Убиквитилирование в развитии соматических заболеваний: механизм клеточной регуляции и новая терапевтическая мишень
- Авторы: Ураков А.Л.1, Тюрин А.В.2, Щекин В.С.2, Сиддиков О.А.3, Абдурахмонов И.Р.3, Габдрахимова Р.А.2, Самородов А.В.2
-
Учреждения:
- Ижевская государственная медицинская академия
- Башкирский государственный медицинский университет
- Самаркандский государственный медицинский университет
- Выпуск: Том 22, № 4 (2024)
- Страницы: 339-349
- Раздел: Научные обзоры
- URL: https://ogarev-online.ru/RCF/article/view/283518
- DOI: https://doi.org/10.17816/RCF631847
- ID: 283518
Цитировать
Аннотация
На современном этапе развития медицинской науки все большая роль в патогенезе различных групп заболеваний отводится механизмам эпигенетического регулирования и посттрансляционным модификациям белков. Одним из таких механизмов является убиквитилирование, которое способно регулировать функциональную активность белков, их стабильность, а также влиять на процессы клеточной гибели. Вовлеченность в большое количество метаболических путей и уже выявленные ассоциации с онкологическими, сердечно-сосудистыми, неврологическими, воспалительными заболеваниями делает убиквитилирование и участвующие в нем ферменты перспективной мишенью для разработки новых вариантов терапии. В данном обзоре мы рассматриваем влияние убиквитинирования на развитие заболеваний сердечно сосудистой, нервной систем, сахарного диабета, а также разработку возможных путей лечения.
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
Александр Ливиевич Ураков
Ижевская государственная медицинская академия
Автор, ответственный за переписку.
Email: urakoval@live.ru
ORCID iD: 0000-0002-9829-9463
SPIN-код: 1613-9660
д-р. мед. наук, профессор
Россия, 426034, Ижевск, ул. Коммунаров, д. 281Антон Викторович Тюрин
Башкирский государственный медицинский университет
Email: anton.bgmu@gmail.com
ORCID iD: 0000-0002-0841-3024
SPIN-код: 5046-3704
канд. мед. наук, доцент
Россия, УфаВлас Сергеевич Щекин
Башкирский государственный медицинский университет
Email: vlas-s@mail.ru
ORCID iD: 0000-0003-2202-7071
SPIN-код: 7796-0630
Россия, Уфа
Олим Абдуллаевич Сиддиков
Самаркандский государственный медицинский университет
Email: makval81@rambler.ru
ORCID iD: 0000-0002-2619-4689
PhD
Узбекистан, СамаркандИлхомжон Рустамович Абдурахмонов
Самаркандский государственный медицинский университет
Email: ilhomjon.lor@mail.ru
ORCID iD: 0000-0003-4409-0186
PhD
Узбекистан, СамаркандРената Айнуровна Габдрахимова
Башкирский государственный медицинский университет
Email: renata.gabdrahimova2013@yandex.ru
ORCID iD: 0009-0007-3792-1208
Россия, Уфа
Александр Владимирович Самородов
Башкирский государственный медицинский университет
Email: avsamorodov@gmail.com
ORCID iD: 0000-0001-9302-499X
SPIN-код: 2396-1934
д-р мед. наук, доцент
Россия, УфаСписок литературы
- Catic A, Ploegh HL. Ubiquitin — conserved protein or selfish gene? Trends Biochem Sci. 2005;30(11):600–604. doi: 10.1016/j.tibs.2005.09.002
- Kravtsova-Ivantsiv Y, Сiechanover A. Non-canonical ubiquitin-based signals for proteasomal degradation. J Cell Sci. 2012;125(3):539–548. doi: 10.1242/jcs.093567
- Bedford L, Paine S, Sheppard PW, et al. Structure, and function of the 26S proteasome. Trends Cell Biol. 2010;20(7):391–401. doi: 10.1016/j.tcb.2010.03.007
