SMI-32 — a novel axonal injury marker for investigation of ischemic brain pathology
- Authors: Tsyba D.L.1, Kirik O.V.1, Korzhevskii D.E.1
-
Affiliations:
- Institute of Experimental Medicine
- Issue: Vol 20, No 4 (2020)
- Pages: 63-68
- Section: Original research
- URL: https://ogarev-online.ru/MAJ/article/view/49849
- DOI: https://doi.org/10.17816/MAJ49849
- ID: 49849
Cite item
Abstract
The relevance of this work is determined by the high prevalence and social significance of cerebrovascular diseases and the need to develop effective methods for verifying neuronal damage due to cerebral ischemia in experimental models.
The aim of this study was to assess the possibility of immunohistochemical revealing of neurofilaments to detect axonal injury in cerebral ischemia models.
Materials and methods. A model of transient focal cerebral ischemia by the left middle cerebral artery occlusion was reproduced in male Wistar, SHR and WKY rats. Axonal injury was assessed by immunohistochemical reactions for neurofilament proteins using SMI-32 and 2F11 antibodies.
Results. In cerebral ischemia, damage to nerve fibers occurs, manifested by thickening of axons, their varicose expansion and segmental accumulation of neurofilament proteins. These changes are more noticeable with an immunohistochemical reaction to the SMI-32 marker of neurofilament heavy chain.
Conclusions. The use of antibodies to the non-phosphorylated neurofilament heavy chain makes it easy to identify degenerating nerve fibers and can be recommended as an alternative method for detecting axonal injury.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Daria L. Tsyba
Institute of Experimental Medicine
Author for correspondence.
Email: dariasnow97@gmail.com
ORCID iD: 0000-0003-3016-4260
SPIN-code: 1656-7652
Research Assistant, Laboratory of Functional Morphology of the Central and Peripheral Nervous System, Department of General and Special Morphology
Russian Federation, Saint PetersburgOlga V. Kirik
Institute of Experimental Medicine
Email: olga_kirik@mail.ru
ORCID iD: 0000-0001-6113-3948
SPIN-code: 5725-8742
Scopus Author ID: 27171304100
PhD, Senior Researcher, Laboratory of Functional Morphology of the Central and Peripheral Nervous System, Department of General and Special Morphology
Russian Federation, Saint PetersburgDmitrii E. Korzhevskii
Institute of Experimental Medicine
Email: DEK2@yandex.ru
ORCID iD: 0000-0002-2456-8165
SPIN-code: 3252-3029
Scopus Author ID: 12770589000
MD, PhD, Professor of the RAS, Head of the Laboratory of Functional Morphology of the Central and Peripheral Nervous System, Department of General and Special Morphology
Russian Federation, Saint PetersburgReferences
- Скворцова В.И., Шетова И.М., Какорина Е.П. и др. Организация помощи пациентам с инсультом в России. Итоги 10 лет реализации комплекса мероприятий по совершенствованию медицинской помощи пациентам с острыми нарушениями мозгового кровообращения // Анналы клинической и экспериментальной неврологии. – 2018. – Т. 12. – № 3. – С. 5–12. [Skvortsova VI, Shetova IM, Kakorina EP, et al. Healthcare system for patients with stroke in Russia. Results of 10 years implementation of the measures aimed at improvement of medical care for patients with acute cerebrovascular events. Annals of Clinical and Experimental Neurology. 2018;12(3):5–12. (In Russ.)]
- Гусельникова В.В., Коржевский Д.Э. NeuN – нейрональный ядерный антиген и маркер дифференцировки нервных клеток // Acta Naturae. – 2015. – Т. 7. – № 2 (25). – С. 46–51. [Guselnikova VV, Korzhevskiy DE. NeuN as a neuronal nuclear antigen and neuron differentiation marker. Acta Naturae. 2015;7(2);42–47]. https://doi.org/10.32607/20758251-2015-7-2-42-47.
- Жаботинский Ю.М. Нормальная и патологическая морфология нейрона. – М.: Медицина, 1965. [Zhabotinskiy YuM. Normal’naya i patologicheskaya morfologiya neyrona. Moscow: Meditsina; 1965. (In Russ.)]
- Avci B, Kahveci N, Kahveci Z, Sirmali SA. Using microwave irradiation in Marchi's method for demonstrating degenerated myelin. Biotech Histochem. 2006;81(2–3):63–69. https://doi.org/10.1080/10520290600783044.
- Коржевский Д.Э., Петрова Е.С., Кирик О.В. и др. Нейральные маркеры, используемые при изучении дифференцировки стволовых клеток // Клеточная трансплантология и тканевая инженерия. – 2010. – Т. 5. – № 3. – С. 57–63. [Korzhevskii DE, Petrova ES, Kirik OV, et al. Neural markers in investigation of stem cells differentiation. Cellular Transplantation and Tissue Engineering. 2010;5(3):57–63. (In Russ.)]
- Михалкин А.А., Меркульева Н.С. Динамика накопления тяжелых нейрофиламентов как маркер развития зрительного таламуса кошки // Журнал эволюционной биохимии и физиологии. – 2020. – Т. 56. – № 7. – С. 646. [Mikhalkin AA, Merkulyeva NS. Dinamika nakopleniya tyazhelykh neyrofilamentov kak marker razvitiya zritel’nogo talamusa koshki. Journal of Evolutionary Biochemistry and Physiology. 2020;56(7):646. (In Russ.)]. https://doi.org/10.31857/S0044452920070979.
