Therapeutic potential of exogenous mRNA encoding recombinant antibodies against viral pathogens
- Authors: Klotchenko S.A.1, Plotnikova M.A.1
-
Affiliations:
- Smorodintsev Research Institute of Influenza
- Issue: Vol 25, No 3 (2025)
- Pages: 31-46
- Section: Analytical reviews
- URL: https://ogarev-online.ru/MAJ/article/view/380134
- DOI: https://doi.org/10.17816/MAJ642736
- EDN: https://elibrary.ru/LGOOSO
- ID: 380134
Cite item
Abstract
Antibodies produced by the human immune system in response to vaccination or pathogen exposure represent an essential—and sometimes the only—means of combating viral infections. Scientific and technological advances have led to the emergence of a new class of antiviral agents in the biopharmaceutical market: therapeutic recombinant monoclonal antibodies. However, their potential is significantly limited due to low stability and aggregation of recombinant antibodies, as well as the high cost of their production and purification. Over the past decade, the technology of transient in vivo protein expression through the delivery of exogenous mRNA encoding the protein of interest into target cells has gained widespread adoption. Exogenous mRNAs encoding recombinant antibodies can provide stable, prolonged, and safe translation of both full-length antibodies and their various truncated forms. Moreover, mRNA technologies make it possible to develop new approaches to creating protective antibodies, such as intracellular or membrane-anchored antibodies targeted to specific cell types. In 2024 alone, more than one thousand scientific papers were published on the development and use of mRNA as vaccine and therapeutic agents. This review discusses current experimental mRNA-based therapeutics encoding antibodies that exhibit protective properties against viral pathogens.
About the authors
Sergey A. Klotchenko
Smorodintsev Research Institute of Influenza
Author for correspondence.
Email: fosfatik@mail.ru
ORCID iD: 0000-0003-0289-6560
SPIN-code: 2632-6195
Russian Federation, Saint Petersburg
Marina A. Plotnikova
Smorodintsev Research Institute of Influenza
Email: biomalinka@mail.ru
ORCID iD: 0000-0001-8196-3156
SPIN-code: 2986-9850
Russian Federation, Saint Petersburg
References
- Jin X, Ren J, Li R, et al. Global burden of upper respiratory infections in 204 countries and territories, from 1990 to 2019. EClinicalMedicine. 2021;37:100986. doi: 10.1016/j.eclinm.2021.100986 EDN: IFEDZD
- Roth GA, Picece VCTM, Ou BS, et al. Designing spatial and temporal control of vaccine responses. Nat Rev Mater. 2022;7(3):174–195. doi: 10.1038/s41578-021-00372-2 EDN: VBXTGB
- Mao T, Kim J, Peña-Hernández MA, et al. Intranasal neomycin evokes broad- spectrum antiviral immunity in the upper respiratory tract. Proc Natl Acad Sci U S A. 2024;121(18):e2319566121. doi: 10.1073/pnas.2319566121 EDN: ATDKNV
- Law GL, Korth MJ, Benecke AG, Katze MG. Systems virology: host-directed approaches to viral pathogenesis and drug targeting. Nat Rev Microbiol. 2013;11(7):455–466. doi: 10.1038/nrmicro3036 EDN: RNULCL
- Casadevall A, Dadachova E, Pirofski LA. Passive antibody therapy for infectious diseases. Nat Rev Microbiol. 2004;2(9):695–703. doi: 10.1038/nrmicro974