- Zeng W, Sun L, Jiang X, et al. Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell. 2010;141(2):315–330. doi: 10.1016/j.cell.2010.03.029
- Roberts JZ, Crawford N, Longley DB. The Role of ubiquitination in apoptosis and necroptosis. Cell Death Differ. 2022;29(2):272–284. doi: 10.1038/s41418-021-00922-9
- Moujalled D, Strasser A, Liddell JR. Molecular mechanisms of cell death in neurological diseases. Cell Death Differ. 2021;28(7): 2029–2044. doi: 10.1038/s41418-021-00814-y
- Holohan C, Van Schaeybroeck S, Longley DB. Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer. 2013;13(10): 714–726. doi: 10.1038/nrc3599
- Kwasna D, Abdul Rehman SA, Natarajan J, et al. Discovery and characterization of ZUFSP/ZUP1, a distinct deubiquitinase class important for genome stability. Mol Cell. 2018;70(1):150–164. doi: 10.1016/j.molcel.2018.02.023
- Atanassov BS, Koutelou E, Dent SY. The role of deubiquitinating enzymes in chromatin regulation. FEBS Lett. 2011;585(13): 2016–2023. doi: 10.1016/j.febslet.2010.10.042
- Li HL, Zhuo ML, Wang D et al. Targeted cardiac overexpression of a20 improves left ventricular performance and reduces compensatory hypertrophy after myocardial infarction. Circulation. 2007;115(14):1885–1894. doi: 10.1161/CIRCULATIONAHA.106.656835
- He B, Zhao YC, Gao LC, et al. Ubiquitin-specific protease 4 is an endogenous negative regulator of pathological cardiac hypertrophy. Hypertension. 2016;67(6):1237–1248. doi: 10.1161/HYPERTENSIONAHA.116.07392
- Ying X, Zhao Y, Yao T, et al. Novel protective role for ubiquitin-specific protease 18 in pathological cardiac remodeling. Hypertension. 2016;68(5):1160–1170. doi: 10.1161/HYPERTENSIONAHA.116.07562
- Dhingra R, Rabinovich-Nikitin I, Rothman S, et al. Proteasomal degradation of TRAF2 mediates mitochondrial dysfunction in doxorubicin-cardiomyopathy. Circulation. 2022;146(12):934–954. doi: 10.1161/CIRCULATIONAHA.121.058411
- Gisterå A, Hansson GK. The immunology of atherosclerosis. Nat Rev Nephrol. 2017;13(6):368–380. doi: 10.1038/nrneph.2017.51
- Soehnlein O, Libby P. Targeting inflammation in atherosclerosis — from experimental insights to the clinic. Nat Rev Drug Discov. 2021;20(8):589–610. doi: 10.1038/s41573-021-00198-1
- Fu Y, Qiu J, Wu J, et al. USP14-mediated NLRC5 upregulation inhibits endothelial cell activation and inflammation in atherosclerosis. Biochim Biophys Acta Mol Cell Biol Lipids. 2023;1868(5):159258. doi: 10.1016/j.bbalip.2022.159258
- Xia X, Hu T, He J, et al. USP10 deletion inhibits macrophage-derived foam cell formation and cellular-oxidized low density lipoprotein uptake by promoting the degradation of CD36. Aging (Albany NY). 2020;12(22):22892–22905. doi: 10.18632/aging.104003
- Wang B, Tang X, Yao L, et al. Disruption of USP9X in macrophages promotes foam cell formation and atherosclerosis. J Clin Invest. 2022;132(10):e154217. doi: 10.1172/JCI154217
- Zhang Y, Li W, Li H, et al. Circ_USP36 silencing attenuates oxidized low-density lipoprotein-induced dysfunction in endothelial cells in atherosclerosis through mediating miR-197-3p/ROBO1 axis. J Cardiovasc Pharmacol. 2021;78(5):e761–e772. doi: 10.1097/FJC.0000000000001124
- Liu H, Li X, Yan G. Knockdown of USP14 inhibits PDGF-BB-induced vascular smooth muscle cell dedifferentiation: via inhibiting MTOR/P70S6K signaling pathway. RSC Adv. 2019;9(63):36649–36657. doi: 10.1039/c9ra04726c.
