Advantages and disadvantages of using silver nanoparticles in medicine. Benefits of silver nanoparticle composites with organic antibacterial substances and biocompatible polymers
- Authors: Vladimirova E.V.1, Shamova O.V.1
-
Affiliations:
- Institute of Experimental Medicine
- Issue: Vol 25, No 3 (2025)
- Pages: 5-21
- Section: Analytical reviews
- URL: https://ogarev-online.ru/MAJ/article/view/380132
- DOI: https://doi.org/10.17816/MAJ635890
- EDN: https://elibrary.ru/WIZXYC
- ID: 380132
Cite item
Abstract
The development of bacterial resistance to drugs currently used in clinical practice remains a major challenge in modern medicine. Nanoparticles are now widely applied in various industries, including medicine. Silver nanoparticles exhibit broad-spectrum antibacterial activity against both Gram-negative and Gram-positive bacteria, including multidrug-resistant strains, as well as bacteria within biofilms. Silver nanoparticles possess multiple antimicrobial targets, which makes the development of microbial resistance to them difficult. In addition, silver demonstrates other types of biological activity, including wound-healing, anti-inflammatory, and antitumor effects. However, despite the undeniable advantages of these nanomaterials, their medical application remains limited by certain adverse effects on living organisms. The wide range of biological properties and potential toxicity of silver nanoparticles are determined by their size and shape, the synthesis method, and the type of stabilizing agent used. This review provides information on approaches to modifying silver nanoparticles with antibacterial agents such as antibiotics and antimicrobial peptides, which show synergistic or additive effects against pathogenic bacteria when combined with nanoparticles. The creation of such complexes enhances antimicrobial activity and improves nanoparticle stability. Therefore, composites of silver nanoparticles with organic antibacterial agents and biocompatible polymers can be considered a promising platform for the development of new, effective antibacterial preparations with reduced undesirable properties.
About the authors
Elizaveta V. Vladimirova
Institute of Experimental Medicine
Email: vladymyrovaliza18@mail.ru
ORCID iD: 0000-0002-6576-9844
SPIN-code: 8068-4141
Russian Federation, Saint Petersburg
Olga V. Shamova
Institute of Experimental Medicine
Author for correspondence.
Email: oshamova@yandex.ru
ORCID iD: 0000-0002-5168-2801
SPIN-code: 2913-4726
Dr. Sci. (Biology), Corresponding Member of the Russian Academy of Sciences
Russian Federation, Saint PetersburgReferences
- Hong L, Luo SH, Yu CH, et al. Functional nanomaterials and their potential applications in antibacterial therapy. Pharm Nanotechnol. 2019;7(2):129–146. doi: 10.2174/2211738507666190320160802
- Betts JW, Hornsey M, La Ragione RM. Novel antibacterials: alternatives to traditional antibiotics. Adv Microb Physiol. 2018;73:123–169. doi: 10.1016/bs.ampbs.2018.06.001 EDN: YJVGMP
- Bruna T, Maldonado-Bravo F, Jara P, Caro N. Silver nanoparticles and their antibacterial applications. Int J Mol Sci. 2021;22(13):7202. doi: 10.3390/ijms22137202 EDN: ZDZBXM
- Kowalczyk P, Szymczak M, Maciejewska M, et al. All that glitters is not silver-A new look at microbiological and medical applications of silver nanoparticles. Int J Mol Sci. 2021;22(2):1–29. doi: 10.3390/ijms22020854 EDN: QEGENO
- Deshmukh SP, Patil SM, Mullani SB, Delekar SD. Silver nanoparticles as an effective disinfectant: a review. Mater Sci Eng C Mater Biol Appl. 2019;97:954–965. doi: 10.1016/j.msec.2018.12.102
- Li L, Stoiber M, Wimmer A, et al. To what extent can full-scale wastewater treatment plant effluent influence the occurrence of silver-based nanoparticles in surface waters? Environ Sci Technol. 2016;50(12):6327–6333. doi: 10.1021/acs.est.6b00694
