«Старые» и современные противомалярийные препараты, механизм их действия, значение лихорадки и терапевтической гипертермии
- Авторы: Хан Д.1, Рудрапал М.2, Ураков А.Л.3
-
Учреждения:
- Университет Маджмаах
- Школа биотехнологии и фармацевтических наук, Фонд науки, технологий и исследований Виньяна
- Ижевская государственная медицинская академия
- Выпуск: Том 23, № 1 (2025)
- Страницы: 29-40
- Раздел: Научные обзоры
- URL: https://ogarev-online.ru/RCF/article/view/312483
- DOI: https://doi.org/10.17816/RCF642586
- EDN: https://elibrary.ru/WWOWGZ
- ID: 312483
Цитировать
Аннотация
Согласно отчету Всемирной организации здравоохранения (2020), более 229 млн человек в 87 странах мира болеют малярией, несмотря на применение противомалярийных препаратов. Более того, современная комбинированная терапия тоже не может исключить эту болезнь. Дело в том, что возбудители малярии, так же как и возбудители других инфекционных заболеваний, постепенно приобретают устойчивость к противоинфекционным препаратам. И такая устойчивость паразитов к противомалярийным препаратам повышается с увеличением длительности применения этих препаратов в обществе. Иными словами, противомалярийные препараты предназначены не только для лечения и профилактики малярии, но и постепенно приобретают роль факторов, влияющих на «естественный» отбор возбудителей болезни. Именно с помощью применяемых противомалярийных препаратов паразиты постепенно приспосабливаются к существованию в организме больных малярией, пытаясь выжить, несмотря на наличие лекарственных препаратов. Интенсивность мутаций возбудителей малярии в их популяции, паразитарная нагрузка, выбор противомалярийных препаратов, учет и контроль противомалярийной активности применяемых лекарств, эффективность и безопасность применяемых лекарств, их разовых и курсовых доз, эффективность проводимой индивидуальной курсовой противомалярийной терапии и контроль взаимодействия лекарств с паразитами являются основными факторами эффективности лечения и профилактики малярии, равно как и факторами лекарственной устойчивости паразитов. Обзор указывает на важность знаний основ метаболизма и жизненного цикла как паразита, так и хозяина для понимания механизма действия лекарств и лекарственной устойчивости паразитов к ним. Эти знания очень важны для выбора новых лекарственных мишеней с целью поиска и разработки новых противомалярийных препаратов. Лихорадка, суточный ритм температуры тела, а также терапевтическая гипертермия являются не только условиями для профилактики инфекций, сохранения здоровья пациентов и протекания малярии, но также факторами механизма действия противомалярийных препаратов, эффективности лекарственной терапии инфекции и устойчивости возбудителей малярии к противомалярийным препаратам.
Полный текст
Открыть статью на сайте журналаОб авторах
Джохра Хан
Университет Маджмаах
Email: j.khan@mu.edu.sa
ORCID iD: 0000-0002-0044-4758
Саудовская Аравия, Аль-Маджмаах
Митхун Рудрапал
Школа биотехнологии и фармацевтических наук, Фонд науки, технологий и исследований Виньяна
Email: drmr_pharma@vignan.ac.in
ORCID iD: 0000-0002-8172-6633
д-р мед. наук, профессор
Индия, Вадламуди, ГунтурАлександр Ливиевич Ураков
Ижевская государственная медицинская академия
Автор, ответственный за переписку.
