Synergistic effect of exogenous P53 and sodium butyrate on tumor cell survival
- Authors: Kovalev R.A.1, Semenova E.V.1, Shtam T.A.1,2, Burdakov V.S.1, Varfolomeeva E.Y.1
-
Affiliations:
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”
- National Research Center “Kurchatov Institute”
- Issue: Vol 25, No 3 (2025)
- Pages: 96-107
- Section: Original study articles
- URL: https://ogarev-online.ru/MAJ/article/view/380140
- DOI: https://doi.org/10.17816/MAJ641838
- EDN: https://elibrary.ru/TREHKG
- ID: 380140
Cite item
Abstract
BACKGROUND: The P53 protein is a transcription factor that regulates the expression of genes involved in numerous cellular processes, including cell cycle arrest, apoptosis, cell proliferation, and DNA repair. Its role as a multifunctional tumor suppressor makes P53 an attractive and promising target for cancer therapy.
AIM: This work aimed to analyze the combined effect of transfection with a plasmid encoding the p53 gene (a genetic approach), the histone deacetylase inhibitor sodium butyrate (epigenetic regulation), and co-cultivation with exosomes secreted by cells expressing wild-type P53 (modeling intercellular communication) on the survival of various human tumor cell lines.
METHODS: The study was conducted using four transplantable cell lines: HeLa (epithelioid cervical carcinoma) and HT-1080 (fibrosarcoma) cells harboring the wild-type p53 gene, as well as K562 (chronic myelogenous leukemia) and Gl-V (primary glioma cell culture) cells deficient in p53 (P53–/–). Cell transfection was performed using a P53-GFP plasmid constructed in the Laboratory of Cell Biology, National Research Center “Kurchatov Institute.” This plasmid encodes the P53 protein fused to green fluorescent protein (GFP) at its N-terminus. Successful transfection was confirmed by detecting P53-GFP expression using confocal microscopy. The level of P53 protein in the cells was determined by Western blotting. To quantitatively assess proliferation and cell cycle parameters under conditions of histone deacetylase inhibition, sodium butyrate (NaBu) was added to the culture medium at a final concentration of 2.5 mM. The analysis was performed using an automated cell counter, flow cytometry, or colony formation assays. Exosomes were isolated from the collected conditioned medium by ultracentrifugation.
RESULTS: When only one of the above approaches was applied, the outcome largely depended on the P53 status of the analyzed tumor cells. The combination of epigenetic modulation through inhibition of histone deacetylase activity with genetic regulation or exposure to exosomes derived from wild-type P53–expressing cells produced a pronounced synergistic effect and several-fold increase in the efficiency of tumor cell growth suppression compared with monotherapy.
CONCLUSION: It appears that a strategy combining genetic methods, epigenetic modulation, and intercellular communication mechanisms that affect different components of the P53 regulatory network may substantially enhance the efficacy of P53-targeted anticancer therapy.
About the authors
Roman A. Kovalev
Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”
Email: kovalev_ra@pnpi.nrcki.ru
ORCID iD: 0000-0003-2214-0269
SPIN-code: 1386-2357
Russian Federation, Gatchina, Leningrad Region
Elena V. Semenova
Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”
Email: semenova_el.spb@mail.ru
ORCID iD: 0000-0003-0852-6595
SPIN-code: 2758-6825
Cand. Sci. (Biology)
Russian Federation, Gatchina, Leningrad RegionTatyana A. Shtam
Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”; National Research Center “Kurchatov Institute”
Email: Shtam_ta@pnpi.nrcki.ru
ORCID iD: 0000-0003-0651-4785
SPIN-code: 3738-8187
Cand. Sci. (Biology)
Russian Federation, Gatchina, Leningrad Region; MoscowVladimir S. Burdakov
Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”
Email: Burdakov_vs@pnpi.nrcki.ru
ORCID iD: 0000-0001-6025-7367
SPIN-code: 8832-9047
Russian Federation, Gatchina, Leningrad Region
Elena Y. Varfolomeeva
Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre “Kurchatov Institute”
Author for correspondence.
