabas D, Strober J, Waubant E. Pediatric multiple sclerosis. Curr Neurol Neurosci Rep. 2008;8(5):434–441. doi: 10.1007/s11910-008-0067-1.
  61. Ghassemi R, Antel SB, Narayanan S, et al. Lesion distribution in children with clinically isolated syndromes. Ann Neurol. 2008;63(3):401–405. doi: 10.1002/ana.21322.
  62. Ghassemi R, Narayanan S, Banwell B, et al. Quantitative determination of regional lesion volume and distribution in children and adults with relapsing-remitting multiple sclerosis. PLoS One. 2014;9(2):e85741. doi: 10.1371/journal.pone.0085741.
  63. Wingerchuk DM, Banwell B, Bennett JL, et al. International consensus diagnostic criteria for neuromyelitisoptica spectrum disorders. Neurology. 2015;85(2):177–189. doi: 10.1212/WNL.0000000000001729.
  64. Екушева Е.В., Данилов А.Б. Наследственная спастическая параплегия (обзор) // Журнал неврологии и психиатрии им. С.С. Корсакова. — 2002. — Т.102. — №8. — С. 44–52. [Ekusheva EV, Danilov AB. Nasledstvennaia spasticheskaia paraplegiia (obzor). Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova. 2002;102(8):44–52. (In Russ).]
  65. Vijayakumar K, Gunny R, Grunewald S, et al. Clinical neuroimaging features and outcome in molybdenum cofactor deficiency. Pediatr Neurol. 2011;45(4):246–252. doi: 10.1016/j.pediatrneurol.2011.06.006.
  66. Екушева Е.В. Сенсомоторная интеграция при поражении центральной нервной системы: клинические и патогенетические аспекты: Автореф. дис. ... докт. мед. наук. — М., 2016. — 48 с. [Ekusheva EV. Sensomotornaia integratsiia pri porazhenii tsentral’noi nervnoi sistemy: klinicheskie i patogeneticheskie aspekty. [dissertation abstract] Moscow; 2016. 48 р. (In Russ).] Доступно https://search.rsl.ru/ru/record/01006661768. Ссылка активна на 14.12.2019.
  67. Sonam K, Khan NA, Bindu PS, et al. Clinical and magnetic resonance imaging findings in patients with Leigh syndrome and SURF1 mutations. Brain Dev. 2014;36(9):807–812. doi: 10.1016/j.braindev.2013.10.012.
  68. Mirabelli-Badenier M, Morana G, Bruno C, et al. Inferior olivary nucleus involvement in pediatric neurodegenerative disorders: does it play a role in neuroimaging pattern-recognition approach? Neuropediatrics. 2015;46(2):104–109. doi: 10.1055/s-0035-1544185.
  69. Tartaglione T, Izzo G, Alexandre A, et al. MRI findings of olivary degeneration .after surgery for posterior fossa tumours in children: incidence, time course and correlation with tumour grading. Radiol Med. 2015;120(5):474–482. doi: 10.1007/s11547-014-0477-x.
  70. Grimm SA, Chamberlain MC. Brainstem glioma: a review. Curr Neurol Neurosci Rep. 2013;13(5):346. doi: 10.1007/s11910-013-0346-3.
  71. Garzón M, García-Fructuoso G, Guillén A, et al. Brain stem tumors in children and adolescents: single institutional experience. Childs Nerv Syst. 2013;29(8):1321–1331. doi: 10.1007/s00381-013-2137-1.
  72. Guillamo JS, Doz F, Delattre JY. Brain stem gliomas. Curr Opin Neurol. 2001;14(6):711–715. doi: 10.1097/00019052-200112000-00006.
  73. Nowak J, Seidel C, Pietsch T, et al. Ependymoblastoma of the brainstem: MRI findings and differential diagnosis. Pediatr Blood Cancer. 2014;61(6):1132–1134. doi: 10.1002/pbc.24915.
  74. Zagzag D, Miller DC, Knopp E, et al. Primitive neuroectodermal tumors of the brainstem: investigation of seven cases. Pediatrics. 2000;106(5):1045–1053. doi: 10.1542/peds.106.5.1045.
  75. Екушева Е.В., Данилов А.Б., Вейн А.М. Синдром гемипареза: клинико-патофизиологический анализ // Журнал неврологии и психиатрии им. С.С. Корсакова. — 2002. — Т.102. — №11. — С. 18–28. [Ekusheva EV, Danilov AB, Vein AM. Hemiparesis syndrome: clinical-pathophysiological analysis. Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova. 2002;102(11):18–28. (In Russ).]
  76. Bilaniuk LT, Molloy PT, Zimmerman RA, et al. Neurofibromatosis type 1: brain stem tumours. Neuroradiology. 1997;39(9):642–653. doi: 10.1007/s002340050484.
  77. Guillamo JS, Créange A, Kalifa C, et al. Prognostic factors of CNS tumours in Neurofibromatosis 1 (NF1): a retrospective study of 104 patients. Brain. 2003;126(Pt 1):152–160. doi: 10.1093/brain/awg016.
  78. Ullrich NJ, Raja AI, Irons MB, et al. Brainstem lesions in neurofibromatosis type 1. Neurosurgery. 2007;61(4):762–766; discussion 766–767. doi: 10.1227/01.NEU.0000298904.63635.2D.
  79. Hervey-Jumper SL, Singla N, Gebarski SS, et al. Diffuse pontine lesions in children with neurofibromatosis type 1: making a case for unidentified bright objects. Pediatr Neurosurg. 2013;49(1):55–59. doi: 10.1159/000355417.
  80. Grois N, Fahrner B, Arceci RJ, et al. Central nervous system disease in Langerhans cell histiocytosis. J Pediatr. 2010;156(6):873–881. doi: 10.1016/j.jpeds.2010.03.001.
  81. Savardekar A, Tripathi M, Bansal D, et al. Isolated tumorous Langerhans cell histiocytosis of the brainstem: a diagnostic and therapeutic challenge. J Neurosurg Pediatr. 2013;12(3):258–261. doi: 10.3171/2013.6.PEDS13132.
  82. Prosch H, Grois N, Wnorowski M, et al. Longterm MR imaging course of neurodegenerative Langerhans cell histiocytosis. AJNR Am J Neuroradiol. 2007;28(6):1022–1028. doi: 10.3174/ajnr.A0509.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Пациент А., 7 лет. МРТ: поражение ствола мозга в результате острого нарушения мозгового кровообращения по ишемическому типу в бассейне основной артерии, 2-е сут заболевания

Скачать (320KB)
3. Рис. 2. Пациент М., 9 лет. МРТ: вирусный энцефалит, острый период течения заболевания. Этиология — герпес II типа (IgM с крови)

Скачать (405KB)
4. Рис. 3. Пациентка Р., 15 лет. МРТ: острый диссеминированный энцефаломиелит с трансформацией в рассеянный склероз

Скачать (475KB)

© Марченко Н.В., Войтенков В.Б., Скрипченко Н.В., Бедова М.А., Курзанцева О.О., 2020

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».