- Zhang F, Xia X, Chai R, et al. Inhibition of USP14 suppresses the formation of foam cell by promoting CD36 degradation. J Cell Mol Med. 2020;24(6):3292–3302. doi: 10.1111/jcmm.15002
- Jean-Charles PY, Wu JH, Zhang L, et al. USP20 (Ubiquitin-Specific Protease 20) Inhibits TNF (tumor necrosis factor)-triggered smooth muscle cell inflammation and attenuates atherosclerosis. Arterioscler Thromb Vasc Biol. 2018;38(10):2295–2305. doi: 10.1161/ATVBAHA.118.311071
- Li X, Wang T, Tao Y, Wang X, Li L, Liu J. MF-094, a potent and selective USP30 inhibitor, accelerates diabetic wound healing by inhibiting the NLRP3 inflammasome. Exp Cell Res. 2022;410(2):112967. doi: 10.1016/j.yexcr.2021.112967
- Zhang T, Wang L, Chen L. Alleviative effect of microRNA-497 on diabetic neuropathic pain in rats in relation to decreased USP15. Cell Biol Toxicol. 2023;39(5):1–16. doi: 10.1007/s10565-022-09702-8
- Li X, Wang T, Tao Y, Wang X, Li L, Liu J. Inhibition of USP7 suppresses advanced glycation end-induced cell cycle arrest and senescence of human umbilical vein endothelial cells through ubiquitination of p53. Acta Biochim Biophys Sin (Shanghai). 2022;54(3):311–320. doi: 10.3724/abbs.2022003
- Bluestone JA, Buckner JH, Herold KC. Immunotherapy: Building a bridge to a cure for type 1 diabetes. Science. 2021;373(6554): 510–516. doi: 10.1126/science.abh1654
- Gorrepati KDD, Lupse B, Annamalai K, et al. Loss of deubiquitinase USP1 blocks pancreatic β-Cell apoptosis by inhibiting DNA damage response. iScience. 2018;1:72–86. doi: 10.1016/j.isci.2018.02.003
- Pearson G, Chai B, Vozheiko T, et al. Clec16a, Nrdp1, and USP8 form a ubiquitin-dependent tripartite complex that regulates β-Cell mitophagy. Diabetes. 2018;67(2):265–277. doi: 10.2337/db17-0321
- Meyerovich K, Violato NM, Fukaya M, et al. MCL-1 is a key antiapoptotic protein in human and rodent pancreatic β-Cells. Diabetes. 2017;66(9):2446–2458. doi: 10.2337/db16-1252
- Malenczyk K, Girach F, Szodorai E, et al. A TRPV1-to-secretagogin regulatory axis controls pancreatic β-cell survival by modulating protein turnover. EMBO J. 2017;36(14):2107–2125. doi: 10.15252/embj.201695347
- Honke N, Shaabani N, Zhang DE, et al. Usp18 driven enforced viral replication in dendritic cells contributes to break of immunological tolerance in autoimmune diabetes. PLoS Pathog. 2013;9(10): e1003650. doi: 10.1371/journal.ppat.1003650
- Santin I, Moore F, Grieco FA, et al. USP18 is a key regulator of the interferon-driven gene network modulating pancreatic beta cell inflammation and apoptosis. Cell Death Dis. 2012;3(11):e419. doi: 10.1038/cddis.2012.158
- Santin I, Eizirik DL. Candidate genes for type 1 diabetes modulate pancreatic islet inflammation and β-cell apoptosis. Diabetes Obes Metab. 2013;15(Suppl 3):71–81. doi: 10.1111/dom.12162
- Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol. 2011;11(2):98–107. doi: 10.1038/nri2925
- Saito N, Kimura S, Miyamoto T, et al. Macrophage ubiquitin-specific protease 2 modifies insulin sensitivity in obese mice. Biochem Biophys Rep. 2017;9:322–329. doi: 10.1016/j.bbrep.2017.01.009
- Bai Y, Mo K, Wang G, et al. intervention of gastrodin in type 2 diabetes mellitus and its mechanism. Front Pharmacol. 2021;12:710722. doi: 10.3389/fphar.2021.710722
- Forand A, Koumakis E, Rousseau A, et al. disruption of the phosphate transporter pit1 in hepatocytes improves glucose metabolism and insulin signaling by modulating the USP7/IRS1 interaction. Cell Rep. 2016;16(10):2736–2748. doi: 10.1016/j.celrep.2016.08.012
