Природные глубокие эвтектические растворители – перспективные агенты для экстракции веществ из растительного сырья

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В последнее время неуклонно возрастает тенденция к сокращению количества синтетических продуктов или добавок и замене их натуральными. Исторический опыт и развитие науки о здоровье человека располагают убедительными данными о неблагоприятных эффектах ксенобиотиков на естественный метаболизм и здоровье человека в целом. Максимальная натурализация пищевых и бытовых продуктов широкого потребления является значимым в поддержании адекватными требованиям среды обитания жизнеспособности, социальной активности, достойного качества жизни, профилактике нежелательных явлений и болезней. Фармацевтическая, косметическая и пищевая промышленность уделяют особое внимание натуральным и биологически активным химическим веществам, выделенным из растений или микроорганизмов. Основная задача в этом направлении — разработка эффективных и экологических методов их выделения. Глубокие эвтектические растворители представляют собой смесь двух или более компонентов и относятся к растворителям с уникальными свойствами, такими как низкая летучесть, низкие температуры плавления, простота приготовления, недорогие исходные вещества и, самое главное, они практически нетоксичны для человека. Глубокие эвтектические растворители используются в качестве экологичного метода экстракции биологически активных веществ из лекарственных растений, а также в качестве безопасной альтернативы для пищевых, фармацевтических и различных отраслей промышленности. Традиционные методы экстракции органическими растворителями имеют ряд недостатков, таких как длительный период экстракции, безопасность их использования, урон для окружающей среды, высокая стоимость и необходимость использования больших объемов растворителей. В этом обзоре представлено краткое описание прогресса исследований, касающихся преимуществ использования глубоких эвтектических растворителей для экстракции биоактивных соединений, таких как фенольная кислота, флавоноиды, изофлавоны, катехины, полисахариды, куркуминоиды, проантоцианидин, фикоцианин, гингеролы, гинсенозиды, антоцианы, рутин, хлорогеновые кислоты и др. Рассмотрено изучение биологической активности экстрактов — антиоксидантной, антибактериальной и противоопухолевой активности.

Об авторах

Елена Владимировна Андрусенко

Военно-медицинская академия им. С.М. Кирова

Автор, ответственный за переписку.
Email: elena.asu@bk.ru
ORCID iD: 0000-0003-0588-4960
SPIN-код: 1825-9671

канд. хим. наук

Россия, Санкт-Петербург

Руслан Иванович Глушаков

Военно-медицинская академия им. С.М. Кирова

Email: glushakoffruslan@yandex.ru
ORCID iD: 0000-0002-0161-5977
SPIN-код: 6860-8990