- Li P, Su M, Wang X, et al. Environmental fate and behavior of silver nanoparticles in natural estuarine systems. J Environ Sci. 2020;88:248–259. doi: 10.1016/j.jes.2019.09.013 EDN: ICNUCO
- Wimmer A, Urstoeger A, Funck NC, et al. What happens to silver-based nanoparticles if they meet seawater? Water Res. 2020;171:115399. doi: 10.1016/j.watres.2019.115399 EDN: QKGGQD
- Lee JH, Mun J, Park JD, Yu IJ. A health surveillance case study on workers who manufacture silver nanomaterials. Nanotoxicology. 2012;6(6):667–669. doi: 10.3109/17435390.2011.600840
- Ferdous Z, Nemmar A. Health impact of silver nanoparticles: a review of the biodistribution and toxicity following various routes of exposure. Int J Mol Sci. 2020;21(7):2375. doi: 10.3390/ijms21072375 EDN: OSGAEA
- Tran QH, Nguyen VQ, Le AT. Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv Nat Sci Nanosci Nanotechnol. 2013;4(3):033001. doi: 10.1088/2043-6262/4/3/033001 EDN: SOFTKX
- Yaqoob AA, Umar K, Ibrahim MNM. Silver nanoparticles: various methods of synthesis, size affecting factors and their potential applications — a review. Appl Nanosci. 2020;10(5):1369–1378. doi: 10.1007/s13204-020-01318-w EDN: ABMMGC
- Zhang XF, Liu ZG, Shen W, Gurunathan S. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci. 2016;17(9):1534. doi: 10.3390/ijms17091534 EDN: XTTASF
- Elsupikhe RF, Shameli K, Ahmad MB, et al. Green sonochemical synthesis of silver nanoparticles at varying concentrations of κ-carrageenan. Nanoscale Res Lett. 2015;10(1):302. doi: 10.1186/s11671-015-0916-1 EDN: NXNCJW
- Dung TMD, Le TTT, Fribourg-Blanc E, Dang MC. Influence of surfactant on the preparation of silver nanoparticles by polyol method. Adv Nat Sci Nanosci Nanotechnol. 2012;3(3):035004. doi: 10.1088/2043-6262/3/3/035004
- Krutyakov YA, Kudrinskiy AA, Olenin AY, Lisichkin GV. Synthesis and properties of silver nanoparticles: advances and prospects. Russ Chem Rev. 2008;77(3):233–257. doi: 10.1070/RC2008v077n03ABEH003751 EDN: LLIPLX
- Nam KT, Lee YJ, Krauland EM, et al. Peptide-mediated reduction of silver ions on engineered biological scaffolds. ACS Nano. 2008;2(7):1480–1486. doi: 10.1021/nn800018n
- Sintubin L, De Windt W, Dick J, et al. Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl Microbiol Biotechnol. 2009;84(4):741–749. doi: 10.1007/s00253-009-2032-6 EDN: HMEGAG
- Balaji DS, Basavaraja S, Deshpande R, et al. Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf B Biointerfaces. 2009;68(1):88–92. doi: 10.1016/j.colsurfb.2008.09.022 EDN: MCTCMH
- Chung IM, Park I, Seung-Hyun K, et al. Plant-mediated synthesis of silver nanoparticles: their characteristic properties and therapeutic applications. Nanoscale Res Lett. 2016;11(1):40. doi: 10.1186/s11671-016-1257-4 EDN: HEJSCC
- Korshed P, Li L, Liu Z, et al. Size-dependent antibacterial activity for laser-generated silver nanoparticles. J Interdiscip Nanomed. 2019;4(1):24–33. doi: 10.1002/jin2.54
- Cavassin ED, de Figueiredo LF, Otoch JP, et al. Comparison of methods to detect the in vitro activity of silver nanoparticles (AgNP) against multidrug resistant bacteria. J Nanobiotechnology. 2015;13(1):64. doi: 10.1186/s12951-015-0120-6 EDN: TUVZVG
- Marambio-Jones C, Hoek EMV. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res. 2010;12(5):1531–1551. doi: 10.1007/s11051-010-9900-y EDN: NAWQFD
- Qing Y, Cheng L, Li R, et al. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int J Nanomedicine. 2018;13:3311–3327. doi: 10.2147/IJN.S165125
- Dakal TC, Kumar A, Majumdar RS, Yadav V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol. 2016;7:1831. doi: 10.3389/fmicb.2016.01831 EDN: XZNZHB
- Swolana D, Wojtyczka RD. Activity of silver nanoparticles against Staphylococcus spp. Int J Mol Sci. 2022;23(8):4298. doi: 10.3390/ijms23084298 EDN: LKOKGB
