Нейтрофильные гранулоциты — фагоциты, и не только
- Авторы: Алешина Г.М.1
-
Учреждения:
- Федеральное государственное бюджетное научное учреждение «Институт экспериментальной медицины»
- Выпуск: Том 20, № 4 (2020)
- Страницы: 5-16
- Раздел: Аналитический обзор
- URL: https://ogarev-online.ru/MAJ/article/view/52808
- DOI: https://doi.org/10.17816/MAJ52808
- ID: 52808
Цитировать
Аннотация
Нейтрофильные гранулоциты — одни из ключевых клеточных факторов врожденного иммунитета. В обзоре представлены данные по морфологии, особенностям миграции и утилизации нейтрофильных гранулоцитов, процессам фагоцитоза и дегрануляции, нейтрофильным внеклеточным ловушкам, пластичности нейтрофилов, их роли в системных воспалительных реакциях и регуляции адаптивного иммунитета.
Полный текст
Открыть статью на сайте журналаОб авторах
Галина Матвеевна Алешина
Федеральное государственное бюджетное научное учреждение «Институт экспериментальной медицины»
Автор, ответственный за переписку.
Email: aleshina.gm@iemspb.ru
ORCID iD: 0000-0003-2886-7389
SPIN-код: 4479-0630
Scopus Author ID: 6603793844
ResearcherId: C-5020-2012
д-р биол. наук, доцент, заведующая лабораторией общей патологии отдела общей патологии и патологической физиологии
Россия, Санкт-ПетербургСписок литературы
- Мечников И.И. Невосприимчивость в инфекционных заболеваниях. – СПб.: Издание К.Л. Риккера, 1903. [Metchnikoff E. Nevospriimchivost’ v infektsionnykh zabolevaniyakh. Saint Petersburg: K.L. Rikker; 1903. (In Russ.)]
- Пигаревский В.Е. Зернистые лейкоциты и их свойства. – М.: Медицина, 1978. [Pigarevsky VE. Zernistye leykotsity i ikh svoystva. Moscow: Meditsina; 1978. (In Russ.)]
- Klebanoff SJ, Clark RA. The neutrophil: function and clinical disorders. Amsterdam: Elsevier; 1978.
- Маянский А.Н., Маянский Д.Н. Очерки о нейтрофиле и макрофаге. – 2-е изд. – Новосибирск: Наука, 1989. [Mayanskii AN, Mayanskii DN. Ocherki o neytrofile i makrofage. 2nd ed. Novosibirsk: Nauka; 1989. (In Russ.)]
- Shah B, Burg N, Pillinger MH. Chapter — Neutrophils. In: Kelley and Firestein’s textbook of rheumatology (tenth edition). Ed. by G.S. Firestein, R.C. Budd, S.E. Gabriel, I.B. McInnes. Elsevier; 2017. P. 169–188.e3. https://doi.org/10.1016/B978-0-323-31696-5.00011-5.
- Lord BI, Bronchud MH, Owens S, et al. The kinetics of human granulopoiesis following treatment with granulocyte colonystimulating factor in vivo. Proc Natl Acad Sci U S A. 1989;86(23):9499–9503. https://doi.org/10.1073/pnas.86.23.9499.
- Bainton DF, Ullyot JL, Farquhar MG. The development of neutrophilic polymorphonuclear leukocytes in human bone marrow. J Exp Med. 1971;134(4):907–934. https://doi.org/10.1084/jem.134.4.907.
- Faurschou M, Borregaard N. Neutrophil granules and secretory vesicles in inflammation. Microbes Infect. 2003;5(14):1317–1327. https://doi.org/10.1016/j.micinf. 2003.09.008.
- Nauseef WM, McCormick S, Yi H. Roles of heme insertion and the mannose-6-phosphate receptor in processing of the human myeloid lysosomal enzyme, myeloperoxidase. Blood. 1992;80(10):2622–2633.
- Bainton DF, Farquhar MG. Origin of granules in polymorphonuclear leukocytes. Two types derived from opposite faces of the Golgi complex in developing granulocytes. J Cell Biol. 1966;28(2):277–301. https://doi.org/10.1083/jcb.28.2.277.
