Возможности применения искусственного интеллекта при математическом моделировании коронарного кровотока
- Авторы: Породиков А.А.1, Биянов А.Н.1, Арутюнян В.Б.1, Азимов Ф.Ф.1, Барулина М.А.2, Иванов Я.Н.2
-
Учреждения:
- Федеральный центр сердечно-сосудистой хирургии имени С.Г. Суханова
- Пермский государственный национальный исследовательский университет
- Выпуск: Том 42, № 4 (2025)
- Страницы: 41-54
- Раздел: Обзор литературы
- URL: https://ogarev-online.ru/PMJ/article/view/312915
- DOI: https://doi.org/10.17816/pmj42441-54
- ID: 312915
Цитировать
Полный текст
Аннотация
Сердечно-сосудистые заболевания (ССЗ) являются ведущей причиной смертности и инвалидности во всем мире. Только в 2021 г. на ССЗ пришлось более 20 млн летальных исходов, что составляет примерно треть всех смертей в мире. Важным фактором, влияющим на уровень смертности от сердечно-сосудистых заболеваний, являются диагностические и терапевтические стратегии, используемые для лечения ишемической болезни сердца. Инвестиции в эту область за последние 25 лет привели к снижению уровня смертности от сердечно-сосудистых заболеваний в странах с высоким социально-демографическим индексом. Точная диагностика является первым шагом к выбору подходящего метода лечения.
Изучены данные литературы о возможности применения искусственного интеллекта и математического моделирования медицинских исследований, в частности коронароангиографии, для анализа и создания компьютерных программ по моделированию сердечно-сосудистых и эндоваскулярных оперативных вмешательств.
Осуществлен поиск отечественной и зарубежной литературы в поисковиках «Яндекс» и Googl, PUB.MED по ключевым словам: «коронароангиография», «искусственный интеллект», «математическое моделирование», «фракционный резерв кровотока», «3D-моделирование», «ишемическая болезнь сердца», «чрескожное коронарное вмешательство».
Практическое применение ИИ для создания математических моделей позволит реконструировать 3D-картины коронарных артерий, моделирование кровотока, что значительно оптимизирует лечение ишемической болезни сердца. Благодаря этому удастся эффективно планировать эндоваскулярные вмешательства в отсутствии самого пациента по его данным. Дальнейшее изучение этого вопроса сулит огромные перспективы для развития математического моделирования коронарного кровотока, принятия эффективных решений при проведении интервенционных вмешательств, что позволит уменьшить заболеваемость и смертность от сердечно-сосудистых заболеваний.
Полный текст
Открыть статью на сайте журналаОб авторах
А. А. Породиков
Федеральный центр сердечно-сосудистой хирургии имени С.Г. Суханова
Email: faridun.azimov.98@list.ru
ORCID iD: 0000-0003-3624-3226
кандидат медицинских наук, сердечно-сосудистый хирург
Россия, г. ПермьА. Н. Биянов
Федеральный центр сердечно-сосудистой хирургии имени С.Г. Суханова
Email: faridun.azimov.98@list.ru
ORCID iD: 0000-0002-9314-3558
кандидат медицинских наук, детский кардиолог
Россия, г. ПермьВ. Б. Арутюнян
Федеральный центр сердечно-сосудистой хирургии имени С.Г. Суханова
Email: faridun.azimov.98@list.ru
ORCID iD: 0000-0002-1730-9050
кандидат медицинских наук, сердечно-сосудистый хирург
Россия, г. ПермьФ. Ф. Азимов
Федеральный центр сердечно-сосудистой хирургии имени С.Г. Суханова
Автор, ответственный за переписку.