- Klueh U, Wagner V, Kelly S, et al. Efficacy of silver-coated fabric to prevent bacterial colonization and subsequent device-based biofilm formation. J Biomed Mater Res. 2000;53(6):621–631. doi: 10.1002/1097-4636(2000)53:6<621::AID-JBM2>3.0.CO;2-Q
- Yamanaka M, Hara K, Kudo J. Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl Environ Microbiol. 2005;71(11):7589–7593. doi: 10.1128/AEM.71.11.7589-7593.2005
- Durán N, Marcato PD, Conti R De, et al. Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action. J Braz Chem Soc. 2010;21(6):949–959. doi: 10.1590/S0103-50532010000600002
- Slawson RM, Lee H, Trevors JT. Bacterial interactions with silver. Biol Met. 1990;3(3–4):151–154. doi: 10.1007/BF01140573 EDN: HNWRKT
- Panzner MJ, Bilinovich SM, Parker JA, et al. Isomorphic deactivation of a Pseudomonas aeruginosa oxidoreductase: The crystal structure of Ag(I) metallated azurin at 1.7 Å. J Inorg Biochem. 2013;128:11–16. doi: 10.1016/j.jinorgbio.2013.07.011
- Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol. 2007;73(6):1712–1720. doi: 10.1128/AEM.02218-06
- Tang S, Zheng J. Antibacterial activity of silver nanoparticles: structural effects. Adv Healthc Mater. 2018;7(13):e1701503. doi: 10.1002/adhm.201701503
- Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomed. 2017;12:1227–1249. doi: 10.2147/IJN.S121956 EDN: WLABYY
- Jo DH, Kim JH, Lee TG, Kim JH. Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomedicine. 2015;11(7):1603–1611. doi: 10.1016/j.nano.2015.04.015 EDN: VETAOL
- Xu L, Wang YY, Huang J, et al. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics. 2020;10(20):8996–9031. doi: 10.7150/thno.45413 EDN: EQOPYZ
- Sharma VK, Zboril R. Silver nanoparticles in natural environment: formation, fate, and toxicity. In: Yan B, Zhou H, Gardea-Torresdey JL, eds. Bioactivity of Engineered Nanoparticles. Springer; 2017. P. 239–258. doi: 10.1007/978-981-10-5864-6_10
- Burkowska-But A, Sionkowski G, Walczak M. Influence of stabilizers on the antimicrobial properties of silver nanoparticles introduced into natural water. J Environ Sci. 2014;26(3):542–549. doi: 10.1016/S1001-0742(13)60451-9
- dos Santos CA, Jozala AF, Pessoa Jr A, Seckler MM. Antimicrobial effectiveness of silver nanoparticles co-stabilized by the bioactive copolymer pluronic F68. J Nanobiotechnology. 2012;10(1):43. doi: 10.1186/1477-3155-10-43
- Silver S. Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev. 2003;27(2–3):341–353. doi: 10.1016/S0168-6445(03)00047-0 EDN: BJEDKH
- Clement JL, Jarrett PS. Antibacterial Silver. Met Based Drugs. 1994;1(5–6):467–482. doi: 10.1155/MBD.1994.467
- von Rozycki T, Nies DH. Cupriavidus metallidurans: evolution of a metal-resistant bacterium. Antonie Van Leeuwenhoek. 2009;96(2):115–139. doi: 10.1007/s10482-008-9284-5 EDN: NAKECP
- Nies DH. The biological chemistry of the transition metal “transportome” of Cupriavidus metallidurans. Metallomics. 2016;8(5):481–507. doi: 10.1039/C5MT00320B EDN: WUGHKJ
- Pelgrift RY, Friedman AJ. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev. 2013;65(13–14):1803–1815. doi: 10.1016/j.addr.2013.07.011
- Markowska K, Grudniak AM, Wolska KI. Silver nanoparticles as an alternative strategy against bacterial biofilms. Acta Biochim Pol. 2013;60(4):523–530. EDN: SOHPEV
- Percival SL, Bowler PG, Russell D. Bacterial resistance to silver in wound care. J Hosp Infect. 2005;60(1):1–7. doi: 10.1016/j.jhin.2004.11.014 EDN: XTFMGU
- Donlan RM. Biofilms: microbial life on surfaces. Emerg Infect Dis. 2002;8(9):881–890. doi: 10.3201/eid0809.020063
- Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010;8(9):623–633. doi: 10.1038/nrmicro2415
- Gjermansen M, Ragas P, Sternberg C, et al. Characterization of starvation-induced dispersion in Pseudomonas putida biofilms. Environ Microbiol. 2005;7(6):894–904. doi: 10.1111/j.1462-2920.2005.00775.x