- Buss NA, Henderson SJ, McFarlane M, et al. Monoclonal antibody therapeutics: history and future. Curr Opin Pharmacol. 2012;12(5):615–622. doi: 10.1016/j.coph.2012.08.001
- Yuseff MI, Pierobon P, Reversat A, Lennon-Duménil AM. How B cells capture, process and present antigens: a crucial role for cell polarity. Nat Rev Immunol. 2013;13(7):475–486. doi: 10.1038/nri3469
- Tonegawa S. Somatic generation of antibody diversity. Nature. 1983;302(5909):575–581. doi: 10.1038/302575a0
- Upasani V, Rodenhuis-Zybert I, Cantaert T. Antibody-independent functions of B cells during viral infections. PLoS Pathog. 2021;17(7):e1009708. doi: 10.1371/journal.ppat.1009708 EDN: SPYBUI
- Klasse PJ. Neutralization of virus infectivity by antibodies: old problems in new perspectives. Adv Biol. 2014:157895. doi: 10.1155/2014/157895
- Kim SJ, Park Y, Hong HJ. Antibody engineering for the development of therapeutic antibodies. Mol Cells. 2005;20(1):17–29. doi: 10.1016/S1016-8478(23)25245-0
- Nelson AL, Dhimolea E, Reichert JM. Development trends for human monoclonal antibody therapeutics. Nat Rev Drug Discov. 2010;9(10):767–774. doi: 10.1038/nrd3229
- Both L, Banyard AC, van Dolleweerd C, et al. Monoclonal antibodies for prophylactic and therapeutic use against viral infections. Vaccine. 2013;31(12):1553–1559. doi: 10.1016/j.vaccine.2013.01.025
- Goulet DR, Atkins WM. Considerations for the design of antibody-based therapeutics. J Pharm Sci. 2020;109(1):74–103. doi: 10.1016/j.xphs.2019.05.031 EDN: RLDGGZ
- Tiller KE, Tessier PM. Advances in antibody design. Annu Rev Biomed Eng. 2015;17:191–216. doi: 10.1146/annurev-bioeng-071114-040733
- Power CA, Bates A. David vs. Goliath: the structure, function, and clinical prospects of antibody fragments. Antibodies (Basel). 2019;8(2):28. doi: 10.3390/antib8020028
- Strohl WR. Structure and function of therapeutic antibodies approved by the US FDA in 2023. Antib Ther. 2024;7(2):132–156. doi: 10.1093/abt/tbae007 EDN: MRPFVR
- Mokhtary P, Pourhashem Z, Mehrizi AA, et al. Recent progress in the discovery and development of monoclonal antibodies against viral infections. Biomedicines. 2022;10(8):1861. doi: 10.3390/biomedicines10081861 EDN: GYIZII
- Sivapalasingam S, Kamal M, Slim R, et al. Safety, pharmacokinetics, and immunogenicity of a co-formulated cocktail of three human monoclonal antibodies targeting Ebola virus glycoprotein in healthy adults: a randomised, first-in-human phase 1 study. Lancet Infect Dis. 2018;18(8):884–893. doi: 10.1016/S1473-3099(18)30397-9
- Akinosoglou K, Rigopoulos EA, Kaiafa G, et al. Tixagevimab/cilgavimab in SARS-CoV-2 prophylaxis and therapy: a comprehensive review of clinical experience. Viruses. 2022;15(1):118. doi: 10.3390/v15010118 EDN: LMHNVR
- Johnson S, Oliver C, Prince GA, et al. Development of a humanized monoclonal antibody (MEDI-493) with potent in vitro and in vivo activity against respiratory syncytial virus. J Infect Dis. 1997;176(5):1215–1224. doi: 10.1086/514115
