Молекулярные механизмы лекарственной устойчивости глиобластомы. Часть 1. Белки ABC-семейства и ингибиторы

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Наиболее часто встречаемой высокозлокачественной опухолью головного мозга у взрослого населения является глиобластома. Продолжительность жизни пациентов с данной опухолью не превышает 12–15 мес., при этом в 100 % случаев наблюдаются рецидивы. Одна из главных причин невысокой эффективности терапии глиобластомы — ее множественная лекарственная устойчивость. В развитии последней ключевую роль играют белки-транспортеры ABC-семейства. В данной части акцент сделан на поиске новых молекулярных мишеней среди ростовых факторов, их рецепторов, киназ сигнальной трансдукции, микроРНК, транскрипционных факторов, протоонкогенов и генов-супрессоров опухолей, участвующих в регуляции белков и генов ABC-семейства и связанных с развитием множественной лекарственной устойчивости в клетках глиобластомы. В обзоре также приведены механизмы цитотоксического действия ингибиторов (белки ABC-семейства, тирозинкиназные рецепторы, нерецепторные тирозинкиназы, факторы роста эндотелия сосудов, киназы сигнальных каскадов, транскрипционные факторы, гистоновые деацетилазы, метилтрансферазы, топоизомеразы, репликация и синтез ДНК, микротрубочек и протеасом), применяемые при терапии глиобластомы или находящиеся на стадии клинических испытаний.

Об авторах

Александр Николаевич Чернов

Институт экспериментальной медицины

Автор, ответственный за переписку.
Email: al.chernov@mail.ru
ORCID iD: 0000-0003-2464-7370
Scopus Author ID: 26649406700

научный сотрудник, отдела общей патологии и патологической физиологии 

Россия, 197376, Санкт-Петербург, ул. Академика Павлова, д. 12

Ольга Велерьевна Шамова

Институт экспериментальной медицины; Санкт-Петербургский государственный университет

Email: oshamova@yandex.ru
ORCID iD: 0000-0002-5168-2801
Scopus Author ID: 6603643804
ResearcherId: F-6743-2013

д-р биол. наук, доцент, член-корреспондент РАН, заведующий отделом общей патологии и патологической физиологии