- Пигаревский В.Е. О секреторной активности полиморфноядерных лейкоцитов // Архив патологии. – 1982. – Т. 44. – № 5. – С. 3–12. [Pigarevsky VE. Secretory activity of polymorphonuclear leukocytes. Archives of pathology. 1982;44(5):3–12. (In Russ.)]
- Borregaard N, Lollike K, Kjeldsen L, et al. Human neutrophil granules and secretory vesicles. Eur J Haematol. 1993;51(4): 187–198. https://doi.org/10.1111/j.1600-0609.1993.tb00629.x.
- Owen CA, Campbell EJ. The cell biology of leukocyte-mediated proteolysis. J Leukoc Biol. 1999;65(2):137–150. https://doi.org/10.1002/jlb.65.2.137.
- Borregaard N, Sørensen O, Theilgaard-Mönch K. Neutrophil granules: A library of innate immunity proteins. TRENDS in Immunology. 2007;28(8):340–345. https://doi.org/10.1016/j.it.2007.06.002.
- Weiss L. Transmural cellular passage in vascular sinuses of rat bone marrow. Blood. 1970;36(2):189–208.
- Murray J, Barbara JA, Dunkley SA, et al. Regulation of neutrophil apoptosis by tumor necrosis factor-alpha: requirement for TNFR55 and TNFR75 for induction of apoptosis in vitro. Blood. 1997;90(7):2772–2783.
- Tortorella C, Piazzolla G, Spaccavento F, et al. Spontaneous and Fas-induced apoptotic cell death in aged neutrophils. J Clin Immunol. 1998;18(5):321–329. https://doi.org/10.1023/a:1023286831246.
- Martin C, Burdon PC, Bridger G, et al. Chemokines acting via CXCR2 and CXCR4 control the release of neutrophils from the bone marrow and their return following senescence. Immunity. 2003;19(4):583–593. https://doi.org/10.1016/s1074-7613(03)00263-2.
- Uchida T, Nemoto T, Yui T, et al. Use of technetium-99m as a radioactive label to study migratory patterns of leukocytes. J Nucl Med. 1979;20(11):1197–1200.
- Kubes P. The enigmatic neutrophil: what we do not know. Cell Tissue Res. 2018;371:399–406. https://doi.org/10.1007/s00441-018-2790-5.
- Landzberg M, Doering H, Aboodi GM, et al. Quantifying oral inflammatory load: oral neutrophil counts in periodontal health and disease. J Periodontal Res. 2015;50(3):330–336. https://doi.org/10.1111/jre.12211.
- Casanova-Acebes M, Nicolás-Ávila JA, Li JL, et al. Neutrophils instruct homeostatic and pathological states in naive tissues. J Exp Med. 2018;215(11):2778–2795. https://doi.org/10.1084/jem.20181468.
- Kubes P, Hunter J, Granger DN. Ischemia/reperfusion-induced feline intestinal dysfunction: importance of granulocyte recruitment. Gastroenterology. 1992;103(3):807–812. https://doi.org/10.1016/0016-5085(92)90010-v.
- Borregaard N. Neutrophils, from marrow to microbes. Immunity. 2010;33(5):657–670. https://doi.org/10.1016/j.immuni. 2010.11.011.
- Bruehl RE, Moore KL, Loran DE, et al. Leukocyte activation induces surface redistribution of P-selectin glycoprotein ligand-1. J Leukoc Biol. 1997;61(4):489–499. https://doi.org/10.1002/jlb.61.4.489.
- Steegmaier M, Borges E, Berger J, et al. The E-selectin-ligand ESL-1 is located in the Golgi as well as on microvilli on the cell surface. J Cell Sci. 1997;110(Pt6):687–694.
- Buscher K, Riese SB, Shakibaei M, et al. The transmembrane domains of L-selectin and CD44 regulate receptor cell surface positioning and leukocyte adhesion under flow. J Biol Chem. 2010;285(18):13490–13497. https://doi.org/10.1074/jbc.M110.102640.
- Filippi MD. Neutrophil transendothelial migration: updates and new perspectives. Blood. 2019;133(20):2149–2158. https://doi.org/10.1182/blood-2018-12-844605.