- Palivizumab, a humanized respiratory syncytial virus monoclonal antibody, reduces hospitalization from respiratory syncytial virus infection in high-risk infants. The IMpact-RSV study group. Pediatrics. 1998;102(3 Pt 1):531–537. doi: 10.1542/peds.102.3.531
- Griffin MP, Khan AA, Esser MT, et al. Safety, tolerability, and pharmacokinetics of MEDI8897, the respiratory syncytial virus prefusion F-targeting monoclonal antibody with an extended half-life, in healthy adults. Antimicrob Agents Chemother. 2017;61(3):e01714–01716. doi: 10.1128/aac.01714-16
- Hammitt LL, Dagan R, Yuan Y, et al. Nirsevimab for prevention of RSV in healthy late-preterm and term infants. N Engl J Med. 2022;386(9):837–846. doi: 10.1056/nejmoa2110275 EDN: DGTHEB
- Farber HJ, Buckwold FJ, Lachman B, et al. Observed effectiveness of palivizumab for 29-36-week gestation infants. Pediatrics. 2016;138(2):e20160627. doi: 10.1542/peds.2016-0627
- Wang W, Wang EQ, Balthasar JP. Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther. 2008;84(5):548–558. doi: 10.1038/clpt.2008.170
- Birch JR, Racher AJ. Antibody production. Adv Drug Deliv Rev. 2006;58(5–6):671–685. doi: 10.1016/j.addr.2005.12.006 EDN: JIEHDA
- Schlake T, Thess A, Thran M, Jordan I. mRNA as novel technology for passive immunotherapy. Cell Mol Life Sci. 2019;76(2):301–328. doi: 10.1007/s00018-018-2935-4 EDN: RUIMJP
- Van Hoecke L, Roose K. How mRNA therapeutics are entering the monoclonal antibody field. J Transl Med. 2019;17(1):54. doi: 10.1186/s12967-019-1804-8 EDN: UOROET
- Deal CE, Carfi A, Plante OJ. Advancements in mRNA encoded antibodies for passive immunotherapy. Vaccines. 2021;9(2):108. doi: 10.3390/vaccines9020108 EDN: IVLMSH
- Wang YS, Kumari M, Chen GH, et al. mRNA-based vaccines and therapeutics: an in-depth survey of current and upcoming clinical applications. J Biomed Sci. 2023;30(1):84. doi: 10.1186/s12929-023-00977-5 EDN: CFCPDU
- Parhiz H, Atochina-Vasserman EN, Weissman D. mRNA-based therapeutics: looking beyond COVID-19 vaccines. Lancet. 2024;403(10432):1192–1204. doi: 10.1016/S0140-6736(23)02444-3 EDN: RHVMKA
- Shi Y, Shi M, Wang Y, You J. Progress and prospects of mRNA-based drugs in pre-clinical and clinical applications. Signal Transduct Target Ther. 2024;9(1):322. doi: 10.1038/s41392-024-02002-z EDN: CLBRYH
- Pardi N, Krammer F. mRNA vaccines for infectious diseases — advances, challenges and opportunities. Nat Rev Drug Discov. 2024;23(11):838–861. doi: 10.1038/s41573-024-01042-y EDN: DWHRAZ
- Sahin U, Karikó K, Türeci Ö. MRNA-based therapeutics — developing a new class of drugs. Nat Rev Drug Discov. 2014;13(10):759–780. doi: 10.1038/nrd4278
- Hou X, Shi J, Xiao Y. mRNA medicine: recent progresses in chemical modification, design, and engineering. Nano Res. 2024;17(10):9015–9030. doi: 10.1007/s12274-024-6978-6 EDN: DCGZWI
- Orlandini von Niessen AG, Poleganov MA, Rechner C, et al. Improving mRNA-Based therapeutic gene delivery by expression-augmenting 3ʹ UTRs identified by cellular library screening. Mol Ther. 2019;27(4):824–836. doi: 10.1016/j.ymthe.2018.12.011
- Mamaghani S, Penna RR, Frei J, et al. Synthetic mRNAs containing minimalistic untranslated regions are highly functional in vitro and in vivo. Cells. 2024;13(15):1242. doi: 10.3390/cells13151242 EDN: VWPUAC