д-р мед. наук
Россия, Санкт-Петербург

Григорий Александрович Редкин

Военно-медицинская академия им. С.М. Кирова

Email: gredkin14@gmail.com
ORCID iD: 0009-0005-7457-2137
Россия, Санкт-Петербург

Список литературы

  1. Santos-Zea L, Gutierrez-Uribe JA, Benedito J. Effect of solvent composition on ultrasound-generated intensity and its influence on the ultrasonically assisted extraction of bioactives from agave bagasse (Agave salmiana). Food Eng Rev. 2021;13(3):713–725. doi: 10.1007/s12393-020-09260-x
  2. Azmir J, Zaidul ISM, Rahman MM, et al. Techniques for extraction of bioactive compounds from plant materials: A review. J Food Eng. 2013;117(4):426–436. doi: 10.1016/j.jfoodeng.2013.01.014
  3. Fotsing YSF, Kezetas JJB, El-Saber BG, et al. Extraction of bioactive compounds from medicinal plants and herbs. Nat Med Plants. 2021. doi: 10.5772/intechopen.98602
  4. Jablonský M, Škulcová A, Malvis A, et al. Extraction of value-added components from food industry based and agro-forest biowastes by deep eutectic solvents. J Biotechnol. 2018;282:46–66. doi: 10.1016/j.jbiotec.2018.06.349
  5. Abbott AP, Capper G, Davies DL, et al. Novel solvent properties of choline chloride/urea mixtures. Chem Commun. 2003;(1):70–71. doi: 10.1039/b210714g
  6. Smith EL, Abbott AP, Ryder KS. Deep eutectic solvents (dess) and their applications. Chem Rev. 2014;114(21):11060–11082. doi: 10.1021/cr300162p
  7. Hayyan M, Hashim MA, Al-Saadi MA, et al. Assessment of cytotoxicity and toxicity for phosphonium-based deep eutectic solvents. Chemosphere. 2013;93(2):455–459. doi: 10.1016/j.chemosphere.2013.05.013
  8. Choi YH, van Spronsen J, Dai Y, et al. Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology? Plant Physiol. 2011;156(4):1701–1705. doi: 10.1104/pp.111.178426
  9. Grønlien KG, Pedersen ME, Tønnesen HH. A natural deep eutectic solvent' (NADES) as potential excipient in collagen-based products. Int J Biol Macromol. 2020;156:394–402. doi: 10.1016/j.ijbiomac.2020.04.026
  10. Vinatoru M, Mason TJ, Calinescu I. Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials. TrAC Trends Anal Chem. 2017;97:159–178. doi: 10.1016/j.trac.2017.09.002
  11. Zhang L, Wang M. Optimization of deep eutectic solvent-based ultrasound-assisted extraction of polysaccharides from Dioscorea opposita Thunb. Int J Biol Macromol. 2017;95:675–681. doi: 10.1016/j.ijbiomac.2016.11.096
  12. Liu XY, Hong O, Gregersen H. Deep eutectic solvent-based ultrasound-assisted extraction of polyphenols from Cosmos sulphureus. J Appl Res Med Aromat Plants. 2023;32:100444. doi: 10.1016/j.jarmap.2022.100444
  13. El Maaiden E, El Kahia H, Nasser B, et al. Deep eutectic solvent-ultrasound assisted extraction as a green approach for enhanced extraction of naringenin from Searsia tripartita and retained their bioactivities. Front Nutr Frontiers Media SA. 2023;10:1193509. doi: 10.3389/fnut.2023.1193509
  14. Pan X, Xu L, Meng J, et al. Ultrasound-assisted deep eutectic solvents extraction of polysaccharides from morchella importuna: optimization, physicochemical properties, and bioactivities. Front Nutr Frontiers Media SA. 2022;9:912014. doi: 10.3389/fnut.2022.912014
  15. Veggi PC, Martinez J, Meireles MAA. Fundamentals of microwave extraction. In: Chemat F, Cravotto G, eds. Microwave-assisted extraction for bioactive compounds. Food Engineering Series. Boston, MA: Springer, 2012. P. 15–52. doi: 10.1007/978-1-4614-4830-3_2
  16. Wang W, Xiao SQ, Ling LY, et al. Deep eutectic solvent-based microwave-assisted extraction for the extraction of seven main flavonoids from Ribes mandshuricum (Maxim.) Kom. Leaves. Separation. 2023;10(3):191. doi: 10.3390/separations10030191