Email: urakoval@live.ru
ORCID iD: 0000-0002-9829-9463
SPIN-код: 1613-9660
д-р мед. наук, профессор
Россия, ИжевскСписок литературы
- Josling GA, Russell TJ, Venezia J, et al. Dissecting the role of PfAP2-G in malaria gametocytogenesis. Nat Commun. 2020; 11(1):1–13. doi: 10.1038/s41467-020-15026-0 EDN: EGZFKE
- Imwong M, Dhorda M, Tun KM, et al. Molecular epidemiology of resistance to antimalarial drugs in the Greater Mekong subregion: an observational study. Lancet Infect Dis. 2020;20(12):1470–1480. doi: 10.1016/S1473-3099(20)30228-0 EDN: XAGVSD
- Meibalan E, Marti M. Biology of malaria transmission. Cold Spring Harb Perspect Med. 2017;7(3):a025452. doi: 10.1101/cshperspect.a025452 EDN: YYADXP
- Eikenberry SE, Gumel AB. Mathematical modeling of climate change and malaria transmission dynamics: a historical review. J Math Biol. 2018;77(4):857–933. doi: 10.1007/s00285-018-1229-7 EDN: YHUYCL
- Alout H, Roche B, Dabiré RK, Cohuet A. Consequences of insecticide resistance on malaria transmission. PLoS Pathog. 2017;13(9):e1006499. doi: 10.1371/journal.ppat.1006499
- Matthews KA, Senagbe KM, Nötzel C, et al. Disruption of the Plasmodium falciparum life cycle through transcriptional reprogramming by inhibitors of Jumonji demethylases. ACS Infect Dis. 2020;6(5): 1058–1075. doi: 10.1021/acsinfecdis.9b00455 EDN: HQIMHK
- Li X, Kumar S, McDew-White M, et al. Genetic mapping of fitness determinants across the malaria parasite Plasmodium falciparum life cycle. PLoS Genet. 2019;15(10):e1008453. doi: 10.1371/journal.pgen.1008453
- Bancells C, Llorà-Batlle O, Poran A, et al. Revisiting the initial steps of sexual development in the malaria parasite Plasmodium falciparum. Nat Microbiol. 2019;4(1):144–154. doi: 10.1038/s41564-018-0291-7
- Smith LM, Motta FC, Chopra G, et al. An intrinsic oscillator drives the blood stage cycle of the malaria parasite Plasmodium falciparum. Science. 2020;368(6492):754–759. doi: 10.1126/science.aba4357 EDN: FDBMJL
- Coetzee N, Sidoli S, Van Biljon R, et al. Quantitative chromatin proteomics reveals a dynamic histone post-translational modification landscape that defines asexual and sexual Plasmodium falciparum parasites. Sci Rep. 2017;7(1):607. doi: 10.1038/s41598-017-00687-7
- Baumgarten S, Bryant JM, Sinha A, et al. Transcriptome-wide dynamics of extensive m6A mRNA methylation during Plasmodium falciparum blood-stage development. Nat Microbiol. 2019;4(12): 2246–2259. doi: 10.1038/s41564-019-0521-7 EDN: WEIJFX
- Bachmann A, Bruske E, Krumkamp R, et al. Controlled human malaria infection with Plasmodium falciparum demonstrates impact of naturally acquired immunity on virulence gene expression. PLoS Pathog. 2019;15(7):e1007906. doi: 10.1371/journal.ppat.1007906
- Thomas JA, Tan MS, Bisson C, et al. A protease cascade regulates release of the human malaria parasite Plasmodium falciparum from host red blood cells. Nat Microbiol. 2018;3(4):447–455. doi: 10.1038/s41564-018-0111-0
- Neveu G, Beri D, Kafsack BF. Metabolic regulation of sexual commitment in Plasmodium falciparum. Curr Opin Microbiol. 2020;58: 93–98. doi: 10.1016/j.mib.2020.09.004 EDN: JQJCLD
- Achan J, Reuling IJ, Yap XZ, et al. Serologic markers of previous malaria exposure and functional antibodies inhibiting parasite growth are associated with parasite kinetics following a Plasmodium falciparum controlled human infection. Clin Infect Dis. 2020;70(12): 2544–2552. doi: 10.1093/cid/ciz740
- Usui M, Prajapati SK, Ayanful-Torgby R, et al. Plasmodium falciparum sexual differentiation in malaria patients is associated with host factors and GDV1-dependent genes. Nat Commun. 2019;10(1):2140. doi: 10.1038/s41467-019-10172-6 EDN: ZMMVZW
- Tibúrcio M, Yang AS, Yahata K, et al. A novel tool for the generation of conditional knockouts to study gene function across the Plasmodium falciparum life cycle. mBio. 2019;10(5):e01170–19. doi: 10.1128/mBio.01170-19