- Leppek K, Das R, Barna M. Functional 5ʹ UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat Rev Mol Cell Biol. 2018;19(3):158–174. doi: 10.1038/nrm.2017.103 EDN: YECJLV
- Nelson J, Sorensen EW, Mintri S, et al. Impact of mRNA chemistry and manufacturing process on innate immune activation. Sci Adv. 2020;6(26):eaaz6893. doi: 10.1126/sciadv.aaz6893 EDN: ZWDMKE
- Verbeke R, Hogan MJ, Loré K, Pardi N. Innate immune mechanisms of mRNA vaccines. Immunity. 2022;55(11):1993–2005. doi: 10.1016/j.immuni.2022.10.014 EDN: KBSXUM
- Karikó K, Buckstein M, Ni H, Weissman D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity. 2005;23(2):165–175. doi: 10.1016/j.immuni.2005.06.008
- Karikó K, Muramatsu H, Welsh FA, et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther. 2008;16(11):1833–1840. doi: 10.1038/mt.2008.200
- Anderson BR, Muramatsu H, Nallagatla SR, et al. Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Res. 2010;38(17):5884–5892. doi: 10.1093/nar/gkq347 EDN: NZEKMZ
- Kormann MSD, Hasenpusch G, Aneja MK, et al. Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nat Biotechnol. 2011;29(2):154–157. doi: 10.1038/nbt.1733 EDN: OAIXEF
- Qin S, Tang X, Chen Y, et al. mRNA-based therapeutics: powerful and versatile tools to combat diseases. Signal Transduct Target Ther. 2022;7(1):166. doi: 10.1038/s41392-022-01007-w EDN: DVAMRC
- Karikó K, Weissman D. Naturally occurring nucleoside modifications suppress the immunostimulatory activity of RNA: implication for therapeutic RNA development. Curr Opin Drug Discov Dev. 2007;10(5):523–532.
- Karikó K, Ni H, Capodici J, et al. mRNA is an endogenous ligand for Toll-like receptor 3. J Biol Chem. 2004;279(13):12542–12550. doi: 10.1074/jbc.M310175200
- Karikó K, Muramatsu H, Ludwig J, Weissman D. Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res. 2011;39(21):e142. doi: 10.1093/nar/gkr695
- Baiersdörfer M, Boros G, Muramatsu H, et al. A facile method for the removal of dsRNA contaminant from in vitro-transcribed mRNA. Mol Ther Nucleic Acids. 2019;15:26–35. doi: 10.1016/j.omtn.2019.02.018
- Hamers-Casterman C, Atarhouch T, Muyldermans S, et al. Naturally occurring antibodies devoid of light chains. Nature. 1993;363(6428):446–448. doi: 10.1038/363446a0
- Harmsen MM, De Haard HJ. Properties, production, and applications of camelid single-domain antibody fragments. Appl Microbiol Biotechnol. 2007;77(1):13–22. doi: 10.1007/s00253-007-1142-2 EDN: MLPEJD
- Muyldermans S. Nanobodies: natural single-domain antibodies. Annu Rev Biochem. 2013;82:775–797. doi: 10.1146/annurev-biochem-063011-092449 EDN: RMCHVP
- Rabbitts TH. Intracellular antibodies for drug discovery and as drugs of the future. Antibodies (Basel). 2023;12(1):24. doi: 10.3390/antib12010024 EDN: GFWHLG
- Lorenz C, Fotin-Mleczek M, Roth G, et al. Protein expression from exogenous mRNA: uptake by receptor-mediated endocytosis and trafficking via the lysosomal pathway. RNA Biol. 2011;8(4):627–636. doi: 10.4161/rna.8.4.15394