Россия, 197376, Санкт-Петербург, ул. Академика Павлова, д. 12; Санкт-Петербург

Список литературы

  1. Hanif F., Muzaffar K., Perveen K. et al. Glioblastoma multiforme: A review of its epidemiology and pathogenesis through clinical presentation and treatment // Asian Pac. J. Cancer Prev. 2017. Vol. 18, No. 1. P. 3–9. doi: 10.22034/APJCP.2017.18.1.3
  2. Мерабишвили В.М. Онкологическая статистика (традиционные методы, новые информационные технологии). Руководство для врачей. Часть I. Санкт-Петербург: Коста, 2015.
  3. Stupp R., Mason W.P., van den Bent M.J. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma // N. Engl. J. Med. 2005. Vol. 352, No. 10. P. 987–96. doi: 10.1056/NEJMoa043330
  4. Johnson D.R., O’Neill B.P. Glioblastoma survival in the United States before and during the temozolomide era // J. Neurooncol. 2012. Vol. 107, No. 2. P. 359–364. doi: 10.1007/s11060-011-0749-4
  5. Dréan A., Rosenberg S., Lejeune F.X. et al. ATP binding cassette (ABC) transporters: expression and clinical value in glioblastoma // J. Neurooncol. 2018. Vol. 138, No. 3. P. 479–486. doi: 10.1007/s11060-018-2819-3
  6. Демина Е.П., Мирошникова В.В., Шварцман А.Л. Роль АВС-транспортеров А1 и G1 – ключевых белков обратного транспорта холестерина – в развитии атеросклероза // Молекулярная биология. 2016. Т. 50, № 2. С. 223–230. doi: 10.7868/S002689841602004X
  7. Zolnerciks J.K., Andress E.J., Nicolaou M., Linton K.J. Structure of ABC transporters // Essays Biochem. 2011. Vol. 50, No. 1. P. 43–61. doi: 10.1042/bse0500043
  8. Gomez-Zepeda D., Taghi M., Scherrmann J.M. ABC transporters at the blood-brain interfaces, their study models, and drug delivery implications in gliomas // Pharmaceutics. 2019. Vol. 12, No. 1. P. 20. doi: 10.3390/pharmaceutics12010020
  9. Liu X. ABC family transporters // Adv. Exp. Med. Biol. 2019. Vol. 1141. P. 13–100. doi: 10.1007/978-981-13-7647-4_2
  10. Cascorbi I., Haenisch S. Pharmacogenetics of ATP-binding cassette transporters and clinical implications // Methods Mol Biol. 2010;596:95-121. doi: 10.1007/978-1-60761-416-6_6
  11. Bhatia P., Bernier M., Sanghvi M. et al. Breast cancer resistance protein (BCRP/ABCG2) localises to the nucleus in glioblastoma multiforme cells main reasons for the low efficiency of glioblastoma therapy is its multidrug resistance. In the // Xenobiotica. 2012. Vol. 42, No. 8. P. 748–755. doi: 10.3109/00498254.2012.662726
  12. Dean M., Rzhetsky A., Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily // Genome Res. 2001. Vol. 11, No. 7. P. 1156–1166. doi: 10.1101/gr.184901
  13. Hientz K., Mohr A., Bhakta-Guha D., Efferth T. The role of p53 in cancer drug resistance and targeted chemotherapy // Oncotarget. 2017. Vol. 8, No. 5. P. 8921–8946. doi: 10.18632/oncotarget.13475
  14. Zhang P., de Gooijer M.C., Buil L.C.M. et al. ABCB1 and ABCG2 restrict the brain penetration of a panel of novel EZH2-Inhibitors // Int. J. Cancer. 2015. Vol. 137, No. 8. P. 2007–2018. doi: 10.1002/ijc.29566
  15. Colardo M., Segatto M., Di Bartolomeo S. Targeting RTK-PI3K-mTOR axis in gliomas: an update // Int. J. Mol. Sci. 2021. Vol. 22, No. 9. P. 4899. doi: 10.3390/ijms22094899
  16. Latour M., Her N.-G., Kesari S., Nurmemmedov E. WNT Signaling as a therapeutic target for glioblastoma // Int. J. Mol. Sci. 2021. Vol. 22, No. 16. P. 8428. doi: 10.3390/ijms22168428
  17. Healy F.M., Prior I.A., MacEwan D.J. The importance of Ras in drug resistance in cancer // Br. J. Pharmacol. 2021. doi: 10.1111/bph.15420
  18. Avci N.G., Ebrahimzadeh-Pustchi S., Akay Y.M. et al. NF-κB inhibitor with Temozolomide results in significant apoptosis in glioblastoma via the NF-κB(p65) and actin cytoskeleton regulatory pathways // Sci. Rep. 2020. Vol. 10, No. 1. P. 13352. doi: 10.1038/s41598-020-70392-5
  19. Xu P., Zhang G., Hou S., Sha L.G. MAPK8 mediates resistance to temozolomide and apoptosis of glioblastoma cells through MAPK signaling pathway // Biomed. Pharmacother. 2018. Vol. 106. P. 1419–1427. doi: 10.1016/j.biopha.2018.06.084
  20. Chen X., Hao A., Li X. et al. Activation of JNK and p38 MAPK mediated by ZDHHC17 drives glioblastoma multiforme development and malignant progression // Theranostics. 2020. Vol. 10, No. 3. P. 998–1015. doi: 10.7150/thno.40076
  21. Lin S.P., Lee Y.T., Wang J.Y. et al. Survival of cancer stem cells under hypoxia and serum depletion via decrease in PP2A activity and activation of p38-MAPKAPK2-Hsp27 // PLoS One. 2012. Vol. 7, No. 11. P. e49605. doi: 10.1371/journal.pone.0049605
  22. Ouédraogo Z.G., Biau J., Kemeny J.-L. et al. Role of STAT3 in genesis and progression of human malignant gliomas // Mol. Neurobiol. 2017. Vol. 54, No. 8. P. 5780–5797. doi: 10.1007/s12035-016-0103-0
  23. Aroui S., Dardevet L., Najlaoui F. et al. PTEN-regulated AKT/FoxO3a/Bim signaling contributes to Human cell glioblastoma apoptosis by platinum-maurocalcin conjugate // Int. J. Biochem. Cell. Biol. 2016. Vol. 77, No. Pt A. P. 15–22. doi: 10.1016/j.biocel.2016.05.013
  24. Medarova Z., Pantazopoulos P., Yoo B. Screening of potential miRNA therapeutics for the prevention of multi-drug resistance in cancer cells// Sci. Rep. 2020. Vol. 10, No. 1. P. 1970. doi: 10.1038/s41598-020-58919-2