- Wang WF, Zhang YL. PfSWIB, a potential chromatin regulator for var gene regulation and parasite development in Plasmodium falciparum. Parasit Vectors. 2020;13(1):48. doi: 10.1186/s13071-020-3918-5 EDN: WVRQUZ
- Coetzee N, Von Grüning H, Opperman DM, et al. Epigenetic inhibitors target multiple stages of Plasmodium falciparum parasites. Sci Rep. 2020;10(1):2355. doi: 10.1038/s41598-020-59298-4 EDN: ZZDNQP
- Keesey IW, Koerte S, Khallaf MA, et al. Pathogenic bacteria enhance dispersal through alteration of Drosophila social communication. Nat Commun. 2017;8(1):265. doi: 10.1038/s41467-017-00334-9 EDN: YHPCRB
- Herren JK, Mbaisi L, Mararo E, et al. A microsporidian impairs Plasmodium falciparum transmission in Anopheles arabiensis mosquitoes. Nat Commun. 2020;11(1):2187. doi: 10.1038/s41467-020-16121-y EDN: OOCCUL
- Gabrieli P, Caccia S, Varotto-Boccazzi I, et al. Mosquito trilogy: microbiota, immunity and pathogens, and their implications for the control of disease transmission. Front Microbiol. 2021;12:630438. doi: 10.3389/fmicb.2021.630438 EDN: GFCZOG
- Ferreira FC, Alves LG, Jager GB, et al. Molecular and pathological investigations of Plasmodium parasites infecting striped forest whiptail lizards (Kentropyx calcarata) in Brazil. Parasitol Res. 2020;119(8): 2631–2640. doi: 10.1007/s00436-020-06756-7 EDN: BQSMSU
- Counihan NA, Modak JK, Koning-Ward D, Tania F. How malaria parasites acquire nutrients from their host. Front Cell Dev Biol. 2021;9:649184. doi: 10.3389/fcell.2021.649184 EDN: MIQAJD
- Navarro JA, Sanchez-Navarro JA, Pallas V. Key checkpoints in the movement of plant viruses through the host. Adv Virus Res. 2019;104:1–64. doi: 10.1016/bs.aivir.2019.05.001 EDN: CKGBKM
- Duffy S, Avery VM. Routine in vitro culture of Plasmodium falciparum: experimental consequences? Trends Parasitol. 2018;34(7):564–575. doi: 10.1016/j.pt.2018.04.005
- Haldar K, Bhattacharjee S, Safeukui I. Drug resistance in Plasmodium. Nat Rev Microbiol. 2018;16(3):156–170. doi: 10.1038/nrmicro.2017.161
- Schalkwijk J, Allman EL, Jansen PA, et al. Antimalarial pantothenamide metabolites target acetyl-coenzyme A biosynthesis in Plasmodium falciparum. Sci Transl Med. 2019;11(510):eaas9917. doi: 10.1126/scitranslmed.aas9917
- Huckaby AC, Granum CS, Carey MA, et al. Complex DNA structures trigger copy number variation across the Plasmodium falciparum genome. Nucleic Acids Res. 2019;47(4):1615–1627. doi: 10.1093/nar/gky1268
- Wale N, Sim DG, Read AF. A nutrient mediates intraspecific competition between rodent malaria parasites in vivo. Proc Biol Sci. 2017;284(1859):20171067. doi: 10.1098/rspb.2017.1067
- Matz JM, Watanabe M, Falade M, et al. Plasmodium para-aminobenzoate synthesis and salvage resolve avoidance of folate competition and adaptation to host diet. Cell Rep. 2019;26(2):356–363.e4. doi: 10.1016/j.celrep.2018.12.062
- Choudhary HH, Srivastava PN, Singh S, et al. The shikimate pathway enzyme that generates chorismate is not required for the development of Plasmodium berghei in the mammalian host nor the mosquito vector. Int J Parasitol. 2018;48(3–4):203–209. doi: 10.1016/j.ijpara.2017.10.004
- Verhoef H, Veenemans J, Mwangi MN, Prentice AM. Safety and benefits of interventions to increase folate status in malaria-endemic areas. Br J Haematol. 2017;177(6):905–918. doi: 10.1111/bjh.14618
- Vidmar M, Grželj J, Mlinarič-Raščan I, et al. Medicines associated with folate-homocysteine-methionine pathway disruption. Arch Toxicol. 2019;93(2):227–251. doi: 10.1007/s00204-018-2364-z EDN: IMORBA
- Cheviet T, Lefebvre-Tournier I, Wein S, Peyrottes S. Plasmodium purine metabolism and its inhibition by nucleoside and nucleotide analogues. J Med Chem. 2019;62(18):8365–8391. doi: 10.1021/acs.jmedchem.9b00182
- Pinapati RS. Understanding drug resistance in plasmodium falciparum through genetic crosses and global metabolomics. Indiana: University of Notre Dame; 2018. 127 p.