- Kowalski PS, Rudra A, Miao L, Anderson DG. Delivering the messenger: advances in technologies for therapeutic mRNA delivery. Mol Ther. 2019;27(4):710–728. doi: 10.1016/j.ymthe.2019.02.012 EDN: QMWQWY
- Pardi N, Tuyishime S, Muramatsu H, et al. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. J Control Release. 2015;217:345–351. doi: 10.1016/j.jconrel.2015.08.007
- Hou X, Zaks T, Langer R, Dong Y. Lipid nanoparticles for mRNA delivery. Nat Rev Mater. 2021;6(12):1078–1094. doi: 10.1038/s41578-021-00358-0 EDN: WGZZCB
- Vasileva O, Zaborova O, Shmykov B, et al. Composition of lipid nanoparticles for targeted delivery: application to mRNA therapeutics. Front Pharmacol. 2024;15:1466337. doi: 10.3389/fphar.2024.1466337 EDN: DGNZPT
- Kulkarni JA, Witzigmann D, Chen S, et al. Lipid nanoparticle technology for clinical translation of siRNA therapeutics. Acc Chem Res. 2019;52(9):2435–2444. doi: 10.1021/acs.accounts.9b00368
- Cheng Q, Wei T, Farbiak L, et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nat Nanotechnol. 2020;15(4):313–320. doi: 10.1038/s41565-020-0669-6 EDN: NNRWEO
- Tiwari PM, Vanover D, Lindsay KE, et al. Engineered mRNA-expressed antibodies prevent respiratory syncytial virus infection. Nat Commun. 2018;9(1)3999. doi: 10.1038/s41467-018-06508-3 EDN: UDXCUN
- Pyzik M, Sand KMK, Hubbard JJ, et al. The neonatal Fc receptor (FcRn): a misnomer? Front Immunol. 2019;10:1540. doi: 10.3389/fimmu.2019.01540 EDN: CAAJSX
- Chung C, Kudchodkar SB, Chung CN, et al. Expanding the reach of monoclonal antibodies: a review of synthetic nucleic acid delivery in immunotherapy. Antibodies (Basel). 2023;12(3):46. doi: 10.3390/antib12030046 EDN: SJMSML
- Zhao Y, Gan L, Ke D, et al. Mechanisms and research advances in mRNA antibody drug-mediated passive immunotherapy. J Transl Med. 2023;21(1):693. doi: 10.1186/s12967-023-04553-1 EDN: HSDDLG
- Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256(5517):495–497. doi: 10.1038/256495a0
- Nadler LM, Stashenko P, Hardy R, et al. Serotherapy of a patient with a monoclonal antibody directed against a human lymphoma-associated antigen. Cancer Res. 1980;40(9):3147–3154.
- Burke B, Warren G. Microinjection of mRNA coding for an anti-golgi antibody inhibits intracellular transport of a viral membrane protein. Cell. 1984;36(4):847–856. doi: 10.1016/0092-8674(84)90034-5
- Wolff JA, Malone RW, Williams P, et al. Direct gene transfer into mouse muscle in vivo. Science. 1990;247(4949 Pt 1):1465–1468. doi: 10.1126/science.1690918
- No. US12/522,214. 2008. Hoerr I, Probst J, Pascolo S. RNA-coded antibody. United States patent https://patents.google.com/patent/US11421038B2/en
- Pardi N, Secreto AJ, Shan X, et al. Administration of nucleoside-modified mRNA encoding broadly neutralizing antibody protects humanized mice from HIV-1 challenge. Nat Commun. 2017;8:14630. doi: 10.1038/ncomms14630
- Wu X, Yang ZY, Li Y, et al. Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science. 2010;329(5993):856–861. doi: 10.1126/science.1187659
- Safety, tolerability, pharmacokinetics, and pharmacodynamics of mRNA-1944 in healthy adults. In: ClinicalTrials [Internet]. Available from: https://clinicaltrials.gov/study/NCT03829384 Accessed: Sept 16, 2025.