Email: faridun.azimov.98@list.ru
ORCID iD: 0009-0006-3286-6951
врач-стажер
Россия, г. ПермьМ. А. Барулина
Пермский государственный национальный исследовательский университет
Email: faridun.azimov.98@list.ru
ORCID iD: 0000-0003-3867-648X
доктор физико-математических наук, директор Физико-математического института
Россия, г. ПермьЯ. Н. Иванов
Пермский государственный национальный исследовательский университет
Email: faridun.azimov.98@list.ru
ORCID iD: 0000-0003-3974-9011
магистр Физико-математического института
Россия, г. ПермьСписок литературы
- Dornquast C., Kroll L.E., Neuhauser H.K., Willich S.N., Reinhold T., Busch M.A. Regional differences in the prevalence of cardiovascular disease. Dtsch Arztebl Int 2016; 113 (42): 704–11. doi: 10.3238/arztebl.2016.0704 PMID: 27866565
- Mensah G.A., Roth G.A., Fuster V. The global burden of cardiovascular diseases and risk factors: 2020 and beyond. J Am College. Cardiol. 2019; 74 (20): 2529–2532. doi: 10.1016/j.jacc.2019.10.009
- Roth G.A., Johnson C., Abajobir A. et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll. Cardiol. 2017; 70 (1): 1–25. doi: 10.1016/j.jacc.2017.04.052
- Townsend N., Wilson L., Bhatnagar P., Wickramasinghe K., Rayner M., Nichols M. Cardiovascular disease in Europe: Epidemiological update 2016. Eur Heart J 2016; 37 (42): 3232–45. doi: 10.1093/eurheartj/ehw334 PMID: 27523477
- Joseph P., Leong D., McKee M. et al. Reducing the global burden of cardiovascular disease, part 1: The epidemiology and risk factors. Circ Res 2017; 121 (6): 677–94. doi: 10.1161/CIRCRESAHA. 117.308903 PMID: 28860318
- Bonaca M.P., Wiviott S.D., Braunwald E. et al. American college of cardiology/American heart association/European society of cardiology/world heart federation universal definition of myocardial infarction classification system and the risk of cardiovascular death: Observations from the triton-timi 38 trial (trial to assess improvement in therapeutic outcomes by optimizing platelet inhibition with prasugrel-thrombolysis in myocardial infarction 38). Circulation 2012; 125 (4): 577–83. doi: 10.1161/CIRCULATIONAHA.111.041160 PMID: 22199016
- Di Carli M.F., Hachamovitch R. New technology for noninvasive evaluation of coronary artery disease. Circulation 2007; 115 (11): 1464–80. doi: 10.1161/CIRCULATIONAHA.106.629808 PMID: 17372188
- Collet C., Onuma Y., Sonck J. et al. Diagnostic performance of angiography-derived fractional flow reserve: A systematic review and Bayesian meta-analysis. Eur Heart J 2018; 39 (35): 3314–21. doi: 10.1093/eurheartj/ehy445 PMID: 30137305
- Collet C., Onuma Y., Sonck J. et al. Diagnostic performance of angiography-derived fractional flow reserve: A systematic review and Bayesian meta-analysis. Eur Heart J 2018; 39 (35): 3314–21. doi: 10.1093/eurheartj/ehy445 PMID: 30137305
- Liu X., Wang Y., Zhang H. et al. Evaluation of fractional flow reserve in patients with stable angina: Can CT compete with angiography? Eur Radiol 2019; 29 (7): 3669–77. doi: 10.1007/s00330-019-06023-z PMID: 30887203
- Ryan T.J. The coronary angiogram and its seminal contributions to cardiovascular medicine over five decades. Circulation 2002; 106 (6): 752–6. doi: 10.1161/01.CIR.0000024109.12658.D4 PMID: 12163439
- Wang K.T., Chen C.Y., Chen Y.T. et al. Improving success rates of percutaneous coronary intervention for chronic total occlusion at arural Hospital in East Taiwan. Int J Gerontol 2014; 8 (3): 157–61. doi: 10.1016/j.ijge.2013.12.004
- Sondagur A.R., Wang H., Cao Y., Lin S., Li X. Success rate and safety of coronary angiography and angioplasty via radial artery approachamong a Chinese population. J Invasive Cardiol 2014; 26 (6): 273–5. PMID: 24907084
- Nikolakopoulos I., Vemmou E., Karacsonyi J. et al. Latest developments in chronic total occlusion percutaneous coronary intervention. Expert Rev Cardiovasc Ther 2020; 15 (7): 415–26. doi: 10.1080/14779072.2020.1787153 PMID: 32594784