- Reid DW, Withers NJ, Francis L, et al. Iron deficiency in cystic fibrosis. Chest. 2002;121(1):48–54. doi: 10.1378/chest.121.1.48
- Di Martino P, Fursy R, Bret L, et al. Indole can act as an extracellular signal to regulate biofilm formation of Escherichia coli and other indole-producing bacteria. Can J Microbiol. 2003;49(7):443–449. doi: 10.1139/w03-056
- Patel CN, Wortham BW, Lines JL, et al. Polyamines are essential for the formation of plague biofilm. J Bacteriol. 2006;188(7):2355–2363. doi: 10.1128/JB.188.7.2355-2363.2006 EDN: MBXMIX
- Karatan E, Watnick P. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev. 2009;73(2):310–347. doi: 10.1128/MMBR.00041-08
- Haussler S, Fuqua C. Biofilms 2012: new discoveries and significant wrinkles in a dynamic field. J Bacteriol. 2013;195(13):2947–2958. doi: 10.1128/JB.00239-13
- Webster TJ, Seil I. Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomedcine. 2012;7:2767–2781. doi: 10.2147/IJN.S24805
- Fabrega J, Renshaw JC, Lead JR. Interactions of Silver Nanoparticles with Pseudomonas putida biofilms. Environ Sci Technol. 2009;43(23):9004–9009. doi: 10.1021/es901706j
- Kalishwaralal K, BarathManiKanth S, Pandian SR, et al. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids Surf B Biointerfaces. 2010;79(2):340–344. doi: 10.1016/j.colsurfb.2010.04.014 EDN: NWLLST
- Martinez-Gutierrez F, Boegli L, Agostinho A, et al. Anti-biofilm activity of silver nanoparticles against different microorganisms. Biofouling. 2013;29(6):651–660. doi: 10.1080/08927014.2013.794225
- Islam MS, Larimer C, Ojha A, Nettleship I. Antimycobacterial efficacy of silver nanoparticles as deposited on porous membrane filters. Mater Sci Eng C. 2013;33(8):4575–4581. doi: 10.1016/j.msec.2013.07.013
- Knetsch MLW, Koole LH. New strategies in the development of antimicrobial coatings: the example of increasing usage of silver and silver nanoparticles. Polymers (Basel). 2011;3(1):340–366. doi: 10.3390/polym3010340
- Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27(1):76–83. doi: 10.1016/j.biotechadv.2008.09.002 EDN: LYQQRZ
- Chen M, Yu Q, Sun H. Novel strategies for the prevention and treatment of biofilm related infections. Int J Mol Sci. 2013;14(9):18488–18501. doi: 10.3390/ijms140918488 EDN: YANXZC
- Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2(1):17023. doi: 10.1038/sigtrans.2017.23 EDN: JSCXHV
- Gonzalez-Carter DA, Leo BF, Ruenraroengsak P, et al. Silver nanoparticles reduce brain inflammation and related neurotoxicity through induction of H2S-synthesizing enzymes. Sci Rep. 2017;7(1):42871. doi: 10.1038/srep42871
- Adhya A, Bain J, Ray O, et al. Healing of burn wounds by topical treatment: A randomized controlled comparison between silver sulfadiazine and nano-crystalline silver. J Basic Clin Pharm. 2015;6(1):29–34. doi: 10.4103/0976-0105.145776
- Boonkaew B, Suwanpreuksa P, Cuttle L, et al. Hydrogels containing silver nanoparticles for burn wounds show antimicrobial activity without cytotoxicity. J Appl Polym Sci. 2014;131(9):1–10. doi: 10.1002/app.40215
- Marcato PD, De Paula LB, Melo PS, et al. In vivo evaluation of complex biogenic silver nanoparticle and enoxaparin in wound healing. J Nanomater. 2015;2015:1–10. doi: 10.1155/2015/439820
- Hebeish A, El-Rafie MH, EL-Sheikh MA, et al. Antimicrobial wound dressing and anti-inflammatory efficacy of silver nanoparticles. Int J Biol Macromol. 2014;65:509–515. doi: 10.1016/j.ijbiomac.2014.01.071
- Rigo C, Ferroni L, Tocco I, et al. Active silver nanoparticles for wound healing. Int J Mol Sci. 2013;14(3):4817–4840. doi: 10.3390/ijms14034817
- Galandáková A, Franková J, Ambrožová N, et al. Effects of silver nanoparticles on human dermal fibroblasts and epidermal keratinocytes. Hum Exp Toxicol. 2016;35(9):946–957. doi: 10.1177/0960327115611969
