The role of infectious agents in the development of neurodegenerative diseases
- Authors: Litvinenko I.V.1, Lobzin V.Y.2, Pushkarev V.A.3
-
Affiliations:
- S.M. Kirov Military Medical Academy
- I.I. Mechnikov North-West State Medical University
- Children’s Research and Clinical Center for Infectious Diseases
- Issue: Vol 40, No 4 (2021)
- Pages: 25-32
- Section: Reviews
- URL: https://ogarev-online.ru/RMMArep/article/view/83615
- DOI: https://doi.org/10.17816/rmmar83615
- ID: 83615
Cite item
Full Text
Abstract
Actually, there is no consensus about the causes of the development in most neurodegenerative diseases. Recent international publications describe various hypotheses of the genesis of such diseases. Infectious is considered as one of them, assuming an infectious agent can trigger a cascade of pathological processes that eventually lead to the manifestation of various neurodegenerative diseases. The direct relationship between infectious invasion and the development of neurodegenerative diseases is not fully proved yet, but these publications confirm the hypothesis that a variety of pathogens (viruses, bacteria, intracellular parasites etc.) can induce the process of neuronal inflammation with subsequent neurodegeneration. As a result of the scientific research, various ways of penetration of infectious agents into the central nervous system have been studied and proven. In the case of neuroinfections already studied, inflammatory and alterative changes in nervous tissue occur with the direct participation of neuroglia and cells of the immune system, which may be part of the universal trigger mechanism of the neurodegenerative process. At the same time, in the case of a number of diseases, the primary role of specific infectious agents is possible. It has been shown that neurological complications of a novel coronavirus infection can also occur as a result of both direct cytopathic action of the pathogen or activation of neuroinflammation processes. Of course, this hypothesis of neurodegenerative pathology requires a comprehensive analysis and subsequent confirmation, however, the investigation of molecular and cellular mechanisms of neuroinflammation and neurodegeneration already opens up broad prospects for finding possible pathogenetic therapy of these diseases (bibliography: 42 refs)
Full Text
##article.viewOnOriginalSite##About the authors
Igor V. Litvinenko
S.M. Kirov Military Medical Academy
Email: litvinenkoiv@rambler.ru
ORCID iD: 0000-0001-8988-3011
SPIN-code: 6112-2792
Scopus Author ID: 57202361039
ResearcherId: F-9120-2013
D.Sc. (Medicine), Professor
Russian Federation, Saint PetersburgVladimir Y. Lobzin
I.I. Mechnikov North-West State Medical University
Email: vladimirlobzin@mail.ru
ORCID iD: 0000-0003-3109-8795
SPIN-code: 7779-3569
Scopus Author ID: 57203881632
ResearcherId: I-4819-2016
D.Sc. (Medicine), Professor
Russian Federation, Saint PetersburgVladimir A. Pushkarev
Children’s Research and Clinical Center for Infectious Diseases
Author for correspondence.
Email: vladimirpush@yandex.ru
ORCID iD: 0000-0003-3715-2553
SPIN-code: 5193-9004
Russian Federation, Saint Petersburg
References
- Berth SH. Virus-induced neuronal dysfunction and degeneration. Front Biosci. 2009;14(1):5239–5259. doi: 10.2741/3595
- Wouk J, Rechenchoski DZ, Rodrigues BCD, et al. Viral infections and their relationship to neurological disorders. Arch Virol. 2021;166:733–753. doi: 10.1007/s00705-021-04959-6
- Alzheimer A, Stelzmann RA, Schnitzlein HN, et al. An English translation of Alzheimer’s 1907 paper, “Über eine eigenartige Erkrankung der Hirnrinde”. Clin Anat. 1995;8:429–431. doi: 10.1002/ca.980080612
- Liddelow S, Guttenplan K, Clarke L, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541: 481–487. DOI: 10.1038/ nature21029