- Lee S.H., Cho J.Y., Kim J.S. et al. A comparison of procedural success rate and long-term clinical outcomes between in-stent restenosis chronic total occlusion and de novo chronic total occlusion using multicenter registry data. Clin Res Cardiol 2020; 109 (5): 628–37. doi: 10.1007/s00392-019-01550-7 PMID: 31552494
- Kosyakovsky L.B., Austin P.C., Ross H.J. et al. Early invasive coronary angiography and acute ischaemic heart failure outcomes. Eur Heart J 2021; 42 (36): 3756–66. doi: 10.1093/eurheartj/ehab423 PMID: 34331056
- Nerlekar N., Ha F.J., Verma K.P. et al. Percutaneous coronary intervention using drug-eluting stents versus coronary artery bypass grafting for unprotected left main coronary artery stenosis: A metaanalysis of randomized trials. Circ Cardiovasc Interv. 2016; 9 (12): e004729. doi: 10.1161/CIRCINTERVENTIONS.116.004729 PMID: 27899408
- Gao L., Liu Y., Sun Z., Wang Y., Cao F., Chen Y. Percutaneous coronary intervention using drug-eluting stents versus coronary artery bypass graft surgery in left main coronary artery disease an updated meta-analysis of randomized clinical trials. Oncotarget 2017; 8 (39): 66449–57. doi: 10.18632/oncotarget.20142 PMID: 29029526
- Thuijs D.J.F.M., Kappetein A.P., Serruys P.W. et al. Percutaneous coronary intervention versus coronary artery bypass grafting in patients with three-vessel or left main coronary artery disease: 10-year follow-up of the multicentre randomised controlled SYNTAX trial. Lancet 2019; 394 (10206): 1325–34. doi: 10.1016/S0140-6736(19)31997-X PMID: 31488373
- Spadaccio C., Benedetto U. Coronary Artery Bypass Grafting (CABG) vs. Percutaneous Coronary Intervention (PCI) in the treatment of multivessel coronary disease: quo vadis–a review of the evidences on coronary artery disease. Ann Cardiothorac Surg. 2018; 7 (4): 506–15. doi: 10.21037/acs.2018.05.17 PMID: 30094215
- Baykan A.O., Gür M., Acele A. et al. Predictors of successful percutaneous coronary intervention in chronic total coronary occlusions. Postepy Kardiol Interwencyjnej 2016; 1 (1): 17–24. doi: 10.5114/pwki.2016.56945 PMID: 26966445
- Cimen S., Gooya A., Grass M., Frangi A. Reconstruction of coronary arteries from X-ray angiography: A review. Medical Image Analysis 2016; 32. doi: 10.1016/j.media.2016.02.007
- Vukicevic A.M., Çimen S., Jagic N. et al. Three-dimensional reconstruction and NURBS-based structured meshing of coronary arteries from the conventional X-ray angiography projection images. Sci Rep 2018; 8: 1711. doi: 10.1038/s41598-018-19440-9
- Kass M., Witkin A., Terzopoulos D. Snakes: Active contour models. Int. J. Comput. Vis. 1988; 1 (4): 321–331. doi: 10.1007/bf00133570
- Xu C., Prince J.L. Generalized gradient vector flow external forces for active contours. Signal Process. 1998; 71: 131–9. doi: 10.1016/S0165-1684(98)00140-6
- Bappy D.M., Hong A., Choi E., Park J.-O., Kim C.-S. Automated three-dimensional vessel reconstruction based on deep segmentation and bi-plane angiographic projections. Comput. Med. Imaging Graph. 2021; 92: 101956. doi: 10.1016/j.compmedimag.2021.101956
- Iyer K., Nallamothu B.K., Figueroa C.A. et al. A multi-stage neural network approach for coronary 3D reconstruction from uncalibrated X-ray angiography images. Sci Rep 2023; 13: 17603. doi: 10.1038/s41598-023-44633-2
- Wang Y., Banerjee A., Choudhury R., Grau V. (). Deep Learning-based 3D Coronary Tree Reconstruction from Two 2D Non-simultaneous X-ray. Angiography Projections 2024; 07. doi: 10.48550/arXiv.2407.14616
- 29.Gruntzig A.R., Senning A., Siegenthaler W.E. Nonoperative dilatation of coronary- artery stenosis: percutaneous transluminal coronary angioplasty. N Engl J Med. 1979; 301: 61–68. doi: 10.1056/nejm197907123010201