  17. Costa FS, Moreira LS, Silva AM, et al. Natural deep eutectic solvent-based microwave-assisted extraction in the medicinal herb sample preparation and elemental determination by ICP OES. J Food Compos Anal. 2022;109:104510. doi: 10.1016/j.jfca.2022.104510
  18. Shen D, Kou X, Wu C, et al. Cocktail enzyme-assisted alkaline extraction and identification of jujube peel pigments. Food Chem. 2021;357:129747. doi: 10.1016/j.foodchem.2021.129747
  19. Vo TP, Tran TQD, Phan TH, et al. Ultrasonic-assisted and enzymatic-assisted extraction to recover tannins, flavonoids, and terpenoids from used tea leaves using natural deep eutectic solvents. Int J Food Sci Technol. 2023;58(11):5855–5864. doi: 10.1111/ijfs.16688
  20. Kaur R, Arora S. Alkaloids-important therapeutic secondary metabolites of plant origin // J Crit Rev. 2015. Vol. 2, N. 3. P. 1–8.
  21. Cao H, Song S, Zhang H, et al. Chemopreventive effects of berberine on intestinal tumor development in Apcmin/+mice. BMC Gastroenterol. 2013;13:163. doi: 10.1186/1471-230X-13-163
  22. Kurek J, Alkaloids — their importance in nature and for human life. IntechOpen. 2019. 100 p. doi: 10.5772/intechopen.73336
  23. Duan L, Dou LL, Guo L, et al. Comprehensive evaluation of deep eutectic solvents in extraction of bioactive natural products. ACS Sustain Chem Eng. 2016;4(4):2405–2411.
  24. Takla SS, Shawky E, Hammoda HM, et al. Green techniques in comparison to conventional ones in the extraction of Amaryllidaceae alkaloids: Best solvents selection and parameters optimization. J Chromatogr A. 2018;1567:99–110. doi: 10.1016/j.chroma.2018.07.009
  25. Espino M, Solari M, Fernández MLÁ, et al. NADES-mediated folk plant extracts as novel antifungal agents against Candida albicans. J Pharm Biomed Anal. 2019;167:15–20. doi: 10.1016/j.jpba.2019.01.026
  26. Oulahal N, Degraeve P. Phenolic-rich plant extracts with antimicrobial activity: an alternative to food preservatives and biocides? Front Microbiol. 2022;12:753518. doi: 10.3389/fmicb.2021.753518
  27. Panzella L. Natural phenolic compounds for health, food and cosmetic applications. Antioxidants (Basel). 2020;9(5):427. doi: 10.3390/antiox9050427
  28. Ferreira ICFR, Martins N, Barros L. Phenolic compounds and its bioavailability: in vitro bioactive compounds or health promoters? Adv Food Nutr Res. 2017;82:1–44. doi: 10.1016/bs.afnr.2016.12.004
  29. Ruesgas-Ramón M, Figueroa-Espinoza MC, Durand E. Application of deep eutectic solvents (des) for phenolic compounds extraction: overview, challenges, and opportunities. J Agric Food Chem. 2017;65(18):3591–3601. doi: 10.1021/acs.jafc.7b01054
  30. Dai Y, Witkamp GJ, Verpoorte R, et al. Natural deep eutectic solvents as a new extraction media for phenolic metabolites in Carthamus tinctorius L. Anal Chem. 2013;85(13):6272–6278. doi: 10.1021/ac400432p
  31. García A, Rodríguez-Juan E, Rodríguez-Gutiérrez G, et al. Extraction of phenolic compounds from virgin olive oil by deep eutectic solvents (DESs). Food Chem. 2016;197(Pt A):554–561. doi: 10.1016/j.foodchem.2015.10.131
  32. Faggian M, Bernabè G, Ferrari S, et al. Polyphenol-rich larix decidua bark extract with antimicrobial activity against respiratory-tract pathogens: A novel bioactive ingredient with potential pharmaceutical and nutraceutical applications. Antibiotics (Basel). 2021;10(7):789. doi: 10.3390/antibiotics10070789
  33. Isah MB, Aminu M, Ibrahim MA, et al. Chapter 7 — terpenoids as emerging therapeutic agents: cellular targets and mechanisms of action against protozoan parasites. Stud Nat Prod Chem. 2018;59: 227–250. doi: 10.1016/B978-0-444-64179-3.00007-4