Email: Varfolomeeva_EY@pnpi.nrcki.ru
ORCID iD: 0000-0003-3287-4709
SPIN-code: 9426-1667
Scopus Author ID: 6701723593
Cand. Sci. (Biology)
Russian Federation, Gatchina, Leningrad RegionReferences
- Brown CJ, Lain S, Verma CS, et al. Awakening guardian angels: drugging the p53 pathway. Nat Rev Cancer. 2009;9(12):862–873. doi: 10.1038/nrc2763 EDN: YVPHQB
- Levine AJ, Oren M. The first 30 years of p53: growing ever more complex. Nat Rev Cancer. 2009;9(10):749–758. doi: 10.1038/nrc2723 EDN: NABKIR
- Goh AM, Coffill CR, Lane DP. The role of mutant p53 in human cancer. J Pathol. 2011;223(2):116–126. doi: 10.1002/PATH.2784
- Vousden KH, Prives C. Blinded by the light: the growing complexity of p53. Cell. 2009;137(3):413–431. doi: 10.1016/j.cell.2009.04.037 EDN: MMQMUR
- Li XL, Zhou J, Chen ZR, et al. P53 mutations in colorectal cancer – molecular pathogenesis and pharmacological reactivation. World J Gastroenterol. 2015;21(1):84–93. doi: 10.3748/wjg.v21.i1.84 EDN: YVUYCN
- Makarov EM, Shtam TA, Kovalev RA, et al. The rare nonsense mutation in p53 triggers alternative splicing to produce a protein capable of inducing apoptosis. PLoS One. 2017;12(9):e0185126. doi: 10.1371/journal.pone.0185126 EDN: XNSKIQ
- Ventura A, Kirsch DG, McLaughlin ME, et al. Restoration of p53 function leads to tumour regression in vivo. Nature. 2007;445(7128):661–665. doi: 10.1038/nature05541 EDN: YYSOQD
- Xue W, Zender L, Miething C, et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature. 2007;445(7128):656–660. doi: 10.1038/nature05529 EDN: YYDQQL
- Lane DP, Cheok CF, Lain S. P53-based cancer therapy. Cold Spring Harb Perspect Biol. 2010;2(9):a001222. doi: 10.1101/cshperspect.a001222
- Turner BM. Reading signals on the nucleosome with a new nomenclature for modified histones. Nat Struct Mol Biol. 2005;12(2):110–112. doi: 10.1038/nsmb0205-110
- Semenova EV, Filatov MV. Genetic and epigenetic markers of gliomas. Cell and Tissue Biology. 2013;7(4):303–313. doi: 10.1134/S1990519X13040123 EDN: RFNTSH
- Ohashi M, Kanai F, Ueno H, et al. Adenovirus mediated p53 tumour suppressor gene therapy for human gastric cancer cells in vitro and in vivo. Gut. 1999;44(3):366–371. doi: 10.1136/gut.44.3.366
- Terui T, Murakami K, Takimoto R, et al. Induction of PIG3 and NOXA through acetylation of p53 at 320 and 373 lysine residues as a mechanism for apoptotic cell death by histone deacetylase inhibitors. Cancer Res. 2003;63(24):8948–8954.
- Bandyopadhyay D, Mishra A, Medrano E. Overexpression of histone deacetylase 1 confers resistance to sodium butyrate-mediated apoptosis in melanoma cells through a p53-mediated pathway. Cancer Res. 2004;64(21):7706–7710. doi: 10.1158/0008-5472.CAN-03-3897
- Marouco D, Garabadgiu AV, Melino G, et al. Lysine-specific modifications of p53: a matter of life and death? Oncotarget. 2013;4(10):1556–1571. doi: 10.18632/oncotarget.1436 EDN: SKYFPH
- Xie C, Wu B, Chen B, et al. Histone deacetylase inhibitor sodium butyrate suppresses proliferation and promotes apoptosis in osteosarcoma cells by regulation of the MDM2-p53 signaling. Onco Targets Ther. 2016;9:4005–4013. doi: 10.2147/OTT.S105418
- Kovalev RA, Shtam TA, Karelov DV, et al. Histone deacetylase inhibitors cause TP53-dependent induction of p21/Waf1 in tumor cells with TP53. Cell and Tissue Biology. 2015;9(3):191–197. doi: 10.1134/S1990519X15030086 EDN: UEWFIZ
- Kovalev RA, Shtamm TA, Ibatulin FM, et al. Anti-tumor therapy possibilities of epigenetic trend on models in vitro. Problems in oncology. 2012;58(6):800–807. EDN: RCAZAP
- Sossai P. Butyric acid: what is the future for this old substance? Swiss Med Wkly. 2012;142:w13596. doi: 10.4414/smw.2012.13596
- Mu D, Gao Z, Guo H, et al. Sodium butyrate induces growth inhibition and apoptosis in human prostate cancer DU145 cells by up-regulation of the expression of annexin A1. PLoS One. 2013;8(9):e74922. doi: 10.1371/journal.pone.0074922