- Fearon W.F., Nishi T., De Bruyne B. et al. Clinical outcomes and cost-effectiveness of fractional flow Reserve-guided percutaneous coronary intervention in patients with stable coronary artery disease: three-year follow-up of the FAME 2 trial (fractional flow Reserve versus angiography for multivessel evaluation). Circulation 2018; 137: 480–487. doi: 10.1161/circulationaha.117.031907
- Tonino P.A., De Bruyne B., Pijls N.H. et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med. 2009; 360: 213–224. doi: 10.1056/NEJMoa0807611
- Knuuti J., Wijns W., Saraste A. et al. ESC guidelines for the diagnosis and management of chronic coronary syndromes: the task force for the diagnosis and management of chronic coronary syndromes of the European Society of Cardiology (ESC). Eur Heart J. 2019; 2019. doi: 10.1093/eurheartj/ehz425
- Gulati M., Levy P.D., Mukherjee D. et al. 2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/ SCMR guideline for the evaluation and diagnosis of CHEST pain: executive summary: a report of the American College of Cardiology / American Heart Association joint committee on clinical practice guidelines. J Am Coll Cardiol. 2021; 78: 2218–2261. doi: 10.1016/j.jacc.2021.07.052
- Parikh R.V., Liu G., Plomondon M.E. et al. Utilization and outcomes of measuring fractional flow Reserve in Patients with Stable Ischemic Heart Disease. J Am Coll Cardiol. 2020; 75: 409–419. doi: 10.1016/j.jacc.2019.10.060
- Toth G.G., Toth B., Johnson N.P. et al. Revascularization decisions in patients with stable angina and intermediate lesions: results of the international survey on interventional strategy. Circ Cardiovasc Interv. 2014; 7: 751–759. doi: 10.1161/circinterventions.114.001608
- Meier B., Gruentzig A.R., Goebel N., Pyle R., von Gosslar W., Schlumpf M. Assessment of stenoses in coronary angioplasty. Inter- and intraobserver variability. Int J Cardiol. 1983; 3: 159–169. doi: 10.1016/0167-5273(83)90032-3
- Rutishauser W., Noseda G., Bussmann W.D., Preter B. Blood flow measurement through single coronary arteries by roentgen densitometry. Right coronary artery flow in conscious man. Am J Roentgenol Radium Ther Nucl Med. 1970; 109: 21–24. doi: 10.2214/ajr.109.1.21
- Tu S., Barbato E., K¨oszegi Z. et al. Fractional flow reserve calculation from 3- dimensional quantitative coronary angiography and TIMI frame count: a fast computer model to quantify the functional significance of moderately obstructed coronary arteries. JACC Cardiovasc Interv. 2014; 7: 768–777. doi: 10.1016/j.jcin.2014.03.004 PMID: 25060020
- Schuurbiers J.C., Lopez N.G., Ligthart J., et al. In vivo validation of CAAS QCA-3D coronary reconstruction using fusion of angiography and intravascular ultrasound (ANGUS). Catheter Cardiovasc Interv. 2009; 73: 620–626. doi: 10.1016/j.jcin.2014.03.004
- Migliavacca F., Petrini L., Massarotti P., Schievano S., Auricchio F., Dubini G. Stainless and shape memory alloy coronary stents: a computational study on the interaction with the vascular wall. Biomech. Model. Mechanobiol. 2004; 2: 205–217. doi: 10.1007/s10237-004-0039-6 PMID: 15029511
- Wu W., Wang W., Yang D., Qi M. Stent expansion in curved vessel and their interactions: a finite element analysis J. Biomech. 2007; 40: 2580–2585. doi: 10.1016/j.jbiomech.2006.11.009 PMID: 17198706
- Djukic T., Saveljic I., Pelosi G., Parodi O., Filipovic N. Numerical simulation of stent deployment within patient-specific artery and its validation against clinical data. Comput. Methods Progr. Biomed. 2019; 175: 121–127. doi: 10.1016/j.cmpb.2019.04.005 PMID: 31104701
- Djukic T., Saveljic I., Pelosi G., Parodi O., Filipovic N. A study on the accuracy and efficiency of the improved numerical model for stent implantation using clinical data. Comput. Methods Progr. Biomed. 2021; 207: Article 106196. doi: 10.1016/j.cmpb.2021.106196 PMID: 34091419
Дополнительные файлы