  25. Zhang H.D., Jiang L.H., Sun D.W. et al. The role of miR-130a in cancer // Breast Cancer. 2017. Vol. 24, No. 4. P. 521–527. doi: 10.1007/s12282-017-0776-x
  26. Sui H., Cai G.X., Pan S.F. et al. miR200c attenuates P-gp-mediated MDR and metastasis by targeting JNK2/c-Jun signaling pathway in colorectal cancer // Mol Cancer Ther. 2014. Vol. 13, No. 12. P. 3137–3151. doi: 10.1158/1535-7163.MCT-14-0167
  27. Li Z., Zhang J., Zheng H. et al. Modulating lncRNA SNHG15/CDK6/miR-627 circuit by palbociclib, overcomes temozolomide resistance and reduces M2-polarization of glioma associated microglia in glioblastoma multiforme // J. Exp. Clin. Cancer Res. 2019. Vol. 38, No. 1. P. 380. doi: 10.1186/s13046-019-1371-0
  28. Tursynbay Y., Zhang J., Li Z. et al. Pim-1 kinase as cancer drug target: An update // Biomed. Rep. 2016. Vol. 4, No. 2. P. 140–146. doi: 10.3892/br.2015.561
  29. Katayama K., Noguchi K., Sugimoto Y. Regulations of P-Glycoprotein/ABCB1/MDR1 in human cancer cells // N. J. Sci. 2014. No. 2. P. 1–10. doi: 10.1155/2014/476974
  30. Oberstadt M.C., Bien-Möller S., Weitmann K. et al. Epigenetic modulation of the drug resistance genes MGMT, ABCB1 and ABCG2 in glioblastoma multiforme // BMC Cancer. 2013. Vol. 13. P. 617. doi: 10.1186/1471-2407-13-617
  31. Liu B., Guo Z., Dong H. et al. LRIG1, human EGFR inhibitor, reverses multidrug resistance through modulation of ABCB1 and ABCG2 // Brain Res. 2015. Vol. 1611. P. 93–100. doi: 10.1016/j.brainres.2015.03.023
  32. Xi G., Best B., Mania-Farnell B. et al. therapeutic potential for bone morphogenetic protein 4 in human malignant glioma. Neoplasia. 2017. Vol. 19, No. 4. P. 261–270. doi: 10.1016/j.neo.2017.01.006
  33. Zhang X., Ding K., Wang J. et al. Chemoresistance caused by the microenvironment of glioblastoma and the corresponding solutions // Biomed. Pharmacother. 2019. Vol. 109. P. 39–46. doi: 10.1016/j.biopha.2018.10.063
  34. Said H.M., Hagemann C., Carta F. et al. Hypoxia induced CA9 inhibitory targeting by two different sulfonamide derivatives including acetazolamide in human glioblastoma // Bioorg. Med. Chem. 2013. Vol. 21, No. 13. P. 3949–3957. doi: 10.1016/j.bmc.2013.03.068
  35. Pölönen P., Jawahar Deen A., Leinonen H.M. et al. Nrf2 and SQSTM1/p62 jointly contribute to mesenchymal transition and invasion in glioblastoma // Oncogene. 2019. Vol. 38, No. 50. P. 7473–7490. doi: 10.1038/s41388-019-0956-6
  36. Zhang L., Yang H., Zhang W. et al. Clk1-regulated aerobic glycolysis is involved in gliomas chemoresistance // J. Neurochem. 2017;142(4):574-588. doi: 10.1111/jnc.14096
  37. Tivnan A., Zakaria Z., O’Leary C. et al. Inhibition of multidrug resistance protein 1 (MRP1) improves chemotherapy drug response in primary and recurrent glioblastoma multiforme // Front. Neurosci. 2015. Vol. 9. P. 218. doi: 10.3389/fnins.2015.00218
  38. Begicevic R.-R., Falasca M. ABC transporters in cancer stem cells: beyond chemoresistance // Int. J. Mol. Sci. 2017. Vol. 18, No. 11. P. 2362. doi: 10.3390/ijms18112362
  39. Johnson Z.L., Chen J. Structural basis of substrate recognition by the multidrug resistance protein MRP1 // Cell. 2017. Vol. 168, No. 6. P. 1075–1085.e9. doi: 10.1016/j.cell.2017.01.041
  40. Zhang Y.K., Wang Y.J., Gupta P., Chen Z.S. Multidrug resistance proteins (MRPs) and cancer therapy // AAPS J. 2015. Vol. 17, No. 4. P. 802–812. doi: 10.1208/s12248-015-9757-1
  41. Pattabiraman P.P., Pecen P.E., Rao P.V. MRP4-mediated regulation of intracellular cAMP and cGMP levels in trabecular meshwork cells and homeostasis of intraocular pressure // Invest. Ophthalmol. Vis. Sci. 2013. Vol. 54, No. 3. P. 1636–1649. doi: 10.1167/iovs.12-11107
  42. Mao X., He Z, Zhou F.et al. Prognostic significance and molecular mechanisms of adenosine triphosphate-binding cassette subfamily C members in gastric cancer // Medicine (Baltimore). 2019. Vol. 98, No. 50. P. e18347. doi: 10.1097/MD.0000000000018347
  43. Bhuvanalakshmi G., Arfuso F., Millward M. et al. Secreted frizzled-related protein 4 inhibits glioma stem-like cells by reversing epithelial to mesenchymal transition, inducing apoptosis and decreasing cancer stem cell properties // PLoS One. 2015. Vol. 10, No. 6. P. e0127517. doi: 10.1371/journal.pone.0127517
  44. Kosalai S.T., Abdelrazak Morsy M.H., Papakonstantinou N. et al. EZH2 upregulates the PI3K/AKT pathway through IGF1R and MYC in clinically aggressive chronic lymphocytic leukaemia // Epigenetics. 2019. Vol. 14, No. 11. P. 1125–1140. doi: 10.1080/15592294.2019.1633867
  45. Navarro L., Gil-Benso R., Megías J. et al. Alteration of major vault protein in human glioblastoma and its relation with EGFR and PTEN status // Neuroscience. 2015. Vol. 297. P. 243–251. doi: 10.1016/j.neuroscience.2015.04.005
  46. Guo G., Narayan R.N., Horton L. et al. The Role of EGFR-Met interactions in the pathogenesis of glioblastoma and resistance to treatment // Curr. Cancer Drug. Targets. 2017. Vol. 17, No. 3. P. 297–302. doi: 10.2174/1568009616666161215162515
  47. Kudinov A.E., Karanicolas J., Golemis E.A., Boumber Y. Musashi RNA-binding proteins as cancer drivers and novel therapeutic targets. Clin. Cancer Res. 2017. Vol. 23, No. 9. P. 2143–2153. doi: 10.1158/1078-0432.CCR-16-2728