- Bukreeva EI, Aksenov ND, Bardin AA, et al. Effect of histone deacetylase inhibitor sodium butyrate (NAB) on transformants E1A+cHa-Ras expressing wild type p53 with suppressed transactivation function. Cell and Tissue Biology. 2009;3(5)445–453. doi: 10.1134/S1990519X09050071 EDN: MWVYFF
- Guo H, Choudhury Y, Yang J, et al. Antiglioma effects of combined use of a baculovirual vector expressing wild-type p53 and sodium butyrate. J Gene Med. 2011;13(1):26–36. doi: 10.1002/jgm.1522
- Minucci S, Pelicci PG. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer. 2006;6(1):38–51. doi: 10.1038/nrc1779
- Yoo CB, Jones PA. Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov. 2006;5(1):37–50. doi: 10.1038/nrd1930
- Yu J, Qiu S, Ge Q, et al. A novel SAHA-bendamustine hybrid induces apoptosis of leukemia cells. Oncotarget. 2015;6(24):20121–20131. doi: 10.18632/oncotarget.4041
- Qiu L, Kelso MJ, Hansen C, et al. Anti-tumour activity in vitro and in vivo of selective differentiating agents containing hydroxamate. Br J Cancer. 1999;80(8):1252–1258. doi: 10.1038/sj.bjc.6690493 EDN: BRCOFB
- Lee JH, Choy ML, Ngo L, et al. Histone deacetylase inhibitor induces DNA damage, which normal but not transformed cells can repair. Proc Natl Acad Sci USA. 2010;107(33):14639–14644. doi: 10.1073/pnas.1008522107
- Grange C, Tapparo M, Collino F, et al. Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Res. 2011;71(15):5346–5356. doi: 10.1158/0008-5472.CAN-11-0241
- Kobayashi M, Salomon C, Tapia J, et al. Ovarian cancer cell invasiveness is associated with discordant exosomal sequestration of Let-7 miRNA and miR-200. J Transl Med. 2014;12:4. doi: 10.1186/1479-5876-12-4 EDN: BOYCBW
- Kovalev RA, Burdakov VS, Varfolomeeva EY, et al. Exosomes influence the engraftment of tumor cell lines in athymic mice BALB/c nude. Biosci Biotech Res Commun. 2018;11(4):535–554. doi: 10.21786/bbrc/11.4/1
- Raimondo F, Morosi L, Chinello C, et al. Advances in membranous vesicle and exosome proteomics improving biological understanding and biomarker discovery. Proteomics. 2011:11(4):709–720. doi: 10.1002/pmic.201000422
- Ung TH, Madsen HJ, Hellwinkel JE, et al. Exosome proteomics reveals transcriptional regulator proteins with potential to mediate downstream pathways. Cancer Sci. 2014;105(11):1384–1392. doi: 10.1111/cas.12534
- Yu S, Cao H, Shen B, et al. Tumor-derived exosomes in cancer progression and treatment failure. Oncotarget. 2015;6(35):37151–37168. doi: 10.18632/oncotarget.6022
- Webber J, Yeung V, Clayton A. Extracellular vesicles as modulators of the cancer microenvironment. Semin Cell Dev Biol. 2015;40:27–34. doi: 10.1016/j.semcdb.2015.01.013
- Jørgensen MM, Bæk R, Varming K. Potentials and capabilities of the extracellular vesicle (EV) array. J Extracell Vesicles. 2015;4:26048. doi: 10.3402/jev.v4.26048
- Fujita Y, Yoshioka Y, Ochiya T. Extracellular vesicle transfer of cancer pathogenic components. Cancer Sci. 2016;107(4):385–390. doi: 10.1111/cas.12896
- Shtam TA, Kovalev RA, Varfolomeeva EY, et al. Exosomes are natural carriers of exogenous siRNA to human cells in vitro. Cell Commun Signal. 2013;11:88. doi: 10.1186/1478-811X-11-88 EDN: QPDDMM
- Burdakov VS, Kovalev RA, Pantina RA, et al. Exosomes transfer p53 between cells and can suppress growth and proliferation of p53-negative cells. Cell and Tissue Biology. 2018;12(1):20–26. doi: 10.1134/S1990519X18010030 EDN: XXNGHJ
- Urata YN, Takeshita F, Tanaka H, et al. Targeted knockdown of the kinetochore protein D40/Knl-1 inhibits human cancer in a p53 status-independent manner. Sci Rep. 2015;5:13676. doi: 10.1038/srep13676
- Neubauer A, He M, Schmidt CA, et al. Genetic alterations in the p53 gene in the blast crisis of chronic myelogeneous leukemia: analysis by polymerase chain reaction based techniques. Leukemia. 1993;7(4):593–600.