- Gul T, Balkhi HM, Haq E. Evaluation of Cellular Processes by in Vitro Assays. Ben Science Publications; 2018. doi: 10.2174/97816810870301180101
- Ince S, Erdogan M, Demirel HH, et al. Boron enhances early embryonic gene expressions and improves fetal development of rats. J Trace Elem Med Biol. 2018;50:34–46. doi: 10.1016/j.jtemb.2018.06.002
- Fitzroy SM, Gildenhuys J, Olivier T, et al. The effects of quinoline and non-quinoline inhibitors on the kinetics of lipid-mediated β-hematin crystallization. Langmuir. 2017;33(30):7529–7537. doi: 10.1021/acs.langmuir.7b01132
- Bennett TN, Kosar AD, Ursos LM, et al. Drug resistance-associated pfCRT mutations confer decreased Plasmodium falciparum digestive vacuolar pH. Mol Biochem Parasitol. 2004;133(1):99–114. doi: 10.1016/j.molbiopara.2003.09.008
- Zhang H, Paguio M, Roepe PD. The antimalarial drug resistance protein Plasmodium falciparum chloroquine resistance transporter binds chloroquine. Biochemistry. 2004;43(26):8290–8296. doi: 10.1021/bi049137i
- Ecker A, Lehane AM, Clain J, Fidock DA. PfCRT and its role in antimalarial drug resistance. Trends Parasitol. 2012;28(11):504–514. doi: 10.1016/j.pt.2012.08.002
- Lakshmanan V, Bray PG, Verdier-Pinard D, et al. A critical role for PfCRT K76T in Plasmodium falciparum verapamil-reversible chloroquine resistance. EMBO J. 2005;24(13):2294–2305. doi: 10.1038/sj.emboj.7600681
- Bray PG, Martin RE, Tilley L, et al. Defining the role of PfCRT in Plasmodium falciparum chloroquine resistance. Mol Microbiol. 2005;56(2): 323–333. doi: 10.1111/j.1365-2958.2005.04556.x EDN: MGRDMJ
- Pulcini S, Staines HM, Lee HA, et al. Mutations in the Plasmodium falciparum chloroquine resistance transporter, PfCRT, enlarge the parasite’s food vacuole and alter drug sensitivities. Sci Rep. 2015;5:14552. doi: 10.1038/srep14552
- Martin RE, Marchetti RV, Cowan AI, et al. Chloroquine transport via the malaria parasite’s chloroquine resistance transporter. Science. 2009;325(5948):1680–1682. doi: 10.1126/science.1175667 EDN: MYLABB
- Zhang H, Howard EM, Roepe PD. Analysis of the antimalarial drug resistance protein Pfcrt expressed in yeast. J Biol Chem. 2002;277(51):49767–49775. doi: 10.1074/jbc.M204005200
- Jiang H, Patel JJ, Yi M, et al. Genome-wide compensatory changes accompany drug-selected mutations in the Plasmodium falciparum CRT gene. PLoS One. 2008;3(6):e2484. doi: 10.1371/journal.pone.0002484
- Hargraves KG, He L, Firestone GL. Phytochemical regulation of the tumor suppressive microRNA, miR-34a, by p53-dependent and independent responses in human breast cancer cells. Mol Carcinog. 2017;55(5):486–498. doi: 10.1002/mc.22296 EDN: WNNEBL
- Tong Y, Liu Y, Zheng H, et al. Artemisinin and its derivatives can significantly inhibit lung tumorigenesis and tumor metastasis through Wnt/β-catenin signaling. Oncotarget. 2016;7(21): 31413–31428. doi: 10.18632/oncotarget.8920