- Kose N, Fox JM, Sapparapu G, et al. A lipid-encapsulated mRNA encoding a potently neutralizing human monoclonal antibody protects against chikungunya infection. Sci Immunol. 2019;4(35):eaaw6647. doi: 10.1126/sciimmunol.aaw6647
- August A, Attarwala HZ, Himansu S, et al. A phase 1 trial of lipid-encapsulated mRNA encoding a monoclonal antibody with neutralizing activity against Chikungunya virus. Nat Med. 2021;27(12):2224–2233. doi: 10.1038/s41591-021-01573-6 EDN: UGWWQK
- Thran M, Mukherjee J, Pönisch M, et al. mRNA mediates passive vaccination against infectious agents, toxins, and tumors. EMBO Mol Med. 2017;9(10):1434–1447. doi: 10.15252/emmm.201707678 EDN: YJOQVG
- Prosniak M, Faber M, Hanlon CA, et al. Development of a cocktail of recombinant-expressed human rabies virus-neutralizing monoclonal antibodies for postexposure prophylaxis of rabies. J Infect Dis. 2003;188(1):53–56. doi: 10.1086/375247
- Dreyfus C, Laursen NS, Kwaks T, et al. Highly conserved protective epitopes on influenza B viruses. Science. 2012;337(6100):1343–1348. doi: 10.1126/science.1222908
- Griffiths C, Drews SJ, Marchant DJ. Respiratory syncytial virus: infection, detection, and new options for prevention and treatment. Clin Microbiol Rev. 2017;30(1):277–319. doi: 10.1128/CMR.00010-16 EDN: YXAMQJ
- Rossey I, Gilman MSA, Kabeche SC, et al. Potent single-domain antibodies that arrest respiratory syncytial virus fusion protein in its prefusion state. Nat Commun. 2017;8:14158. doi: 10.1038/ncomms14158
- Lindsay KE, Vanover D, Thoresen M, et al. Aerosol delivery of synthetic mRNA to vaginal mucosa leads to durable expression of broadly neutralizing antibodies against HIV. Mol Ther. 2020;28(3):805–819. doi: 10.1016/j.ymthe.2020.01.002 EDN: QGOQYE
- Moldt B, Rakasz EG, Schultz N, et al. Highly potent HIV-specific antibody neutralization in vitro translates into effective protection against mucosal SHIV challenge in vivo. Proc Natl Acad Sci U S A. 2012;109(46):18921–18925. doi: 10.1073/pnas.1214785109
- Narayanan E, Falcone S, Elbashir SM, et al. Rational design and in vivo characterization of mRNA-encoded broadly neutralizing antibody combinations against HIV-1. Antibodies (Basel). 2022;11(4):67. doi: 10.3390/antib11040067 EDN: OYNZNY
- Sok D, van Gils MJ, Pauthner M, et al. Recombinant HIV envelope trimer selects for quaternary-dependent antibodies targeting the trimer apex. Proc Natl Acad Sci U S A. 2014;111(49):17624–17629. doi: 10.1073/pnas.1415789111
- Mouquet H, Scharf L, Euler Z, et al. Complex-type N-glycan recognition by potent broadly neutralizing HIV antibodies. Proc Natl Acad Sci U S A. 2012;109(47):E3268–3277. doi: 10.1073/pnas.1217207109
- Huang J, Kang BH, Ishida E, et al. Identification of a CD4-Binding-Site antibody to HIV that evolved near-pan neutralization breadth. Immunity. 2016;45(5):1108–1121. doi: 10.1016/j.immuni.2016.10.027
- Dickie P, Felser J, Eckhaus M, et al. HIV-associated nephropathy in transgenic mice expressing HIV-1 genes. Virology. 1991;185(1):109–119. doi: 10.1016/0042-6822(91)90759-5
- Geall AJ, Verma A, Otten GR, et al. Nonviral delivery of self-amplifying RNA vaccines. Proc Natl Acad Sci U S A. 2012;109(36):14604–14609. doi: 10.1073/pnas.1209367109
- Erasmus JH, Archer J, Fuerte-Stone J, et al. Intramuscular delivery of replicon RNA encoding ZIKV-117 human monoclonal antibody protects against Zika virus infection. Mol Ther Methods Clin Dev. 2020;18:402–414. doi: 10.1016/j.omtm.2020.06.011 EDN: YGTGTW