- Коржевский Д.Э., Кирик О.В., Байса А.Е., Власов Т.Д. Моделирование одностороннего ишемического повреждения нейронов стриатума с помощью непродолжительной окклюзии средней мозговой артерии // Бюллетень экспериментальной биологии. – 2009. – Т. 147. – № 2. – С. 217–219. [Korzhevskii DE, Kirik OV, Baisa AE, Vlasov TD. Simulation of unilateral ischemic injury to the striatal neurons inflicted by short-term occlusion of the middle cerebral artery. Bull Exp Biol Med. 2009;147(2):255–256]. https://doi.org/10.1007/s10517-009-0487-1.
- Колпакова М.Э., Бельдиман Л.Н., Яковлева А.А. и др. Применение иммуногистохимической реакции на нестин для определения размеров повреждения мозга при транзиторной окклюзии средней мозговой артерии // Патологическая физиология и экспериментальная терапия. – 2019. – Т. 63. – № 3. – С. 148–154. [Kolpakova ME, Beldiman LN, Yakovleva AA, et al. The use of a immunohistochemical reaction for nestin in determining the size of brain injury after transient occlusion of the middle cerebral artery. Pathological physiology and experimental therapy. 2019;63(3):148–154. (In Russ.)]. https://doi.org/10.25557/0031-2991.2019.03.148-154.
- Патент РФ на изобретение № RU 2719163 C1/17.04.2020. Коржевский Д.Э., Кирик О.В., Алексеева О.С. Способ демаскирования антигенов при проведении иммуноцитохимических реакций. [Patent RUS No. RU 2719163 C1/17.04.2020. Korzhevskii DE, Kirik OV, Alexeeva OS. Method of antigen retrieval during immunocytochemical reactions.]
- Григорьев И.П., Алексеева О.С., Кирик О.В. и др. Распределение низкомолекулярных белков нейрофиламентов в поясной коре головного мозга крысы // Морфология. – 2018. – Т. 154. – № 5. – С. 7–12. [Grigoriyev IP, Alekseyeva OS, Kirik OV, et al. Distribution of neurofilament light chain proteins in rat brain cingulate cortex. Morphology. 2018;154(5):7–12. (In Russ.)]
- Kluver H, Barrera E. A method for the combined staining of cells and fibers in the nervous system. J Neuropathol Exp Neurol. 1953;12(4):400–403. https://doi.org/10.1097/00005072-195312040-00008.
- Коржевская В.Ф., Сухорукова Е.Г., Кирик О.В., Коржевский Д.Э. Особенности судебно-гистологического исследования головного мозга при смерти от тупой травмы головы. – СПб., 2011. [Korzhevskaya VF, Sukhorukova YeG, Kirik OV, Korzhevskii DE. Osobennosti sudebno-gistologicheskogo issledovaniya golovnogo mozga pri smerti ot tupoy travmy golovy. Saint Petersburg; 2011.]
- Жданов Г.Н., Герасимова М.М. Иммунологические критерии в прогнозировании течения и исхода ишемического инсульта // Неврологический журнал. – 2005. – Т. 10. – № 1. – С. 19–21. [Zhdanov GN, Gerasimova ММ. Immunological criteria in pre-dieting the course and outcome of ischemic stroke. Neurological Journal. 2005;10(1):19–21. (In Russ.)]
- Gregersen R, Christensen T, Lehrmann E, et al. Focal cerebral ischemia induces increased myelin basic protein and growth-associated protein-43 gene transcription in peri-infarct areas in the rat brain. Exp Brain Res. 2001;138(3):384–392. https://doi.org/10.1007/s002210100715.
- Zhan X, Cox C, Ander BP, et al. Inflammation combined with ischemia produces myelin injury and plaque-like aggregates of myelin, amyloid-β and AβPP in adult rat brain. J Alzheimers Dis. 2015;46(2):507–523. https://doi.org/10.3233/JAD-143072.
- Yam PS, Takasago T, Dewar D, et al. Amyloid precursor protein accumulates in white matter at the margin of a focal ischaemic lesion. Brain Res. 1997;760(1–2):150–157. https://doi.org/10.1016/s0006-8993(97)00290-4.
- Morel A, Loup F, Magnin M, Jeanmonod D. Neurochemical organization of the human basal ganglia: anatomofunctional territories defined by the distributions of calcium-binding proteins and SMI-32. J Comp Neurol. 2002;443(1):86–103. https://doi.org/10.1002/cne.10096.
- Balaram P, Young NA, Kaas JH. Histological features of layers and sublayers in cortical visual areas V1 and V2 of chimpanzees, macaque monkeys, and humans. Eye Brain. 2014;6(1):5–18. https://doi.org/10.2147/EB.S51814.
- Voelker CC, Garin N, Taylor JS, et al. Selective neurofilament (SMI-32, FNP-7 and N200) expression in subpopulations of layer V pyramidal neurons in vivo and in vitro. Cereb Cortex. 2004;14(11):1276-1286. https://doi.org/10.1093/cercor/bhh089.
- Михалкин А.А., Меркульева Н.С. Методика анализа популяций γ-нейронов в латеральном коленчатом теле у кошки // Морфология. – 2016. – Т. 150. – № 4. – С. 84–89. [Mikhalkin AA, Merkulyeva NS. The method of analysis of g-neuron populations in the lateral geniculate body of the cat. Morphology. 2016;150(4):84–89. (In Russ.)]
- Ouda L, Druga R, Syka J. Distribution of SMI-32-immunoreactive neurons in the central auditory system of the rat. Brain Struct Funct. 2012;217(1):19–36. https://doi.org/10.1007/s00429-011-0329-6.
Supplementary files