- Munyangi J, Cornet-Vernet L, Idumbo M, et al. Effect of Artemisia annua and Artemisia afra tea infusions on schistosomiasis in a large clinical trial. Phytomedicine. 2018;51:233–240. doi: 10.1016/j.phymed.2018.10.014
- Woerdenbag HJ, Lugt CB, Pras N. Artemisia annua L.: a source of novel antimalarial drugs. Pharm Weekbl Sci. 1990;12(5):169–181. doi: 10.1007/BF01980041 EDN: MLHKID
- Ferreira JF, Benedito VA, Sandhu D, et al. Seasonal and differential sesquiterpene accumulation in Artemisia annua suggest selection based on both artemisinin and dihydroartemisinic acid may increase artemisinin in planta. Front Plant Sci. 2018;9:1096. doi: 10.3389/fpls.2018.01096
- Gruessner BM, Weathers PJ. In vitro analyses of Artemisia extracts on Plasmodium falciparum suggest a complex antimalarial effect. PLoS One. 2021;16(3):e0240874. doi: 10.1371/journal.pone.0240874 EDN: WIHAVN
- Kshirsagar SG, Rao RV. Antiviral and immunomodulation effects of Artemisia. Medicina. 2021;57(3):217. doi: 10.3390/medicina57030217 EDN: KFOOJQ
- Lv Z, Zhang F, Pan Q, et al. Branch pathway blocking in Artemisia annua is a useful method for obtaining high yield artemisinin. Plant Cell Physiol. 2016;57(3):588–602. doi: 10.1093/pcp/pcw014
- Weathers PJ, Elkholy S, Wobbe KK. Artemisinin: the biosynthetic pathway and its regulation in Artemisia annua, a terpenoid-rich species. In Vitro Cell Dev Biol. 2006;42(4):309–317. doi: 10.1079/IVP2006782 EDN: NFWJNW
- Mishra R, Mishra B, Moorthy N. Dihydrofolate reductase enzyme: a potent target. Asian J Cell Biol. 2006;1(1):48–58. doi: 10.3923/ajcb.2006.48.58
- Sharma M, Chauhan PM. Dihydrofolate reductase as a therapeutic target for infectious diseases: opportunities and challenges. Future Med Chem. 2012;4(10):1335–1365. doi: 10.4155/fmc.12.68
- Uhlemann AC, Yuthavong Y, Fidock DA. Mechanisms of antimalarial drug action and resistance. Mol Appl Malariol. 2005:427–461. doi: 10.1128/9781555817558.ch23
- Muregi FW. Antimalarial drugs and their useful therapeutic lives: rational drug design lessons from pleiotropic action of quinolines and artemisinins. Curr Drug Discov Technol. 2010;7(4):280–316. doi: 10.2174/157016310793360693 EDN: OLWIMH
- Mital A. Recent advances in antimalarial compounds and their patents. Curr Med Chem. 2007;14(7):759–773. doi: 10.2174/092986707780090927
- Hastings MI, Watkins WM, White NJ. The evolution of drug-resistant malaria: the role of drug elimination half-life. Philos Trans R Soc Lond B Biol Sci. 2002;357(1420):505–519. doi: 10.1098/rstb.2001.1036
- Dayan FE. Current status and future prospects in herbicide discovery. Plants. 2019;8(9):341. doi: 10.3390/plants8090341
- Reilly HB. The genetic dissection of differential growth in Plasmodium falciparum and its relationship to chloroquine drug selection. Indiana: University of Notre Dame; 2008.
- McElroy PD. Plasmodium falciparum transmission pressure and malarial morbidity among young children in western Kenya. University of Michigan; 1998.