- Sapparapu G, Fernandez E, Kose N, et al. Neutralizing human antibodies prevent Zika virus replication and fetal disease in mice. Nature. 2016;540(7633):443–447. doi: 10.1038/nature20564
- Frolov I, Hoffman TA, Prágai BM, et al. Alphavirus-based expression vectors: strategies and applications. Proc Natl Acad Sci U S A. 1996;93(21):11371–11377. doi: 10.1073/pnas.93.21.11371
- Lazear HM, Govero J, Smith AM, et al. A mouse model of Zika virus pathogenesis. Cell Host Microbe. 2016;19(5):720–730. doi: 10.1016/j.chom.2016.03.010
- Van Hoecke L, Verbeke R, De Vlieger D, et al. mRNA encoding a bispecific single domain antibody construct protects against influenza A virus infection in mice. Mol Ther Nucleic Acids. 2020;20:777–787. doi: 10.1016/j.omtn.2020.04.015 EDN: PQOOWQ
- De Vlieger D, Hoffmann K, Van Molle I, et al. Selective engagement of FcγRIV by a M2e-specific single domain antibody construct protects against influenza A virus infection. Front Immunol. 2019;10:2920. doi: 10.3389/fimmu.2019.02920 EDN: EGSFKT
- Suurs F V, Lub-de Hooge MN, de Vries EGE, de Groot DJA. A review of bispecific antibodies and antibody constructs in oncology and clinical challenges. Pharmacol Ther. 2019;201:103–119. doi: 10.1016/j.pharmthera.2019.04.006 EDN: LCRPKH
- Li JQ, Zhang ZR, Zhang HQ, et al. Intranasal delivery of replicating mRNA encoding neutralizing antibody against SARS-CoV-2 infection in mice. Signal Transduct Target Ther. 2021;6(1):369. doi: 10.1038/s41392-021-00783-1 EDN: JBYTGJ
- Shi R, Shan C, Duan X, et al. A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2. Nature. 2020;584(7819):120–124. doi: 10.1038/s41586-020-2381-y EDN: FLFOYB
- Chen Y, Zhang YN, Yan R, et al. ACE2-targeting monoclonal antibody as potent and broad-spectrum coronavirus blocker. Signal Transduct Target Ther. 2021;6(1):315. doi: 10.1038/s41392-021-00740-y EDN: BBRKDL
- Zhang YN, Zhang HQ, Wang GF, et al. Intranasal delivery of replicating mRNA encoding hACE2-targeting antibody against SARS-CoV-2 Omicron infection in the hamster. Antiviral Res. 2023;209:105507. doi: 10.1016/j.antiviral.2022.105507 EDN: XMENRO
- Deng YQ, Zhang NN, Zhang YF, et al. Lipid nanoparticle-encapsulated mRNA antibody provides long-term protection against SARS-CoV-2 in mice and hamsters. Cell Res. 2022;32(4):375–382. doi: 10.1038/s41422-022-00630-0 EDN: LPWZUG
- Zhu L, Deng YQ, Zhang RR, et al. Double lock of a potent human therapeutic monoclonal antibody against SARS-CoV-2. Natl Sci Rev. 2020;8(3):nwaa297. doi: 10.1093/nsr/nwaa297 EDN: LJUWZA
- Zost SJ, Gilchuk P, Case JB, et al. Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature. 2020;584(7821):443–449. doi: 10.1038/s41586-020-2548-6 EDN: GNZVGO
- Li D, Edwards RJ, Manne K, et al. In vitro and in vivo functions of SARS-CoV-2 infection-enhancing and neutralizing antibodies. Cell. 2021;184(16):4203–4219.e32. doi: 10.1016/j.cell.2021.06.021 EDN: ODXMVL
- Vanover D, Zurla C, Peck HE, et al. Nebulized mRNA-encoded antibodies protect hamsters from SARS-CoV-2 infection. Adv Sci (Weinh). 2022;9(34):e2202771. doi: 10.1002/advs.202202771 EDN: PPJTOV
- Rotolo L, Vanover D, Bruno NC, et al. Species-agnostic polymeric formulations for inhalable messenger RNA delivery to the lung. Nat Mater. 2023;22(3):369–379. doi: 10.1038/s41563-022-01404-0 EDN: LFAZNU