  48. Shahi M.H., Farheen S., Mariyath M.P., Castresana J.S. Potential role of Shh-Gli1-BMI1 signaling pathway nexus in glioma chemoresistance // Tumour. Biol. 2016. Vol. 37, No. 11. P. 15107–15114. doi: 10.1007/s13277-016-5365-7
  49. Rama A.R., Alvarez P.J., Madeddu R., Aranega A. ABC transporters as differentiation markers in glioblastoma cells // Mol. Biol. Rep. 2014. Vol. 41, No. 8. P. 4847–4851. doi: 10.1007/s11033-014-3423-z
  50. Uribe D., Torres Á., Rocha J.D. et al. Multidrug resistance in glioblastoma stem-like cells: Role of the hypoxic microenvironment and adenosine signaling // Mol. Aspects Med. 2017. Vol. 55. P. 140–151. doi: 10.1016/j.mam.2017.01.009
  51. Navarro-Quiles C., Mateo-Bonmatí E., Micol J.L. ABCE proteins: from molecules to development // Front. Plant. Sci. 2018. Vol. 9. P. 1125. doi: 10.3389/fpls.2018.01125
  52. Chen L., Shi L., Wang W., Zhou Y. ABCG2 downregulation in glioma stem cells enhances the therapeutic efficacy of demethoxycurcumin // Oncotarget. 2017. Vol. 8, No. 26. P. 43237–43247. doi: 10.18632/oncotarget.18018
  53. Nakanishi T., Ross D. Breast cancer resistance protein (BCRP/ABCG2): its role in multidrug resistance and regulation of its gene expression // Chin. J. Cancer. 2012. Vol. 31, No. 2. P. 73–99. doi: 10.5732/cjc.011.10320
  54. Goncalves J., Bicker J., Alves G. et al. Relevance of breast cancer resistance protein to brain distribution and central acting drugs: A pharmacokinetic perspective // Curr. Drug. Metab. 2018. Vol. 19, No. 12. P. 1021–1041. doi: 10.2174/1389200219666180629121033
  55. Shi L., Wang Z., Sun G. et al. miR-145 inhibits migration and invasion of glioma stem cells by targeting ABCG2 // Neuromolecular. Med. 2014. Vol. 16, No. 2. P. 517–528. doi: 10.1007/s12017-014-8305-y
  56. Tian S., Yong M., Zhu J. et al. Enhancement of the effect of Methyl Pyropheophorbide-a-Mediated photodynamic therapy was achieved by increasing ROS through Inhibition of Nrf2-HO-1 or Nrf2-ABCG2 signaling // Anticancer Agents Med. Chem. 2017. Vol. 17, No. 13. P. 1824–1836. doi: 10.2174/1871520617666170327145857
  57. Agarwal S., Hartz A.M.S., Elmquist W.F., Bauer B. Breast cancer resistance protein and P-glycoprotein in brain cancer: Two gatekeepers team up // Curr. Pharm. Des. 2011. Vol. 17, No. 26. P. 2793–2802. doi: 10.2174/138161211797440186
  58. Martin V., Xu J., Pabbisetty S.K. et al. Tie2-mediated multidrug resistance in malignant gliomas is associated with upregulation of ABC transporters // Oncogene. 2009. Vol. 28, No. 24. P. 2358–2363. doi: 10.1038/onc.2009.103
  59. Jin Y., Bin Z.Q., Qiang H. et al. ABCG2 is related with the grade of glioma and resistance to mitoxantone, a chemotherapeutic drug for glioma // J. Cancer Res. Clin. Oncol. 2009; Vol. 135. No. 10. P. 1369–1376. doi: 10.1007/s00432-009-0578-4
  60. Wijaya J., Fukuda Y., Schuetz J.D. Obstacles to brain tumor therapy: Key ABC transporters // Int. J. Mol. Sci. 2017. Vol. 18, No. 12. P. 2544. doi: 10.3390/ijms18122544
  61. Reardon D.A., Conrad C.A., Cloughesy T. et al. Phase I study of AEE788, a novel multitarget inhibitor of ErbB- and VEGF-receptor-family tyrosine kinases, in recurrent glioblastoma patients. Cancer Chemother. Pharmacol. 2012. Vol. 69, No. 6. P. 1507–1518. doi: 10.1007/s00280-012-1854-6
  62. Nayak L., de Groot J., Wefel J.S. et al. Phase I trial of aflibercept (VEGF trap) with radiation therapy and concomitant and adjuvant temozolomide in patients with high-grade gliomas // J. Neurooncol. 2017. Vol. 132, No. 1. P. 181–188. doi: 10.1007/s11060-016-2357-9
  63. Herrlinger U., Schäfer N., Steinbach J.P. et al. bevacizumab plus irinotecan versus temozolomide in newly diagnosed O6-Methylguanine-DNA methyltransferase nonmethylated glioblastoma: The Randomized GLARIUS Trial // J. Clin. Oncol. 2016. Vol. 34, No. 14. P. 1611–1619. doi: 10.1200/JCO.2015.63.4691
  64. Lu-Emerson C., Duda D.G., Emblem K.E. et al. Lessons from anti-vascular endothelial growth factor and anti-vascular endothelial growth factor receptor trials in patients with glioblastoma // J. Clin. Oncol. 2015. Vol. 33, No. 10. P. 1197–1213. doi: 10.1200/JCO.2014.55.9575
  65. Chheda M.G., Wen P.Y., Hochberg F.H. et al. Vandetanib plus sirolimus in adults with recurrent glioblastoma: results of a phase I and dose expansion cohort study // J. Neurooncol. 2015. Vol. 121, No. 3. P. 627–634. doi: 10.1007/s11060-014-1680-2
  66. Pearson J., Regad T. Targeting cellular pathways in glioblastoma multiforme // Sig. Transduct. Target Ther. 2017. Vol. 2. P. 17040. doi: 10.1038/sigtrans.2017.40
  67. Arif S.H., Pandith A.A., Tabasum R. et al. Significant effect of anti-tyrosine kinase inhibitor (gefitinib) on overall survival of the glioblastoma multiforme patients in the backdrop of mutational status of epidermal growth factor receptor and PTEN genes // Asian J. Neurosurg. 2018. Vol. 13, No. 1. P. 46–52. doi: 10.4103/ajns.AJNS_95_17
  68. Molife L.R., Dean E.J., Blanco-Codesido M. et al. A phase I, dose-escalation study of the multitargeted receptor tyrosine kinase inhibitor, golvatinib, in patients with advanced solid tumors // Clin. Cancer Res. 2014. Vol. 20, No. 24. P. 6284–6294. doi: 10.1158/1078-0432.CCR-14-0409