- Dale DC, Boxer L, Liles WC. The phagocytes: neutrophils and monocytes. Blood. 2008;112(4):935–945. https://doi.org/10.1182/blood-2007-12-077917.
- Kruger P, Saffarzadeh M, Weber ANR, et al. Neutrophils: between host defence, immune modulation, and tissue injury. PLoS Pathog. 2015;11(3):e1004651. https://doi.org/10.1371/journal.ppat.1004651.
- Segal AW. How neutrophils kill microbes. Annu Rev Immunol. 2005;23:197–223. https://doi.org/10.1146/annurev.immunol.23.021704.115653.
- Buvelot H, Posfay-Barbe KM, Linder P, et al. Staphylococcus aureus, phagocyte NADPH oxidase and chronic granulomatous disease. FEMS Microbiol Rev. 2017;41(2):139–157. https://doi.org/10.1093/femsre/fuw042.
- Kobayashi SD, Braughton KR, Whitney AR, et al. Bacterial pathogens modulate an apoptosis differentiation program in human neutrophils. Proc Natl Acad Sci USA. 2003;100(19):10948–10953. https://doi.org/10.1073/pnas.1833375100.
- Kobayashi SD, Voyich JM, Braughton KR, DeLeo FR. Down-regulation of proinflammatory capacity during apoptosis in human polymorphonuclear leukocytes. J Immunol. 2003;170(6):3357–3368. https://doi.org/10.4049/jimmunol. 170.6.3357.
- Kobayashi SD, DeLeo FR. An apoptosis differentiation programme in human polymorphonuclear leucocytes. Biochem Soc Trans. 2004;32(Pt3):474–476. https://doi.org/10.1042/BST0320474.
- Пигаревский В.Е. Роль гранулоцитов и макрофагов в неспецифической резистентности организма (морфологические аспекты проблемы) // Морфофункциональные аспекты неспецифической резистентности и демиелинизирующих заболеваний. Клеточно-тканевые факторы неспецифической резистентности. – Л., 1981. – С. 3–17. [Pigarevsky VE. Rol’ granulotsitov i makrofagov v nespetsificheskoy rezistentnosti organizma (morfologicheskie aspekty problemy). In: Morfofunktsional’nye aspekty nespetsificheskoy rezistentnosti i demieliniziruyushchikh zabolevaniy. Kletochno-tkanevye faktory nespetsificheskoy rezistentnosti. Leningrad; 1981. P. 3–17. (In Russ.)]
- Долгушин И.И., Андреева Ю.С., Савочкина А.Ю. Нейтрофильные внеклеточные ловушки и методы оценки функционального статуса нейтрофилов. – М.: РАМН, 2009. [Dolgushin II, Andreeva YuS, Savochkina AYu. Neytrofil’nye vnekletochnye lovushki i metody otsenki funktsional’nogo statusa neytrofilov. Moscow: RAMN; 2009. (In Russ.)]
- Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–1535. https://doi.org/10.1126/science.1092385.
- Fuchs TA, Abed U, Goosmann C, et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol. 2007;176(2):231–241. https://doi.org/10.1083/jcb.200606027.
- Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol. 2010;191(3):677–691. https://doi.org/10.1083/jcb. 201006052.
- Metzler KD, Fuchs TA, Nauseef WM, et al. Myeloperoxidase is required for neutrophil extracellular trap formation: implications for innate immunity. Blood. 2011;117(3):953–959. https://doi.org/10.1182/blood-2010-06-290171.
- Hakkim A, Fuchs TA, Martinez NE, et al. Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation. Nat Chem Biol. 2011;7(2):75–77. https://doi.org/10.1038/nchembio.496.
- Bianchi M, Hakkim A, Brinkmann V, et al. Restoration of NET formation by gene therapy in CGD controls aspergillosis. Blood. 2009;114(13):2619–2622. https://doi.org/10.1182/blood-2009-05-221606.
- Nauseef WM, Borregaard N. Neutrophils at work. Nat Immunol. 2014;15(7):602–611. https://doi.org/10.1038/ni.2921.
- Haneke E. The Papillon-Lefevre syndrome: keratosis palmoplantaris with periodontopathy. Report of a case and review of the cases in the literature. Hum Genet. 1979;51(1):1–35. https://doi.org/10.1007/BF00278288.