- Liu B, Zhang Z, Hu Y, et al. Sustained ER stress promotes hyperglycemia by increasing glucagon action through the deubiquitinating enzyme USP14. Proc Natl Acad Sci U S A. 2019;116(43):21732–21738. doi: 10.1073/pnas.1907288116
- Coyne ES, Bédard N, Gong YJ, et al. The deubiquitinating enzyme USP19 modulates adipogenesis and potentiates high-fat-diet-induced obesity and glucose intolerance in mice. Diabetologia. 2019;62(1):136–146. doi: 10.1007/s00125-018-4754-4
- Lu XY, Shi XJ, Hu A, et al. Feeding induces cholesterol biosynthesis via the mTORC1-USP20-HMGCR axis. Nature. 2020;588(7838): 479–484. doi: 10.1038/s41586-020-2928-y
- Kim A, Koo JH, Jin X, et al. Ablation of USP21 in skeletal muscle promotes oxidative fibre phenotype, inhibiting obesity and type 2 diabetes. J Cachexia Sarcopenia Muscle. 2021;12(6):1669–1689. doi: 10.1002/jcsm.12777
- Zhang S, Liu X, Wang J, et al. Targeting ferroptosis with miR-144-3p to attenuate pancreatic β cells dysfunction via regulating USP22/SIRT1 in type 2 diabetes. Diabetol Metab Syndr. 2022;14(1):89. doi: 10.1186/s13098-022-00852-7
- Niu Y, Jiang H, Yin H, et al. Hepatokine ERAP1 disturbs skeletal muscle insulin sensitivity via inhibiting USP33-mediated ADRB2 deubiquitination. Diabetes. 2022;71(5):921-933. doi: 10.2337/db21-0857
- Lennox G, Lowe J, Morrell K, et al. Ubiquitin is a component of neurofibrillary tangles in a variety of neurodegenerative diseases. Neurosci Lett. 1988;94(1–2):211–217. doi: 10.1016/0304-3940(88)90297-2
- Mori H, Kondo J, Ihara Y. Ubiquitin is a component of paired helical filaments in Alzheimer’s disease. Science. 1987;235(4796): 1641–1644. doi: 10.1126/science.3029875
- Paulson HL, Das SS, Crino PB, et al. Machado–Joseph disease gene product is a cytoplasmic protein widely expressed in brain. Ann Neurol. 1997;41(4):453–462. doi: 10.1002/ana.410410408
- DiAntonio A, Haghighi AP, Portman SL, et al. Ubiquitination-dependent mechanisms regulate synaptic growth and function. Nature. 2001;412(6845):449–452. doi: 10.1038/35086595
- Ding M, Shen K. The role of the ubiquitin proteasome system in synapse remodeling and neurodegenerative diseases. Bioessays. 2008;30(11–12):1075–1083. doi: 10.1002/bies.20843
- Yi JJ, Ehlers MD. Emerging roles for ubiquitin and protein degradation in neuronal function. Pharmacol Rev. 2007;59(1):14–39. doi: 10.1124/pr.59.1.4
- Tai HC, Schuman EM. Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction. Nat Rev Neurosci. 2008;9(11):826–838. doi: 10.1038/nrn2499
- Chen H, Polo S, Di Fiore PP, De Camilli PV. Rapid Ca2+-dependent decrease of protein ubiquitination at synapses. Proc Natl Acad Sci USA. 2003;100(25):14908–14913. doi: 10.1073/pnas.2136625100
- Ehlers MD. Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nat Neurosci. 2003;6(3):231–242. doi: 10.1038/nn1013
- Xiao N, Li H, Luo J, et al. Ubiquitin-specific protease 4 (USP4) targets TRAF2 and TRAF6 for deubiquitination and inhibits TNFα-induced cancer cell migration. Biochem J. 2012;441(3): 979–986. doi: 10.1042/BJ20111358
- Jiang X, Yu M, Ou Y, et al. Downregulation of USP4 promotes activation of microglia and subsequent neuronal inflammation in rat spinal cord after injury. Neurochem Res. 2017;42(11):3245–3253. doi: 10.1007/s11064-017-2361-2
- Qin N, Han F, Li L, et al. Deubiquitinating enzyme 4 facilitates chemoresistance in glioblastoma by inhibiting P53 activity. Oncol Lett. 2019;17(1):958–964. doi: 10.3892/ol.2018.9654
- Everington EA, Gibbard AG, Swinny JD, Seifi M. Molecular characterization of GABA-A receptor subunit diversity within major peripheral organs and their plasticity in response to early life psychosocial stress. Front Mol Neurosci. 2018;11:18. doi: 10.3389/fnmol.2018.00018