- Franková J, Pivodová V, Vágnerová H, et al. Effects of silver nanoparticles on primary cell cultures of fibroblasts and keratinocytes in a wound-healing model. J Appl Biomater Funct Mater. 2016;14(2):e137–142. doi: 10.5301/jabfm.5000268 EDN: XYXWON
- Yeasmin S, Datta HK, Chaudhuri S, et al. In-vitro anti-cancer activity of shape controlled silver nanoparticles (AgNPs) in various organ specific cell lines. J Mol Liq. 2017;242:757–766. doi: 10.1016/j.molliq.2017.06.047 EDN: AZNNZT
- Wang Z, Chen C, Wang Y, et al. Ångstrom-scale silver particles as a promising agent for low-toxicity broad-spectrum potent anticancer therapy. Adv Funct Mater. 2019;29(23):1808556. doi: 10.1002/adfm.201808556 EDN: PKOSFW
- Barabadi H, Hosseini O, Kamali D, et al. Emerging theranostic silver nanomaterials to combat lung cancer: a systematic review. J Clust Sci. 2020;31(1):1–10. doi: 10.1007/s10876-019-01639-z EDN: EOZKOU
- Chen B, Zhang Y, Yang Y, et al. Involvement of telomerase activity inhibition and telomere dysfunction in silver nanoparticles anticancer effects. Nanomedicine. 2018;13(16):2067–2082. doi: 10.2217/nnm-2018-0036
- Yang T, Yao Q, Cao F, et al. Silver nanoparticles inhibit the function of hypoxia-inducible factor-1 and target genes: insight into the cytotoxicity and antiangiogenesis. Int J Nanomedicine. 2016;11:6679–6692. doi: 10.2147/IJN.S109695 EDN: XZPGJL
- Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19(11):1423–1437. doi: 10.1038/nm.3394
- Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009;9(4):239–252. doi: 10.1038/nrc2618 EDN: MHBAQD
- Kim Y, Lin Q, Glazer P, Yun Z. Hypoxic tumor microenvironment and cancer cell differentiation. Curr Mol Med. 2009;9(4):425–434. doi: 10.2174/156652409788167113
- Kemp MM, Kumar A, Mousa S, et al. Gold and silver nanoparticles conjugated with heparin derivative possess anti-angiogenesis properties. Nanotechnology. 2009;20(45):455104. doi: 10.1088/0957-4484/20/45/455104
- Eom HJ, Choi J. p38 MAPK activation, DNA damage, cell cycle arrest and apoptosis as mechanisms of toxicity of silver nanoparticles in Jurkat T cells. Environ Sci Technol. 2010;44(21):8337–8342. doi: 10.1021/es1020668
- Pei J, Fu B, Jiang L, Sun T. Biosynthesis, characterization, and anticancer effect of plant-mediated silver nanoparticles using Coptis chinensis. Int J Nanomedicine. 2019;14:1969–1978. doi: 10.2147/IJN.S188235
- Hashemi Goradel N, Ghiyami-Hour F, Jahangiri S, et al. Nanoparticles as new tools for inhibition of cancer angiogenesis. J Cell Physiol. 2018;233(4):2902–2910. doi: 10.1002/jcp.26029
- Zhao Y, Adjei AA. Targeting angiogenesis in cancer therapy: moving beyond vascular endothelial growth factor. Oncologist. 2015;20(6):660–673. doi: 10.1634/theoncologist.2014-0465 EDN: UOFAZF
- Buttacavoli M, Albanese NN, Di Cara G, et al. Anticancer activity of biogenerated silver nanoparticles: an integrated proteomic investigation. Oncotarget. 2018;9(11):9685–9705. doi: 10.18632/oncotarget.23859 EDN: YEJUCD
- Fulbright LE, Ellermann M, Arthur JC. The microbiome and the hallmarks of cancer. PLoS Pathog. 2017;13(9):e1006480. doi: 10.1371/journal.ppat.1006480
- Gurunathan S, Lee KJ, Kalishwaralal K, et al. Antiangiogenic properties of silver nanoparticles. Biomaterials. 2009;30(31):6341–6350. doi: 10.1016/j.biomaterials.2009.08.008
- Kalishwaralal K, Banumathi E, Pandian SRK, et al. Silver nanoparticles inhibit VEGF induced cell proliferation and migration in bovine retinal endothelial cells. Colloids Surf B Biointerfaces. 2009;73(1):51–57. doi: 10.1016/j.colsurfb.2009.04.025
- Singh SP, Bhargava CS, Dubey V, et al. Silver nanoparticles: Biomedical applications, toxicity, and safety issues. Int J Res Pharm Pharm. 2017;4(2):1–10.