- McDonald B, Urrutia R, Yipp BG, et al. Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis. Cell Host Microbe. 2012;12(3):324–333. https://doi.org/10.1016/j.chom.2012.06.011.
- Urban CF, Reichard U, Brinkmann V, Zychlinsky A. Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell Microbiol. 2006;8:668–676. https://doi.org/10.1111/j.1462-5822.2005.00659.x.
- Jenne CN, Wong CH, Zemp FJ, et al. Neutrophils recruited to sites of infection protect from virus challenge by releasing neutrophil extracellular traps. Cell Host Microbe. 2013;13(2): 169–180. https://doi.org/10.1016/j.chom.2013.01.005.
- Saitoh T, Komano J, Saitoh Y, et al. Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe. 2012;12(1):109–116. https://doi.org/10.1016/j.chom.2012.05.015.
- Menegazzi R, Decleva E, Dri P. Killing by neutrophil extracellular traps: Fact or folklore? Blood. 2012;119(5):1214–1216. https://doi.org/10.1182/blood-2011-07-364604.
- Sangaletti S, Tripodo C, Chiodoni C, et al. Neutrophil extracellular traps mediate transfer of cytoplasmic neutrophil antigens to myeloid dendritic cells toward ANCA induction and associated autoimmunity. Blood. 2012;120(15):3007–3018. https://doi.org/10.1182/blood-2012-03-416156.
- Galkina SI, Fedorova NV, Golenkina EA, et al. Cytonemes versus neutrophil extracellular traps in the fight of neutrophils with microbes. Int J Mol Sci. 2020;21(2):586. https://doi.org/10.3390/ijms21020586.
- Reddy RC, Standiford TJ. Effects of sepsis on neutrophil chemotaxis. Curr Opin Hematol. 2010;17(1):18–24. https://doi.org/10.1097/MOH.0b013e32833338f3.
- Козлов В.К. Сепсис: этиология, иммунопатогенез, концепция современной иммунотерапии. – СПб.: Диалект, 2008. [Kozlov VK. Sepsis: etiologiya, immunopatogenez, kontseptsiya sovremennoy immunoterapii. Saint Petersburg: Dialekt; 2008. (In Russ.)]
- Van der Poll T, van de Veerdonk FL, Scicluna BP, Netea MG. The immunopathology of sepsis and potential therapeutic targets. Nat Rev Immunol. 2017;17(7):407–420. https://doi.org/10.1038/nri.2017.36.
- Гусев Е.Ю., Черешнев В.А., Юрченко Л.Н. Системное воспаление с позиции теории типового патологического процесса // Цитокины и воспаление. – 2007. – Т. 6. – № 4. – С. 9–21. [Gusev EY, Chereshnev VA, Yurchenko LN. Systemic inflammation from the standpoint of the theory of a typical pathological process. Cytokines and inflammation. 2007;6(4):9–21. (In Russ.)]
- Черешнев В.А., Гусев Е.Ю. Иммунологические и патофизиологические механизмы системного воспаления // Медицинская иммунология. – 2012. – Т. 14. – № 1-2. – С. 9–20. [Chereshnev VA, Gusev EYu. Immunological and pathophysiological mechanisms of systemic inflammation. Medical immunology. 2012;14(1-2):9–20. (In Russ.)]. https://doi.org/10.15789/1563-0625-2012-1-2-9-20.
- Daviaud F, Grimaldi D, Dechartres A, et al. Timing and causes of death in septic shock. Ann Intensive Care. 2015;5(1):16. https://doi.org/10.1186/s13613-015-0058-8.
- Cummings CJ, Martin TR, Frevert CW, et al. Expression and function of the chemokine receptors CXCR1 and CXCR2 in sepsis. J Immunol. 1999;162(4):2341–2346.
- Fink MP. Animal models of sepsis. Virulence. 2014;5(1): 143–153. https://doi.org/10.4161/viru.26083.
- Liew PX, Kubes P. The neutrophil’s role during health and disease. Physiol Rev. 2019;99(2):1223–1248. https://doi.org/10.1152/physrev.00012.2018.