- Lappe-Siefke C, Loebrich S, Hevers W, et al. The ataxia (AXJ) mutation causes abnormal GABAA receptor turnover in mice. PLoS Genet. 2009;5(9): e1000631. doi: 10.1371/journal.pgen.1000631
- Anderson C, Crimmins S, Wilson JA, et al. Loss of Usp14 results in reduced levels of ubiquitin in ataxia mice. J Neurochem. 2005;95(3):724–731. doi: 10.1111/j.1471-4159.2005.03409.x
- Chen PC, Qin LN, Li XM, et al. The proteasome-associated deubiquitinating enzyme Usp14 is essential for the maintenance of synaptic ubiquitin levels and the development of neuromuscular junctions. J Neurosci. 2009;29(35):10909–10919. doi: 10.1523/JNEUROSCI.2635-09.2009
- Vaden JH, Bhattacharyya BJ, Chen PC, et al. Ubiquitin-specific protease 14 regulates c-Jun N-terminal kinase signaling at the neuromuscular junction. Mol Neurodegener. 2015;10:3. doi: 10.1186/1750-1326-10-3
- Colland F. The therapeutic potential of deubiquitinating enzyme inhibitors. Biochem Soc Trans. 2010;38(Pt 1):137–143. doi: 10.1042/BST0380137
- Chen RH, Chen YH, Huang TY. Ubiquitin-mediated regulation of autophagy. J Biomed Sci. 2019;26(1):80. doi: 10.1186/s12929-019-0569-y
- Lee BH, Lee MJ, Park S, et al. Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature. 2010;467(7312):179–184. doi: 10.1038/nature09299
- Karpel-Massler G, Banu MA, Shu C, et al. Inhibition of deubiquitinases primes glioblastoma cells to apoptosis in vitro and in vivo. Oncotarget. 2016;7(11):12791–12805. doi: 10.18632/oncotarget.7302
- Hospenthal MK, Mevissen TET, Komander D. Deubiquitinase-based analysis of ubiquitin chain architecture using Ubiquitin Chain Restriction (UbiCRest). Nat Protoc. 2015;10(2):349–361. doi: 10.1038/nprot.2015.018
- Komander D, Rape M. The ubiquitin code. Annu Rev Biochem. 2012;81:203–229. doi: 10.1146/annurev-biochem-060310-170328
- Wilson SM, Bhattacharyya B, Rachel RA, et al. Synaptic defects in ataxia mice result from a mutation in Usp14, encoding a ubiquitin-specific protease. Nat Genet. 2002;32(3):420–425. doi: 10.1038/ng1006
- Kerrisk Campbell M, Sheng M. USP8 deubiquitinates SHANK3 to control synapse density and SHANK3 activity-dependent protein levels. J Neurosci. 2018;38(23):5289–5301. doi: 10.1523/JNEUROSCI.3305-17.2018
- Yeates EF, Tesco G. The endosome-associated deubiquitinating enzyme USP8 regulates BACE1 enzyme ubiquitination and degradation. J Biol Chem. 2016;291(30):15753–15766. doi: 10.1074/jbc.M116.718023
- Cockram PE, Kist M, Prakash S, et al. Ubiquitination in the regulation of inflammatory cell death and cancer. Cell Death Differ. 2021;28(2):591–605. doi: 10.1038/s41418-020-00708-5
- Chen S, Liu Y, Zhou H. Advances in the development ubiquitin-specific peptidase (USP) inhibitors. Int J Mol Sci. 2021;22(9):4546. doi: 10.3390/ijms22094546
- Xu X, Xia J, Zhao S, et al. Qing-Fei-Pai-Du decoction and wogonoside exert anti-inflammatory action through down-regulating USP14 to promote the degradation of activating transcription factor 2. FASEB J. 2021;35(9): e21870. doi: 10.1096/fj.202100370RR
- Zou M, Zeng QS, Nie J, et al. The role of E3 ubiquitin ligases and deubiquitinases in inflammatory bowel disease: friend or foe? Front Immunol. 2021;12:769167. doi: 10.3389/fimmu.2021.769167
- Gao H, Yin J, Ji C, et al. Targeting ubiquitin specific proteases (USPs) in cancer immunotherapy: from basic research to preclinical application. J Exp Clin Cancer Res. 2023;42(1):225. doi: 10.1186/s13046-023-02805-y
- Wang F, Gao Y, Zhou L, et al. USP30: structure, emerging physiological role, and target inhibition. Front Pharmacol. 2022;13:851654. doi: 10.3389/fphar.2022.851654