  69. Padovan M., Eoli M., Pellerino A. et al. Depatuxizumab mafodotin (Depatux-M) plus temozolomide in recurrent glioblastoma patients: Real-World experience from a multicenter study of Italian Association of Neuro-Oncology (AINO) // Cancers (Basel). 2021. Vol. 13, No. 11. P. 2773. doi: 10.3390/cancers13112773
  70. Wen P.Y., Drappatz J., de Groot J. et al. Phase II study of cabozantinib in patients with progressive glioblastoma: subset analysis of patients naive to antiangiogenic therapy // Neuro. Oncol. 2018. Vol. 20, No. 2. P. 249–258. doi: 10.1093/neuonc/nox154
  71. Yu A., Faiq N., Green S. et al. Report of safety of pulse dosing of lapatinib with temozolomide and radiation therapy for newly-diagnosed glioblastoma in a pilot phase II study // J. Neurooncol. 2017. Vol. 134, No. 2. P. 357–362. doi: 10.1007/s11060-017-2533-6
  72. Li J., Zou C.-L., Zhang Z.-M. et al. A multi-targeted tyrosine kinase inhibitor lenvatinib for the treatment of mice with advanced glioblastoma // Mol. Med. Rep. 2017. Vol. 16, No. 5. P. 7105–7111. doi: 10.3892/mmr.2017.7456
  73. Westphal M., Heese O., Steinbach J.P. et al. A randomised, open label phase III trial with nimotuzumab, an anti-epidermal growth factor receptor monoclonal antibody in the treatment of newly diagnosed adult glioblastoma // Eur. J. Cancer. 2015. Vol. 51, No. 4. P. 522–532. doi: 10.1016/j.ejca.2014.12.019
  74. Olaratumab Completed Phase 2 Trials for Glioblastoma Multiforme, Adult Treatment. NCT00895180. https://go.drugbank.com/drugs/DB06043/clinical_trials?conditions=DBCOND0088047&phase=2&purpose=treatment&status=completed&__cf_chl_jschl_tk__=pmd_cEbWshGFMGoqes6n_B7D0tXCsfTuqIh_en6wF52PFuw-1629969594-0-gqNtZGzNApCjcnBszQiR
  75. Morley R., Cardenas A., Hawkins P. et al. Safety of onartuzumab in patients with solid tumors: Experience to date from the Onartuzumab Clinical Trial Program // PLoS One. 2015. Vol. 10, No. 10. P. e0139679. doi: 10.1371/journal.pone.0139679
  76. Cloughesy T., Finocchiaro G., Belda-Iniesta C. et al. Randomized, double-blind, placebo-controlled, multicenter phase II study of onartuzumab plus bevacizumab versus placebo plus bevacizumab in patients with recurrent glioblastoma: efficacy, safety, and hepatocyte growth factor and O6-Methylguanine-DNA methyltransferase biomarker analyses // J. Clin. Oncol. 2017. Vol. 35, No. 3. P. 343–351. doi: 10.1200/JCO.2015.64.7685
  77. Pazopanib Completed Phase 2 Trials for Glioblastoma Multiforme (GBM) / Central Nervous System Neoplasms / Neoplasms, Brain / Gliosarcoma Treatment. NCT01931098 [Электронный ресурс]. https://go.drugbank.com/drugs/DB06589/clinical_trials?conditions=DBCOND0032525%2CDBCOND0046976%2CDBCOND0002894%2CDBCOND0054211&phase=2&purpose=treatment&status=completed. Дата обращения: 18.12.2021.
  78. Panitumumab and Irinotecan for Malignant Gliomas [Электронный ресурс]. Режим доступа: https://clinicaltrials.gov/ct2/show/NCT01017653. Дата обращения: 18.12.2021.
  79. Dean L., Kane M., Pratt V.M. et al. Pertuzumab Therapy and ERBB2 Genotype // Medical Genetics Summaries [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2012–2015.
  80. Adult Glioblastoma Multiforme Completed Phase 2 Trials for Ramucirumab (DB05578). NCT00895180 [Электронный ресурс]. Режим доступа: https://go.drugbank.com/indications/DBCOND0088047/clinical_trials/DB05578?phase=2&status=completed. Дата обращения: 18.12.2021.
  81. Affronti M.L., Jackman J.G., McSherry F. et al. Phase II study to evaluate the efficacy and safety of rilotumumab and bevacizumab in subjects with recurrent malignant glioma // Oncologist. 2018. Vol. 23, No. 8. P. 889–e98. doi: 10.1634/theoncologist.2018-0149
  82. Weller M., Butowski N., Tran D.D. et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial // Lancet Oncol. 2017. Vol. 18, No. 10. P. 1373–1385. doi: 10.1016/S1470-2045(17)30517-X
  83. Nghiemphu P.L., Ebiana V.A., Wen P. et al. Phase I study of sorafenib and tipifarnib for recurrent glioblastoma: NABTC 05-02 // J. Neurooncol. 2018. Vol. 136, No. 1. P. 79–86. doi: 10.1007/s11060-017-2624-4
  84. Grisanti S., Ferrari V.D., Buglione M. et al. Second line treatment of recurrent glioblastoma with sunitinib: results of a phase II study and systematic review of literature // J. Neurosurg. Sci. 2019. Vol. 63, No. 4. P. 458–467. doi: 10.23736/S0390-5616.16.03874-1
  85. Torres Á, Arriagada V, Erices J I. et al. FK506 Attenuates the MRP1-Mediated chemoresistant phenotype in glioblastoma stem-like cells // Int. J. Mol. Sci. 2018. Vol. 19, No. 9. P. 2697. doi: 10.3390/ijms19092697
  86. Schiff D., Jaeckle K.A., Anderson S.K. et al. Phase I/II trial of temsirolimus and sorafenib in treatment of patients with recurrent glioblastoma: North Central Cancer Treatment Group Study/Alliance N0572 // Cancer. 2018. Vol. 124, No. 7. P. 1455–1463. doi: 10.1002/cncr.31219
  87. Wu Y., Li Z., Zhang L., Liu G. Tivantinib hampers the proliferation of glioblastoma cells via PI3K/Akt/Mammalian target of rapamycin (mTOR) signaling // Med. Sci. Monit. 2019. Vol. 25. P. 7383–7390. doi: 10.12659/MSM.919319