- Нестерова И.В., Колесникова Н.В., Чудилова Г.А. и др. Нейтрофильные гранулоциты: новый взгляд на «старых игроков» на иммунологическом поле // Иммунология. – 2015. – Т. 36. – № 4. – С. 257–265. [Nesterova IV, Kolesnikova NV, Chudilova GA, et al. Neutrophilic granulocytes: a new look at the “old players” in the immunological field. Immunology. 2015;36(4):257–265. (In Russ.)]
- Нестерова И.В., Колесникова Н.В., Чудилова Г.А. и др. Новый взгляд на нейтрофильные гранулоциты: переосмысление старых догм. Часть 2 // Инфекция и иммунитет. – 2018. – Т. 8. – № 1. – С. 7–18. [Nesterova IV, Kolesnikova NV, Chudilova GA, et al. Neutrophilic granulocytes: a new look at the “old players” on the immunological field. Part 2. Infection and immunity. 2018;8(1):7–18. (In Russ.)]. https://doi.org/10.15789/2220-7619-2018-1-7-18.
- Kamp VM, Pillay J, Lammers JW, et al. Human suppressive neutrophils CD16bright/CD62Ldim exhibit decreased adhesion. J Leukoc Biol. 2012;92(5):1011–1020. https://doi.org/10.1189/jlb.0612273.
- Pillay J, Ramakers BP, Kamp VM, et al. Functional heterogeneity and differential priming of circulating neutrophils in human experimental endotoxemia. J Leukoc Biol. 2010;88(1):211–220. https://doi.org/10.1189/jlb.1209793.
- Tsuda Y, Takahashi H, Kobayashi M, et al. Three different neutrophil subsets exhibited in mice with different susceptibilities to infection by methicillin-resistant Staphylococcus aureus. Immunity. 2004;21(2):215–226. https://doi.org/10.1016/j.immuni.2004.07.006.
- Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest. 2012;122(3):787–795. https://doi.org/10.1172/JCI59643.
- Fridlender ZG, Sun J, Kim S, et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell. 2009;16(3):183–194. https://doi.org/10.1016/j.ccr.2009.06.017.
- Pillay J, Kamp VM, van Hoffen E, et al. A subset of neutrophils in human systemic inflammation inhibits T cell responses through Mac-1. J Clin Invest. 2012;122(1): 327–336. https://doi.org/10.1172/JCI57990.
- Johnston B, Burns AR, Suematsu M, et al. Chronic inflammation upregulates chemokine receptors and induces neutrophil migration to monocyte chemoattractant protein-1. J Clin Invest. 1999;103(9):1269–1276. https://doi.org/10.1172/JCI5208.
- Tosello Boari J, Amezcua Vesely MC, Bermejo DA, et al. IL-17RA signaling reduces inflammation and mortality during Trypanosoma cruzi infection by recruiting suppressive IL-10-producing neutrophils. PLoS Pathog. 2012;8(4):e1002658. https://doi.org/10.1371/journal.ppat. 1002658.
- De Santo C, Arscott R, Booth S, et al. Invariant NKT cells modulate the suppressive activity of IL-10-secreting neutrophils differentiated with serum amyloid A. Nat Immunol. 2010;11(11):1039–1046. https://doi.org/10.1038/ni.1942.
- Lee WY, Moriarty TJ, Wong CH, et al. An intravascular immune response to Borrelia burgdorferi involves Kupffer cells and iNKT cells. Nat Immunol. 2010;1(4):295–302. https://doi.org/10.1038/ni.1855.
- Liew PX, Lee WY, Kubes P. iNKT cells orchestrate a switch from inflammation to resolution of sterile liver injury. Immunity. 2017;47(4):752–765.e5. https://doi.org/10.1016/j.immuni.2017.09.016.
- Долгушин И.И. Взаимодействие нейтрофилов с иммунокомпетентными клетками // Моделирование и клиническая характеристика фагоцитарных реакций: сб. науч. трудов / под ред. А.Н. Маянского. – Горький, 1989. – С. 74–81. [Dolgushin II. Vzaimodeystvie neytrofilov s immunokompetentnymi kletkami. In: Modelirovanie i klinicheskaya kharakteristika fagotsitarnykh reaktsiy. Ed. by A.N. Mayanskii. Gor’kiy; 1989. P. 74–81. (In Russ.)]