- Belloc F, Dumain P, Boisseau MR, et al. A flow cytometric method using Hoechst 33342 and propidium iodide for simultaneous cell cycle analysis and apoptosis determination in unfixed cells. Cytometry. 1994;17(1):59–65. doi: 10.1002/cyto.990170108
- Naryzhny SN. Blue Dry Western: Simple, economic, informative, and fast way of immunodetection. Anal Biochem. 2009;392(1):90–95. doi: 10.1016/j.ab.2009.05.037
- Kastenhuber ER, Lowe SW. Putting p53 in context. Cell. 2017;170(6):1062–1078. doi: 10.1016/j.cell.2017.08.028
- Zhang S, Carlsen L, Hernandez Borrero L, et al. Advanced strategies for therapeutic targeting of wild-type and mutant p53 in cancer. Biomolecules. 2022;12(4):548. doi: 10.3390/biom12040548 EDN: TXXOPI
- Tchelebi L, Ashamalla H, Graves PR. Mutant p53 and the response to chemotherapy and radiation. Subcell Biochem. 2014;85:133–159. doi: 10.1007/978-94-017-9211-0_8
- Saldaña-Meyer R, Recillas-Targa F. Transcriptional and epigenetic regulation of the p53 tumor suppressor gene. Epigenetics. 2011;6(9):1068–1077. doi: 10.4161/epi.6.9.16683
- Hao Q, Lu H, Zhou X. A potential synthetic lethal strategy with PARP inhibitors: Perspective on ‘Inactivation of the tumor suppressor p53 by long noncoding RNA RMRP’. J Mol Cell Biol. 2021;13(9):690–692. doi: 10.1093/jmcb/mjab049 EDN: ZINWII
- Tazawa H, Kagawa S, Fujiwara T. Advances in adenovirus-mediated p53 cancer gene therapy. Expert Opin Biol Ther. 2013;13(11):1569–1583. doi: 10.1517/14712598.2013.845662
- Pagliaro LC, Keyhani A, Williams D, et al. Repeated intravesical instillations of an adenoviral vector in patients with locally advanced bladder cancer: a phase I study of p53 gene therapy. J Clin Oncol. 2003;2(11):22247–2253. doi: 10.1200/JCO.2003.09.138
- Gabrilovich DI. INGN 201 (Advexin): adenoviral p53 gene therapy for cancer. Expert Opin Biol Ther. 2006;6(8):823–832. doi: 10.1517/14712598.6.8.823
- Valente JFA, Queiroz JA, Sousa F. p53 as the focus of gene therapy: past, present and future. Curr Drug Targets. 2018;19(15):1801–1817. doi: 10.2174/1389450119666180115165447 EDN: JXIQGH
- Kijima M, Yoshida M, Sugita K, et al. Trapoxin, an antitumor cyclic tetrapeptide, is an irreversible inhibitor of mammalian histone deacetylase. J Biol Chem. 1993;268(30):22429–22435.
- Hsi LC, Xi X, Lotan R, et al. The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces apoptosis via induction of 15-lipoxygenase-1 in colorectal cancer cells. Cancer Res. 2004;64(23):8778–8781. doi: 10.1158/0008-5472.CAN-04-1867
- Takimoto R, Kato J, Terui T, et al. Augmentation of antitumor effects of p53 gene therapy by combination with HDAC inhibitor. Cancer Biol Ther. 2005;4(4):421–428. doi: 10.4161/cbt.4.4.1620
- Lain S, Hollick JJ, Campbell J, et al. Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator. Cancer Cell. 2008;13(5):454–463. doi: 10.1016/j.ccr.2008.03.004
Supplementary files