  88. Kalpathy-Cramer J., Chandra V., Da X. et al. Phase II study of tivozanib, an oral VEGFR inhibitor, in patients with recurrent glioblastoma // J. Neurooncol. 2017. Vol. 131, No. 3. P. 603–610. doi: 10.1007/s11060-016-2332-5
  89. Askoxylakis V., Ferraro G.B., Kodack D.P. et al. Preclinical efficacy of Ado-trastuzumab emtansine in the brain microenvironment // J. Natl. Cancer Inst. 2015. Vol. 108, No. 2. P. djv313. doi: 10.1093/jnci/djv313
  90. Bauman J. E., Ohr J., Gooding W.E. et al. Phase I study of ficlatuzumab and cetuximab in cetuximab-resistant, recurrent/metastatic head and neck cancer // Cancers (Basel). 2020. Vol. 12, No. 6. P. 1537. doi: 10.3390/cancers12061537
  91. Brown N., McBain C., Nash S. et al. Multi-center randomized phase II study comparing cediranib plus gefitinib with cediranib plus placebo in subjects with recurrent/progressive glioblastoma // PLoS One. 2016. Vol. 11, No. 5. P. e0156369. doi: 10.1371/journal.pone.0156369
  92. Super-Selective Intraarterial Cerebral Infusion of Cetuximab (Erbitux) for Treatment of Relapsed/Refractory GBM and AA. NCT01238237 [Электронный ресурс]. Режим доступа: https://clinicaltrials.gov/ct2/show/NCT01238237. Дата обращения: 18.12.2021.
  93. Stupp R., Hegi M.E., Gorlia T. et al. Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 STUDY): a multicentre, randomised, open-label, phase 3 trial // Lancet Oncol. 2014. Vol. 15, No. 10. P. 1100–1108. doi: 10.1016/S1470-2045(14)70379-1
  94. Miklja Z., Yadav V.N., Cartaxo R.T. et al. Everolimus improves the efficacy of dasatinib in PDGFRα-driven glioma // J. Clin. Invest. 2020. Vol. 130, No. 10. P. 5313–5325. doi: 10.1172/JCI133310
  95. Chinnaiyan P., Won M., Wen P.Y. et al. A randomized phase II study of everolimus in combination with chemoradiation in newly diagnosed glioblastoma: results of NRG Oncology RTOG 0913 // Neuro. Oncol. 2018. Vol. 20, No. 5. P. 666–673. doi: 10.1093/neuonc/nox209
  96. Tucker N. Enzastaurin dosed in first phase 3 study of newly diagnosed glioblastoma multiforme [Электронный ресурс]. Режим доступа: https://www.targetedonc.com/view/enzastaurin-dosed-in-first-phase-3-study-of-newly-diagnosed-glioblastoma-multiforme. Дата обращения: 18.12.2021.
  97. Erlotinib in treating patients with recurrent or progressive glioblastoma multiforme. NCT00054496 [Электронный ресурс]. Режим доступа: https://clinicaltrials.gov/ct2/show/NCT00054496. Дата обращения: 18.12.2021.
  98. Brown C.E., Badie B., Barish M.E. et al. Bioactivity and safety of IL13Rα2-Redirected Chimeric Antigen Receptor CD8+ T Cells in patients with recurrent glioblastoma // Clin. Cancer Res. 2015. Vol. 21, No. 18. P. 4062–4072. doi: 10.1158/1078-0432.CCR-15-0428
  99. Li L., Quang T.S., Gracely E.J. et al. A phase II study of anti-epidermal growth factor receptor radioimmunotherapy in the treatment of glioblastoma multiforme // J. Neurosurg. 2010. Vol. 113, No. 2. P. 192–198. doi: 10.3171/2010.2.JNS091211
  100. Van den Bent M., Azaro A., De Vos F. et al. A phase Ib/II, open-label, multicenter study of INC280 (capmatinib) alone and in combination with buparlisib (BKM120) in adult patients with recurrent glioblastoma // J. Neurooncol. 2020. Vol. 146, No. 1. P. 79–89. doi: 10.1007/s11060-019-03337-2
  101. Cleary J.M., Reardon D.A., Azad N. et al. A phase 1 study of ABT-806 in subjects with advanced solid tumors // Invest. New Drugs. 2015. Vol. 33, No. 3. P. 671–678. doi: 10.1007/s10637-015-0234-6
  102. Hoffman L.M., Fouladi M., Olson J. et al. Phase I trial of weekly MK-0752 in children with refractory central nervous system malignancies: A Pediatric Brain Tumor Consortium Study // Childs Nerv. Syst. 2015. Vol. 31, No. 8. P. 1283–1289. doi: 10.1007/s00381-015-2725-3
  103. Lassen U., Chinot O.L., McBain C. et al. Phase 1 dose-escalation study of the antiplacental growth factor monoclonal antibody RO5323441 combined with bevacizumab in patients with recurrent glioblastoma // Neuro. Oncol. 2015. Vol. 17, No. 7. P. 1007–1015. doi: 10.1093/neuonc/nov019
  104. Tortorella S., Karagiannis T.C. Transferrin receptor-mediated endocytosis: a useful target for cancer therapy // J. Membr. Biol. 2014. Vol. 247, No. 4. P. 291–307. doi: 10.1007/s00232-014-9637-0
  105. Yaylim I., Azam S., Farooqi A.A. et al. Critical molecular and genetic markers in primary brain tumors with their clinical importance // Neurooncology – Newer Developments. Chapter 6. IntechOpen, 2016. doi: 10.5772/63550
  106. Zhao H., Chen G., Liang H. Dual PI3K/mTOR Inhibitor, XL765, suppresses glioblastoma growth by inducing ER stress-dependent apoptosis // Onco. Targets Ther. 2019. Vol. 12. P. 5415–5424. doi: 10.2147/OTT.S210128
  107. Shukla S., Robey R.W., Bates S.E., Ambudkar S.V. Sunitinib (Sutent, SU11248), a small-molecule receptor tyrosine kinase inhibitor, blocks function of the ATP-binding cassette (ABC) transporters P-glycoprotein (ABCB1) and ABCG2 // Drug. Metab. Dispos. 2009. Vol. 37, No. 2. P. 359–365. doi: 10.1124/dmd.108.024612
  108. Englund G., Lundquist P., Skogastierna C. et al. Cytochrome p450 inhibitory properties of common efflux transporter inhibitors // Drug. Metab. Dispos. 2014. Vol. 42, No. 3. P. 441–447. doi: 10.1124/dmd.113.054932