- Scapini P, Bazzoni F, Cassatella MA. Regulation of B-cell-activating factor (BAFF)/B lymphocyte stimulator (BLyS) expression in human neutrophils. Immunol Lett. 2008;116(1):1–6. https://doi.org/10.1016/j.imlet.2007.11.009.
- Puga I, Cols M, Barra CM, et al. B cell-helper neutrophils stimulate the diversification and production of immunoglobulin in the marginal zone of the spleen. Nat Immunol. 2011;13(2):170–180. https://doi.org/10.1038/ni.2194.
- Abi Abdallah DS, Egan CE, Butcher BA, Denkers EY. Mouse neutrophils are professional antigen-presenting cells programmed to instruct Th1 and Th17 T-cell differentiation. Int Immunol. 2011;23(5):317–326. https://doi.org/10.1093/intimm/dxr007.
- Долгушин И.И., Мезенцева Е.А., Савочкина А.Ю., Кузнецова Е.К. Нейтрофил как «многофункциональное устройство» иммунной системы // Инфекция и иммунитет. – 2019. – Т. 9. – № 1. – С. 9–38. [Dolgushin II, Mezentseva EA, Savochkina AYu, Kuznetsova EK. Neutrophil as a multifunctional relay in immune system. Infection and immunity. 2019;9(1):9–38. (In Russ.)]. https://doi.org/10.15789/2220-7619-2019-1-9-38.
- Treffers LW, Hiemstra IH, Kuijpers TW, et al. Neutrophils in cancer. Immunol Rev. 2016;273(1):312–328. https://doi.org/10.1111/imr.12444.
- Soehnlein O, Steffens S, Hidalgo A, Weber C. Neutrophils as protagonists and targets in chronic inflammation. Nat Rev Immunol. 2017;17(4):248–261. https://doi.org/10.1038/nri.2017.10.
- Кокряков В.Н., Алешина Г.М., Шамова О.В., и др. Современная концепция об антимикробных пептидах как молекулярных факторах иммунитета // Медицинский академический журнал. – 2010. – Т. 10. – № 4. – С. 149–160. [Kokryakov VN, Aleshina GM, Shamova OV, et al. Modern concept of antimicrobial peptides as molecular factors of the immunity. Medical Academic Journal. 2010;10(4):149–160. (In Russ.)]
- Шамова О.В., Орлов Д.С., Кокряков В.Н., Корнева Е.А. Антимикробные пептиды в реализации различных защитных функций организма // Медицинский академический журнал. – 2013. – Т. 13. – № 3. – С. 42–52. [Shamova OV, Orlov DS, Kokryakov VN, Kornerva EA. Antimicrobial peptides in the reaization of varied host defense reactions. Medical Academic Journal. 2013;13(3):42–52. (In Russ.)]
- Алешина Г.М. Лактоферрин — эндогенный регулятор защитных функций организма // Медицинский академический журнал. – 2019. – Т. 19, № 1. – С. 35-44. [Aleshina GM. Lactoferrin — an endogenous regulator of the protective functions of the organism. Medical Academic Journal. 2019;19(1): 35–44. (In Russ.)]. https://doi.org/10.17816/MAJ19135-44.
- Елизарова А.Ю., Костевич В.А., Войнова И.В., Соколов А.В. Лактоферрин как перспективное средство в терапии метаболического синдрома: от молекулярных механизмов до клинических испытаний // Медицинский академический журнал. – 2019. – Т. 19. – № 1. – С. 45–64. [Elizarova AYu, Kostevich VA, Voynova IV, Sokolov AV. Lactoferrin as a promising remedy for metabolic syndrome therapy: from molecular mechanisms to clinical trials. Medical Academic Journal. 2019;19(1):45–64. (In Russ.)]. https://doi.org/10.17816/MAJ19145-64.
- Arnhold J. The dual role of myeloperoxidase in immune response. Int J Mol Sci. 2020;21(21):8057. https://doi.org/10.3390/ijms21218057.
Дополнительные файлы