- Mosqueira VC, Loiseau PM, Bories C, et al. Efficacy and pharmacokinetics of intravenous nanocapsule formulations of halofantrine in Plasmodium berghei-infected mice. Antimicrob Agents Chemother. 2004;48(4):1222–1228. doi: 10.1128/AAC.48.4.1222-1228.2004
- Okpe O, Habila N, Ikwebe J, et al. Antimalarial potential of Carica papaya and Vernonia amygdalina in mice infected with Plasmodium berghei. J Trop Med. 2016;2016:8738972. doi: 10.9734/JOCAMR/2017/29402
- Leite EA, Grabe-Guimarães A, Guimarães HN, et al. Cardiotoxicity reduction induced by halofantrine entrapped in nanocapsule devices. Life Sci. 2007;80(14):1327–1334. doi: 10.1016/j.lfs.2006.12.019
- Coleman RE, Clavin AM, Milhous WK. Gametocytocidal sporontocidal activity of antimalarials against Plasmodium berghei ANAKA in ICR mice and Anopheles stephensi mosquitoes. Am J Trop Med Hyg. 1992;46(2):169–182. doi: 10.4269/ajtmh.1992.46.169
- Musset L, Pradines B, Parzy D, et al. Apparent absence of atovaquone/proguanil resistance in 477 Plasmodium falciparum isolates from untreated French travellers. J Antimicrob Chemother. 2006;57(1):110–115. doi: 10.1093/jac/dki420 EDN: IQQIGP
- Kate L, Gokarna V, Borhade V, et al. Bioavailability enhancement of atovaquone using hot melt extrusion technology. Eur J Pharm Sci. 2016;86:103–114. doi: 10.1016/j.ejps.2016.03.005
- Hitani A, Nakamura T, Ohtomo H, et al. Efficacy and safety of atovaquone-proguanil compared with mefloquine in the treatment of nonimmune patients with uncomplicated P. falciparum malaria in Japan. J Infect Chemother. 2006;12(5):277–282. doi: 10.1007/s10156-006-0465-8
- Vaidya AB. Atovaquone-Proguanil Combination. In: Antimalarial Chemotherapy. Springer; 2001:203–218. doi: 10.1007/978-1-59259-111-4_11
- Van der Merwe AJ. Development and evaluation of an oral fixed-dose triple combination dosage form for artesunate, dapsone and proguanil. Boloka Institutional Repository, North-West University; 2011.
- Pava Z, Mok S, Collins KA, et al. Plasmodium falciparum artemisinin-resistant K13 mutations confer a sexual-stage transmission advantage that can be overcome with atovaquone-proguanil. medRxiv. 2020. doi: 10.1101/2020.10.26.20214619
- Taylor R, Moody R, Ochekpe N, et al. A chemical stability study of proguanil hydrochloride. Int J Pharm. 1990;60:185–190. doi: 10.1016/0378-5173(90)90071-B
- Rodriguez W, Selen A, Avant D, et al. Improving pediatric dosing through pediatric initiatives: what we have learned. Pediatrics. 2008;121(3):530–539. doi: 10.1542/peds.2007-1529
- Mounkoro P, Michel T, Meunier B. Revisiting the mode of action of the antimalarial proguanil using the yeast model. Biochem Biophys Res Commun. 2021;534:94–98. doi: 10.1016/j.bbrc.2020.12.004 EDN: WEOBXQ
- Lakshmana RA, Prasanthi T, Thunnisa F. Development and validation for simultaneous estimation of proguanil and atovaquone by using RP-HPLC. Int J Anal Tech. 2018;3(2):1–10. doi: 10.15226/2577-7831/4/1/00113
- Bejugam N, Dengale SJ, Shetty R, et al. New liquid chromatographic method for simultaneous quantification of atovaquone and proguanil with its active metabolite cycloguanil in human plasma. Int J Pharm Educ Res. 2014;48(suppl):83–92. doi: 10.5530/ijper.48.4s.11
- Darade A, Pathak S, Sharma S, et al. Atovaquone oral bioavailability enhancement using electrospraying technology. Eur J Pharm Sci. 2018;111:195–204. doi: 10.1016/j.ejps.2017.09.051
- Hoellein L, Holzgrabe U. Development of simplified HPLC methods for the detection of counterfeit antimalarials in resource-restraint environments. J Pharm Biomed Anal. 2014;98:434–445. doi: 10.1016/j.jpba.2014.06.013
- Wu D, Qiao K, Feng M, et al. Apoptosis of Acanthamoeba castellanii trophozoites induced by oleic acid. J Eukaryot Microbiol. 2018;65(2):191–199. doi: 10.1186/s13071-018-3188-7 EDN: YGDXJR