- Richards A, Berth SH, Brady S, et al. Engagement of Neurotropic Viruses in Fast Axonal Transport: Mechanisms, Potential Role of Host Kinases and Implications for Neuronal Dysfunction. Front Cell Neurosci. 2021;15: 684762. doi: 10.3389/fncel. 2021.684762
- Pan-Montojo F, Schwarz M, Winkler C, et al. Environmental toxins trigger PD-like progression via increased alpha-synuclein release from enteric neurons in mice. Sci Rep. 2012;2(1):898. doi: 10.1038/srep00898
- Svensson E, Horváth-Puhó E, Thomsen RW, et al. Vagotomy and subsequent risk of Parkinson’s disease. Ann Neurol. 2015;78: 522–529. DOI: 10.1002/ ana.24448
- Gosztyla ML, Brothers HM, Robinson SR. Alzheimer’s amyloid-β is an antimicrobial peptide: a review of the evidence. J Alzheimers Dis. 2018;62:1495–1506. doi: 10.3233/jad-171133
- Bourgade K, Garneau H, Giroux G, et al. β-Amyloid peptides display protective activity against the human Alzheimer’s disease-associated herpes simplex virus-1. Biogerontology. 2014;16(1):85–98. doi: 10.1007/s10522-014-9538-8
- Bourgade K, Le Page A, Bocti C, et al. Protective effect of amyloid-β peptides against herpes simplex virus-1 infection in a neuronal cell culture model. J Alzheimers Dis. 2016;50(4):1227–1241. doi: 10.3233/jad-150652
- Kumar DKV, Choi SH, Washicosky KJ, et al. Amyloid-β peptide protects against microbial infection in mouse and worm mo dels of Alzheimer’s disease. Sci Transl Med. 2016;8(340):340ra72. doi: 10.1126/scitranslmed.aaf1059
- Vigasova D, Nemergut M, Liskova B, et al. Multi-pathogen infections and Alzheimer’s disease. Microb Cell Fact. 2021;20(1):25. doi: 10.1186/s12934-021-01520-7
- Miklossy J, Kis A, Radenovic A, et al. Beta-amyloid deposition and Alzheimer’s type changes induced by Borrelia spirochetes. Neurobiol Aging. 2006;27:228–236. doi: 10.1016/j.neurobiolaging.2005.01.018
- Nayeri T, Sarvi S, Sharif M, et al. Toxoplasma gondii: A possible etiologic agent for Alzheimer’s disease. Heliyon. 2021;7(6):e07151. doi: 10.1016/j.heliyon. 2021.e07151
- Poole S, Singhrao SK, Chukkapalli S, et al. Active Invasion of Porphyromonas gingivalis and Infection-Induced Complement Activation in ApoE-/-mice Brains. J Alzheimers Dis. 2015;43:67–80. doi: 10.3233/jad-140315
- Wang T, Town T, Alexopoulou L, et al. Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med. 2004;10(12):1366–1373. doi: 10.1038/nm1140
- Bsibsi M, Ravid R, Gveric D, et al. Broad expression of Toll-like receptors in the human central nervous system. J Neuropathol Exp Neurol. 2002;61(11):1013–1021. doi: 10.1093/jnen/61.11.1013
- Lewandowski G, Zimmerman MN, Denk LL, et al. Herpes simplex type 1 infects and establishes latency in the brain and trigeminal ganglia during primary infection of the lip in cotton rats and mice. Arch Virol. 2002;147:167–179. doi: 10.1007/s705-002-8309-9
- Mori I, Goshima F, Ito H, et al. The vomeronasal chemosensory system as a route of neuroinvasion by herpes simplex virus. Virology. 2005;334:51–58. doi: 10.1016/j.virol.2005.01.023
- Eimer WA, Kumar DK, Shanmugam NK, et al. Alzheimer’s Disease-Associated β-Amyloid Is Rapidly Seeded by Herpesviridae to Protect against Brain Infection. Neuron. 2018;99(1):56–63. doi: 10.1016/j.neuron.2018.06.030
- Wozniak MA, Itzhaki RF, Shipley SJ, et al. Herpes simplex virus infection causes cellular-amyloid accumulation and secretase upregulation. Neurosci Lett. 2007;429:95–100. doi: 10.1016/j.neulet.2007.09.077
- Zambrano A, Solis L, Salvadores N, et al. Neuronal cytoskeletal dynamic modification and neurodegeneration induced by infection with herpes simplex virus type 1. J Alzheimers Dis. 2008;14:259–269. doi: 10.3233/jad-2008-14301