  34. Chen F, Su X, Gao J, et al. A modified strategy to improve the dissolution of flavonoids from Artemisiae Argyi Folium using ultrasonic-assisted enzyme-deep eutectic solvent system. J Chromatogr A. 2023;1707:464282. doi: 10.1016/j.chroma.2023.464282
  35. Xia GH, Li XH, Jiang YH. Deep eutectic solvents as green media for flavonoids extraction from the rhizomes of Polygonatum odoratum. Alexandria Eng J. 2021;60(2):1991–2000. doi: 10.1016/j.aej.2020.12.008
  36. Le NT, Nguyen TPD, Ho DV, et al. Green solvents-based rutin extraction from Sophora japonica L. J Appl Res Med Aromat Plants. 2023;36:100508. doi: 10.1016/j.jarmap.2023.100508
  37. Arnesen JA, Borodina I. Engineering of Yarrowia lipolytica for terpenoid production. Metab Eng Commun. 2022;15:e00213. doi: 10.1016/j.mec.2022.e00213
  38. Chen L, Huang G. The antiviral activity of polysaccharides and their derivatives. Int J Biol Macromol. 2018;115:77–82. doi: 10.1016/j.ijbiomac.2018.04.056
  39. Gao C, Cai C, Liu J, et al. Extraction and preliminary purification of polysaccharides from Camellia oleifera Abel. seed cake using a thermoseparating aqueous two-phase system based on EOPO copolymer and deep eutectic solvents. Food Chem. 2020;313:126164. doi: 10.1016/j.foodchem.2020.126164
  40. Jablonsky M, Majova V, Strizincova P, et al. Investigation of total phenolic content and antioxidant activities of spruce bark extracts isolated by deep eutectic solvents. Cryst. 2020;10(5):402. doi: 10.3390/cryst10050402
  41. Xu BJ, Chang SKC. A Comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. J Food Sci. 2007;72(2):S159–S166. doi: 10.1111/j.1750-3841.2006.00260.x
  42. Zhu H, Zhang J, Li C, et al. Morinda citrifolia L. leaves extracts obtained by traditional and eco-friendly extraction solvents: Relation between phenolic compositions and biological properties by multivariate analysis. Ind Crops Prod. 2020;153:112586. doi: 10.1016/j.indcrop.2020.112586
  43. Barbieri JB, Goltz C, Cavalheiro FB, et al. Deep eutectic solvents applied in the extraction and stabilization of rosemary (Rosmarinus officinalis L.) phenolic compounds. Ind Crops Prod. 2020;144(3):112049. doi: 10.1016/j.indcrop.2019.112049
  44. Pavić V, Flačer D, Jakovljević M, et al. Assessment of total phenolic content, in vitro antioxidant and antibacterial activity of Ruta graveolens L. extracts obtained by choline chloride based natural deep eutectic solvents. Plants. 2019;8(3):69. doi: 10.3390/plants8030069
  45. Bakirtzi C, Triantafyllidou K, Makris DP. Novel lactic acid-based natural deep eutectic solvents: Efficiency in the ultrasound-assisted extraction of antioxidant polyphenols from common native Greek medicinal plants. J Appl Res Med Aromat Plants. 2016;3(3):120–127. doi: 10.1016/j.jarmap.2016.03.003
  46. Rathnasamy SK, Raendran DS, Balaraman HB, et al. Functional deep eutectic solvent-based chaotic extraction of phycobiliprotein using microwave-assisted liquid-liquid micro-extraction from Spirulina (Arthrospira platensis) and its biological activity determination. Algal Res. 2019;44:101709. doi: 10.1016/j.algal.2019.101709
  47. Rajha HN, Mhanna T, Kantar SE, et al. Innovative process of polyphenol recovery from pomegranate peels by combining green deep eutectic solvents and a new infrared technology. LWT. 2019;111:138–146. doi: 10.1016/j.lwt.2019.05.004
  48. Panić M, Radić Stojković M, Kraljić K, et al. Ready-to-use green polyphenolic extracts from food by-products. Food Chem. 2019;283:628–636. doi: 10.1016/j.foodchem.2019.01.061
  49. Jeong KM, Lee MS, Nam MW, et al. Tailoring and recycling of deep eutectic solvents as sustainable and efficient extraction media. J Chromatogr A. 2015;1424:10–17. doi: 10.1016/j.chroma.2015.10.083

© Эко-Вектор, 2024

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».