- Liu F, Liu Q, Yu C, et al. An MFS-domain protein Pb115 plays a critical role in gamete fertilization of the malaria parasite Plasmodium berghei. Front Microbiol. 2019;10:2193. doi: 10.3389/fmicb.2019.02193
- Rosenthal PJ. Antimalarial drug discovery: old and new approaches. J Exp Biol. 2003;206 (Pt 21):3735–3744. doi: 10.1242/jeb.00589
- Biot C, Chibale K. Novel approaches to antimalarial drug discovery. Infect Disord Drug Targets. 2006;6(2):173–204. doi: 10.2174/187152606784112155 EDN: XUELIV
- Kirk K, Lehane AM. Membrane transport in the malaria parasite and its host erythrocyte. Biochem J. 2014;457(1):1–18. doi: 10.1042/BJ20131007
- Sucher NJ. The application of Chinese medicine to novel drug discovery. Expert Opin Drug Discov. 2013;8(1):21–34. doi: 10.1517/17460441.2013.739602
- Kanaani J, Ginsburg H. Metabolic interconnection between the human malarial parasite Plasmodium falciparum and its host erythrocyte: regulation of ATP levels by means of an adenylate translocator and adenylate kinase. J Biol Chem. 1989;264(6):3194–3199. doi: 10.1016/S0021-9258(18)94050-0
- Preuss J, Jortzik E, Becker K. Glucose-6-phosphate metabolism in Plasmodium falciparum. IUBMB Life. 2012;64(7):603–611. doi: 10.1002/iub.1047
- Mubaraki M. Pharmacometabolomic study of the human malaria parasite, Plasmodium falciparum: new insights into parasite biology and mode of drug action. University of Liverpool, 2013.
- Jackson KE, Habib S, Frugier M, et al. Protein translation in Plasmodium parasites. Trends Parasitol. 2011;27(10):467–476. doi: 10.1016/j.pt.2011.05.005 EDN: PIRXDX
- Wong W, Bai XC, Brown A, et al. Cryo-EM structure of the Plasmodium falciparum 80S ribosome bound to the anti-protozoan drug emetine. eLife. 2014;3: e03080. doi: 10.7554/eLife.03080 EDN: UQYDBP
- Bell A, Ranford-Cartwright L. A real-time PCR assay for quantifying Plasmodium falciparum infections in the mosquito vector. Int J Parasitol. 2004;34(7):795–802. doi: 10.1016/j.ijpara.2004.03.008
- Sidhu ABS, Sun Q, Nkrumah LJ, et al. In vitro efficacy, resistance selection, and structural modeling studies implicate the malarial parasite apicoplast as the target of azithromycin. J Biol Chem. 2007;282(4):2494–2504. doi: 10.1074/jbc.M608615200
- Markota A, Kalamar Ž, Fluher J, et al. Therapeutic hyperthermia for the treatment of infection — a narrative review. Front Physiol. 2023;14:1215686. doi: 10.3389/fphys.2023.1215686 EDN: JITCWX
- Young PJ, Bellomo R. Fever in sepsis: is it cool to be hot? Crit Care. 2014;18(1):109. doi: 10.1186/cc13726 EDN: SODYVN
- Rumbus Z, Matics R, Hegyi P, et al. Fever is associated with reduced, hypothermia with increased mortality in septic patients: a meta-analysis of clinical trials. PLoS One. 2017;12(1):e0170152. doi: 10.1371/journal.pone.0170152 EDN: YWURQF
- Young PJ, Saxena M. Fever management in intensive care patients with infections. Crit Care. 2014;18(2):206. doi: 10.1186/cc13773 EDN: VRCXAR
- Urakov A. How temperature pharmacology was formed: history in personalities. J Drug Deliv Ther. 2020;10(S4):226–231. doi: 10.22270/jddt.v10i4-s.4208 EDN: ESAOFR
- Urakov AL. Thermal pharmacology: history and definition. Reviews on Clinical Pharmacology and Drug Therapy. 2021;19(1):87–96. doi: 10.17816/RCF19187-96 EDN: YIGBEQ
- Urakov A, Urakova N. Targeted temperature management in obstetrics for prevention perinatal encephalopathy. Turk J Med Sci. 2024;54(4):876–877. doi: 10.55730/1300-0144.5859 EDN: TYUCKG
- Urakova N, Urakov A, Shabanov P. Pharmacological activities of warm alkaline hydrogen peroxide solution and therapeutic potential in medicine: physical-chemical reprofiling as a promising lead for drug discovery. Anti-Infective Agents. 2024;23. doi: 10.2174/0122113525351536241122063840 EDN: ETDHHL