- Piacentini R, Civitelli L, Ripoli C, et al. HSV-1 promotes Ca2+-mediated APP phosphorylation and Aβ accumulation in rat cortical neurons. Neurobiol Aging. 2011;32:2323.e13–2323.e26. doi: 10.1016/j.neurobiolaging.2010.06.009
- Jang H, Boltz D, Sturm-Ramirez K, et al. Highly pathogenic H5N1 influenza virus can enter the central nervous system and induce neuroinflammation and neurodegeneration. Proc Natl Acad Sci. 2009;106:14063–14068. DOI: 10.1073/ pnas.0900096106
- Hawkes CH, Del Tredici K, Braak H. Parkinson’s disease: a dual-hit hypothesis. Neuropathol Appl Neurobiol. 2007;33(6):599–614. doi: 10.1111/j.1365-2990.2007.00874.x
- Krasakov IV, Litvinenko IV, Rodionov GG, et al. Evaluation of gut microbiota in parkinson’s disease using gas chromatography with mass spectrometric detection. Ann Clin Exp Neur. 2018;12(4): 23–29. (In Russ.) doi: 10.1134/s036211971908005x
- Labrie V, Brundin P. Alpha-Synuclein to the Rescue: Immune Cell Recruitment by Alpha-Synuclein during Gastrointestinal Infection. J Innate Immun. 2017;9(5):437–440. doi: 10.1159/000479653
- Lotz SK, Blackhurst BM, Reagin, KL, et al. Microbial Infections Are a Risk Factor for Neurodegenerative Diseases. Front Cell Neurosci. 2021;15: 691136. doi: 10.3389/fncel.2021.691136
- Alenina N, Bader M. ACE2 in brain physiology and pathophysio logy: evidence from transgenic animal models. Neurochem Res. 2019; 44(6):1323–1329. DOI: 10.1007/ s11064-018-2679-4
- Lan J, Ge J, Yu J, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020; 581(7807):215–220. doi: 10.1038/s41586-020-2180-5
- Heurich A, Hofmann-Winkler H, Gierer S, et al. TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J Virol. 2014;88(2): 1293–1307. doi: 10.1128/jvi.02202-13
- Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–280. doi: 10.1016/j.cell.2020.02.052
- Chen Z, Mi L, Xu J, et al. Function of HAb18G/CD147 in invasion of host cells by severe acute respiratory syndrome coronavirus. J Infect Dis. 2005;191(5):755–760. doi: 10.1086/427811
- Baig AM, Khaleeq A, Ali U, et al. Evidence of the COVID-19 Virus Targeting the CNS: Tissue Distribution, Host-Virus Interaction, and Proposed Neurotropic Mechanisms. ACS Chem Neurosci. 2020;11(7): 995–998. DOI: 10.1021/ acschemneuro.0c00122
- Bender SJ, Phillips JM, Scott EP, et al. Murine Coronavirus Receptors Are Differentially Expressed in the Central Nervous System and Play Virus Strain-Dependent Roles in Neuronal Spread. J Virol. 2010;84(21):11030–11044. DOI: https://doi.org/10.1128/jvi.02688-09
- Finsterer J, Stollberger C. Update on the neurology of COVID-19. J Med Virol. 2020;92(11):2316–2318. doi: 10.1002/jmv.26000
- Kumar A, Pareek V, Prasoon P, et al. Possible routes of SARS-CoV-2 invasion in brain: In context of neurological symptoms in COVID-19 patients. J Neurosci Res. 2020;98(12):2376–2383. doi: 10.1002/jnr.24717
- Najjar S, Najjar A, Chong DJ, et al. Central nervous system complications associated with SARS-CoV-2 infection: integrative concepts of pathophysiology and case reports. J Neuroinflamm. 2020;(17):231. doi: 10.1186/s12974-020-01896-0
- Zubair AS, McAlpine LS, Gardin T, et al. Neuropathogenesis and Neurologic Manifestations of the Coronaviruses in the Age of Coronavirus Disease 2019. JAMA Neurol. 2020;77(8):1018. doi: 10.1001/jamaneurol.2020.2065
- Plog BA, Nedergaard M. The Glymphatic System in Central Nervous System Health and Disease: Past, Pre sent, and Future. Ann Rev Pathol. 2018;13(1): 379–394. doi: 10.1146/annurev-pathol-051217-111018
- Netland J, Meyerholz DK, Moore S, et al. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol. 2008; 82(15):7264–7275. DOI: 10.1128/ jvi.00737-08
- Zaitsev AA, Savushkina OI, Chernyak AV, et al. Clinical and functional characteristics of patients who recovered from the novel coronavirus infection (COVID-19). Prakticheskaya pul’monologiya. 2020;1:78–81. (In Russ.)
Supplementary files