- Tai W, Yang K, Liu Y, et al. A lung-selective delivery of mRNA encoding broadly neutralizing antibody against SARS-CoV-2 infection. Nat Commun. 2023;14(1):8042. doi: 10.1038/s41467-023-43798-8 EDN: IYJVMT
- Zhang Y, Tian C, Yu X, et al. Lung-selective delivery of mrna-encoding anti-MERS-CoV nanobody exhibits neutralizing activity both in vitro and in vivo. Vaccines (Basel). 2024;12(12):1315. doi: 10.3390/vaccines12121315 EDN: XNSKXJ
- Zhao G, He L, Sun S, et al. A novel nanobody targeting middle east respiratory syndrome coronavirus (MERS-CoV) receptor-binding domain has potent cross-neutralizing activity and protective efficacy against MERS-CoV. J Virol. 2018;92(18):e00837-18. doi: 10.1128/JVI.00837-18
- Chen B, Chen Y, Li J, et al. A single dose of anti-HBsAg antibody-encoding mRNA-LNPs suppressed HBsAg expression: a potential cure of chronic hepatitis B virus infection. mBio. 2022;13(4):e0161222. doi: 10.1128/mbio.01612-22 EDN: AXBZPA
- Wang W, Sun L, Li T, et al. A human monoclonal antibody against small envelope protein of hepatitis B virus with potent neutralization effect. MAbs. 2016;8(3):468–477. doi: 10.1080/19420862.2015.1134409
- Mucker EM, Thiele-Suess C, Baumhof P, Hooper JW. Lipid nanoparticle delivery of unmodified mRNAs encoding multiple monoclonal antibodies targeting poxviruses in rabbits. Mol Ther Nucleic Acids. 2022;28:847–858. doi: 10.1016/j.omtn.2022.05.025 EDN: KHZHFW
- Wolffe EJ, Vijaya S, Moss B. A myristylated membrane protein encoded by the vaccinia virus L1R open reading frame is the target of potent neutralizing monoclonal antibodies. Virology. 1995;211(1):53–63. doi: 10.1006/viro.1995.1378
- Chen Z, Earl P, Americo J, et al. Chimpanzee/human mAbs to vaccinia virus B5 protein neutralize vaccinia and smallpox viruses and protect mice against vaccinia virus. Proc Natl Acad Sci U S A. 2006;103(6):1882–1887. doi: 10.1073/pnas.0510598103
- Chen Z, Earl P, Americo J, et al. Characterization of chimpanzee/human monoclonal antibodies to vaccinia virus A33 glycoprotein and its variola virus homolog in vitro and in a vaccinia virus mouse protection model. J Virol. 2007;81(17):8989–8995. doi: 10.1128/JVI.00906-07
- Chi H, Zhao SQ, Chen RY, et al. Rapid development of double-hit mRNA antibody cocktail against orthopoxviruses. Signal Transduct Target Ther. 2024;9(1):69. doi: 10.1038/s41392-024-01766-8
- Fan P, Sun B, Liu Z, et al. A pan-orthoebolavirus neutralizing antibody encoded by mRNA effectively prevents virus infection. Emerg Microbes Infect. 2024;13(1):2432366. doi: 10.1080/22221751.2024.2432366 EDN: RHZKHK
- Fan P, Chi X, Liu G, et al. Potent neutralizing monoclonal antibodies against Ebola virus isolated from vaccinated donors. MAbs. 2020;12(1):1742457. doi: 10.1080/19420862.2020.1742457 EDN: NZKRWW
- Monoclonal antibody A38 for resisting Valley fever virus and application [Internet]. 2024. p. CN114605528B. https://patents.google.com/patent/CN114605528B/en
- Wang S, Zhu Z, Li J. Pharmacokinetic analyses of a lipid nanoparticle-encapsulated mRNA-encoded antibody against rift valley fever virus. Mol Pharm. 2024;21(3):1342–1352. doi: 10.1021/acs.molpharmaceut.3c01016 EDN: DXUHLH
- Sabnis S, Kumarasinghe ES, Salerno T, et al. A novel amino lipid series for mRNA delivery: improved endosomal escape and sustained pharmacology and safety in non-human primates. Mol Ther. 2018;26(6):1509–1519. doi: 10.1016/j.ymthe.2018.03.010 EDN: VGASBP
Supplementary files