  109. Declèves X., Bihorel S., Debray M. et al. ABC transporters and the accumulation of imatinib and its active metabolite CGP74588 in rat C6 glioma cells // Pharmacol. Res. 2008. Vol. 57, No. 3. P. 214–222. doi: 10.1016/j.phrs.2008.01.006
  110. Eadie L.N., Hughes T.P., White D.L. Interaction of the efflux transporters ABCB1 and ABCG2 with imatinib, nilotinib, and dasatinib // Clin. Pharmacol. Ther. 2014. Vol. 95, No. 3. P. 294–306. doi: 10.1038/clpt.2013.208
  111. Pun N.T., Jeong C.-H. Statin as a potential chemotherapeutic agent: current updates as a monotherapy, combination therapy, and treatment for anti-cancer drug resistance // Pharmaceuticals (Basel). 2021. Vol. 14, No. 5. P. 470. doi: 10.3390/ph14050470
  112. Nguyen T.T., Duong V.A., Maeng H.J. Pharmaceutical formulations with P-Glycoprotein inhibitory effect as promising approaches for enhancing oral drug absorption and bioavailability // Pharmaceutics. 2021. Vol. 13, No. 7. P. 1103. doi: 10.3390/pharmaceutics13071103
  113. Toyoda Y., Takada T., Suzuki H. Inhibitors of human ABCG2: from technical background to recent updates with clinical implications // Front. Pharmacol. 2019. Vol. 10. P. 208. doi: 10.3389/fphar.2019.00208
  114. Martín V., Sanchez-Sanchez A.M., Herrera F. et al. Melatonin-induced methylation of the ABCG2/BCRP promoter as a novel mechanism to overcome multidrug resistance in brain tumour stem cells // Br. J. Cancer. 2013. Vol. 108, No. 10. P. 2005–2012. doi: 10.1038/bjc.2013.188
  115. You D., Richardson J.R., Aleksunes L.M. Epigenetic regulation of multidrug resistance protein 1 and breast cancer resistance protein transporters by histone deacetylase inhibition // Drug. Metab. Dispos. 2020. Vol. 48, No. 6. P. 459–480. doi: 10.1124/dmd.119.089953
  116. Lv S., Teugels E., Sadones J. et al. Correlation of EGFR, IDH1 and PTEN status with the outcome of patients with recurrent glioblastoma treated in a phase II clinical trial with the EGFR-blocking monoclonal antibody cetuximab // Int. J. Oncol. 2012. Vol. 41, No. 3. P. 1029–1035. doi: 10.3892/ijo.2012.1539
  117. Lamballe F., Toscano S., Conti F. et al. Coordination of signalling networks and tumorigenic properties by ABL in glioblastoma cells // Oncotarget. 2016. Vol. 7, No. 46. P. 74747–74767. doi: 10.18632/oncotarget.12546
  118. Gilbert M.R., Dignam J.J., Armstrong T.S. et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma // N. Engl. J. Med. 2014. Vol. 370, No. 8. P. 699–708. doi: 10.1056/NEJMoa1308573
  119. Radoul M., Chaumeil M.M., Eriksson P. et al. MR studies of glioblastoma models treated with dual PI3K/mTOR inhibitor and temozolomide: metabolic changes are associated with enhanced survival // Mol. Cancer Ther. 2016. Vol. 15, No. 5. P. 1113–1122. doi: 10.1158/1535-7163.MCT-15-0769
  120. Garrido W., Muñoz M., San Martín R., Quezada C. FK506 confers chemosensitivity to anticancer drugs in glioblastoma multiforme cells by decreasing the expression of the multiple resistance-associated protein-1 // Biochem. Biophys. Res. Commun. 2011. Vol. 411, No. 1. P. 62-68. doi: 10.1016/j.bbrc.2011.06.087
  121. Lo H.-W., Cao X., Zhu H., Ali-Osman F. Constitutively activated STAT3 frequently coexpresses with epidermal growth factor receptor in high-grade gliomas and targeting STAT3 sensitizes them to iressa and alkylators // Clin. Cancer Res. 2008. Vol. 14, No. 19. P. 6042–6054. doi: 10.1158/1078-0432.CCR-07-4923
  122. Miyata H., Ashizawa T., Iizuka A. et al. Combination of a STAT3 inhibitor and an mTOR inhibitor against a temozolomide-resistant glioblastoma cell line // Cancer Genomics Proteomics. 2017. Vol. 14, No. 1. P. 83–91. doi: 10.21873/cgp.20021
  123. Zanotto-Filho A., Braganhol E., Schröder R. et al. NF-κB inhibitors induce cell death in glioblastomas // Biochem. Pharmacol. 2011. Vol. 81, No. 3. P. 412–424. doi: 10.1016/j.bcp.2010.10.014
  124. Castro-Gamero A.M., Borges K.S., Moreno D.A. et al. Tetra-O-methyl nordihydroguaiaretic acid, an inhibitor of Sp1-mediated survivin transcription, induces apoptosis and acts synergistically with chemo-radiotherapy in glioblastoma cells // Invest. New Drugs. 2013. Vol. 31, No. 4. P. 858–870. doi: 10.1007/s10637-012-9917-4
  125. Chen R., Zhang M., Zhou Y. et al. The application of histone deacetylases inhibitors in glioblastoma // J. Exp. Clin. Cancer Res. 2020. Vol. 39, No. 1. P. 138. doi: 10.1186/s13046-020-01643-6
  126. Ko C.Y., Lin C.H., Chuang J.Y. et al. MDM2 degrades deacetylated nucleolin through ubiquitination to promote glioma stem-like cell enrichment for chemotherapeutic resistance // Mol. Neurobiol. 2018. Vol. 55, No. 4. P. 3211–3223. doi: 10.1007/s12035-017-0569-4
  127. Hsu C.C., Chang W.C., Hsu T.I. et al. Suberoylanilide hydroxamic acid represses glioma stem-like cells // J. Biomed. Sci. 2016. Vol. 23, No. 1. P. 81. doi: 10.1186/s12929-016-0296-6
  128. Wu Y., Dong L., Bao S. et al. FK228 augmented temozolomide sensitivity in human glioma cells by blocking PI3K/AKT/mTOR signal pathways // Biomed. Pharmacother. 2016. Vol. 84. P. 462–469. doi: 10.1016/j.biopha.2016.09.051
  129. Li Z.Y., Li Q.Z., Chen L. et al. Histone deacetylase inhibitor RGFP109 overcomes temozolomide resistance by blocking NF-κB-dependent transcription in glioblastoma cell lines // Neurochem. Res. 2016. Vol. 41, No. 12. P. 3192–3205. doi: 10.1007/s11064-016-2043-5
  130. Banelli B., Daga A., Forlani A. et al. Small molecules targeting histone demethylase genes (KDMs) inhibit growth of temozolomide-resistant glioblastoma cells // Oncotarget. 2017. Vol. 8, No. 21. P. 34896–34910. doi: 10.18632/oncotarget.16820
  131. Romani M., Daga A., Forlani A. et al. Targeting of histone demethylases KDM5A and KDM6B inhibits the proliferation of temozolomide-resistant glioblastoma cells // Cancers (Basel). 2019. Vol. 11, No. 6. P. 878. doi: 10.3390/cancers11060878
  132. Nie E., Jin X., Wu W. et al. MiR-198 enhances temozolomide sensitivity in glioblastoma by targeting MGMT // J. Neurooncol. 2017. Vol. 133, No. 1. P. 59–68. doi: 10.1007/s11060-017-2425-9
  133. Riganti C., Salaroglio I.C., Pinzòn-Daza M.L. et al. Temozolomide down-regulates P-glycoprotein in human blood-brain barrier cells by disrupting Wnt3 signaling // Cell. Mol. Life Sci. 2014. Vol. 71, No. 3. P. 499–516. doi: 10.1007/s00018-013-1397-y
  134. Jakubowicz-Gil J., Bądziul D., Langner E. et al. Temozolomide and sorafenib as programmed cell death inducers of human glioma cells // Pharmacol. Rep. 2017. Vol. 69, No. 4. P. 779–787. doi: 10.1016/j.pharep.2017.03.008
  135. Stavrovskaya A.A., Shushanov S.S., Rybalkina E.Y. Problems of glioblastoma multiforme drug resistance // Biochemistry (Mosc). 2016. Vol. 81, No. 2. P. 91–100. doi: 10.1134/S0006297916020036
  136. Yu F., Li G., Gao J. et al. SPOCK1 is upregulated in recurrent glioblastoma and contributes to metastasis and temozolomide resistance // Cell. Prolif. 2016. Vol. 49, No. 2. P. 195–206. doi: 10.1111/cpr.12241
  137. Garros-Regulez L., Aldaz P., Arrizabalaga O. et al. mTOR inhibition decreases SOX2-SOX9 mediated glioma stem cell activity and temozolomide resistance // Expert Opin. Ther. Targets. 2016. Vol. 20, No. 4. P. 393–405. doi: 10.1517/14728222.2016.1151002
  138. Siebzehnrubl F.A., Silver D.J., Tugertimur B. et al. The ZEB1 pathway links glioblastoma initiation, invasion and chemoresistance // EMBO Mol. Med. 2013. Vol. 5, No. 8. P. 1196–1212. doi: 10.1002/emmm.201302827
  139. Ciechomska I.A., Przanowski P., Jackl J. et al. BIX01294, an inhibitor of histone methyltransferase, induces autophagy-dependent differentiation of glioma stem-like cells // Sci. Rep. 2016. Vol. 6. P. 38723. doi: 10.1038/srep38723
  140. Jin F., Zhao L., Guo Y.-J. et al. Influence of Etoposide on anti-apoptotic and multidrug resistance-associated protein genes in CD133 positive U251 glioblastoma stem-like cells // Brain Res. 2010. Vol. 1336. P. 103–111. doi: 10.1016/j.brainres.2010.04.005
  141. Bieler A., Mantwill K., Dravits T. et al. Novel three-pronged strategy to enhance cancer cell killing in glioblastoma cell lines: histone deacetylase inhibitor, chemotherapy, and oncolytic adenovirus dl520 // Hum. Gene Ther. 2006. Vol. 17, No. 1. P. 55–70. doi: 10.1089/hum.2006.17.55
  142. Liu G., Akasaki Y., Khong H.T. et al. Cytotoxic T cell targeting of TRP-2 sensitizes human malignant glioma to chemotherapy // Oncogene. 2005. Vol. 24, No. 33. P. 5226–5234. doi: 10.1038/sj.onc.1208519
  143. Zheng L.T., Lee S., Yin G.N. et al. Down-regulation of lipocalin 2 contributes to chemoresistance in glioblastoma cells // J. Neurochem. 2009. Vol. 111, No. 5. P. 1238–1251. doi: 10.1111/j.1471-4159.2009.06410.x
  144. Kim B.S., Kang K.S., Choi J.I. et al. Knockdown of the potential cancer stem-like cell marker Rex-1 improves chemotherapeutic effects in gliomas // Hum. Gene Ther. 2011. Vol. 22, No. 12. P. 1551–1562. doi: 10.1089/hum.2011.096
  145. Chou C.W., Wang C.C., Wu C.P. et al. Tumor cycling hypoxia induces chemoresistance in glioblastoma multiforme by upregulating the expression and function of ABCB1 // Neuro. Oncol. 2012. Vol. 14, No. 10. P. 1227–1238. doi: 10.1093/neuonc/nos195
  146. Pinzón-Daza M., Garzón R., Couraud P. et al. The association of statins plus LDL receptor-targeted liposome-encapsulated doxorubicin increases in vitro drug delivery across blood-brain barrier cells // Br. J. Pharmacol. 2012. Vol. 167, No. 7. P. 1431–1447. doi: 10.1111/j.1476-5381.2012.02103.x
  147. Valera E.T., de Freitas Cortez M.A., de Paula Queiroz R.G. et al. Pediatric glioblastoma cell line shows different patterns of expression of transmembrane ABC transporters after in vitro exposure to vinblastine // Childs Nerv. Syst. 2009. Vol. 25, No. 1. P. 39–45. doi: 10.1007/s00381-008-0740-3
  148. Lun X., Wells J.C., Grinshtein N. et al. Disulfiram when combined with copper enhances the therapeutic effects of temozolomide for the treatment of glioblastoma // Clin. Cancer Res. 2016. Vol. 22, No. 15. P. 3860–3875. doi: 10.1158/1078-0432.CCR-15-1798

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рисунок. Внутриклеточные механизмы множественной лекарственной устойчивости глиобластомы с участием генов ABCB1 и ABCG2. Объяснения см. в тексте

Скачать (377KB)

© Чернов А.Н., Шамова О.В., 2021

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».