- Lansdown ABG. Silver in health care: antimicrobial effects and safety in use. Curr Probl Dermatol. 2006;33:17–34. doi: 10.1159/000093928
- Ahamed M, AlSalhi MS, Siddiqui MKJ. Silver nanoparticle applications and human health. Clin Chim Acta. 2010;411(23–24):1841–1848. doi: 10.1016/j.cca.2010.08.016
- Korani M, Rezayat M, Gilani K. Acute and subchronic dermal toxicity of nanosilver in guinea pig. Int J Nanomedicine. 2011;6:855–862. doi: 10.2147/IJN.S17065
- Wong KKY, Liu X. Silver nanoparticles—the real “silver bullet” in clinical medicine? MedChemComm. 2010;1(2):125. doi: 10.1039/c0md00069h EDN: PIKEXT
- Tak YK, Pal S, Naoghare PK, et al. Shape-dependent skin penetration of silver nanoparticles: does it really matter? Sci Rep. 2015;5(1):16908. doi: 10.1038/srep16908
- Szmyd R, Goralczyk AG, Skalniak L, et al. Effect of silver nanoparticles on human primary keratinocytes. Biol Chem. 2013;394(1):113–123. doi: 10.1515/hsz-2012-0202
- De Jong WH, Van Der Ven LT, Sleijffers A, et al. Systemic and immunotoxicity of silver nanoparticles in an intravenous 28 days repeated dose toxicity study in rats. Biomaterials. 2013;34(33):8333–8343. doi: 10.1016/j.biomaterials.2013.06.048
- Xue Y, Zhang S, Huang Y, et al. Acute toxic effects and gender-related biokinetics of silver nanoparticles following an intravenous injection in mice. J Appl Toxicol. 2012;32(11):890–899. doi: 10.1002/jat.2742
- Kim WY, Kim J, Park JD, et al. Histological study of gender differences in accumulation of silver nanoparticles in kidneys of fischer 344 rats. J Toxicol Environ Health A. 2009;72(21–22):1279–1284. doi: 10.1080/15287390903212287
- Kim YS, Kim JS, Cho HS, et al. Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in sprague-dawley rats. Inhal Toxicol. 2008;20(6):575–583. doi: 10.1080/08958370701874663
- Kim YS, Song MY, Park JD, et al. Subchronic oral toxicity of silver nanoparticles. Part Fibre Toxicol. 2010;7(1):20. doi: 10.1186/1743-8977-7-20 EDN: PSSQGI
- Song KS, Sung JH, Ji JH, et al. Recovery from silver-nanoparticle-exposure-induced lung inflammation and lung function changes in Sprague Dawley rats. Nanotoxicology. 2013;7(2):169–180. doi: 10.3109/17435390.2011.648223
- Lee JH, Sung JH, Ryu HR, et al. Tissue distribution of gold and silver after subacute intravenous injection of co-administered gold and silver nanoparticles of similar sizes. Arch Toxicol. 2018;92(4):1393–1405. doi: 10.1007/s00204-018-2173-4 EDN: ZLTTNB
- Lee JH, Kim YS, Song KS, et al. Biopersistence of silver nanoparticles in tissues from Sprague–Dawley rats. Part Fibre Toxicol. 2013;10(1):36. doi: 10.1186/1743-8977-10-36 EDN: LEWRZA
- Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann MC. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci. 2005;88(2):412–419. doi: 10.1093/toxsci/kfi256 EDN: MEDIHF
- Maillard JY, Hartemann P. Silver as an antimicrobial: facts and gaps in knowledge. Crit Rev Microbiol. 2013;39(4):373–383. doi: 10.3109/1040841X.2012.713323
- Sung JH, Ji JH, Park JD, et al. Subchronic inhalation toxicity of silver nanoparticles. Toxicol Sci. 2009;108(2):452–461. doi: 10.1093/toxsci/kfn246
- Khatoon N, Alam H, Khan A, et al. Ampicillin silver nanoformulations against multidrug resistant bacteria. Sci Rep. 2019;9(1):6848. doi: 10.1038/s41598-019-43309-0 EDN: XTPPRV
- Batul R, Bhave M, Yu A. Investigation of antimicrobial effects of polydopamine-based composite coatings. Molecules. 2023;28(11):4258. doi: 10.3390/molecules28114258 EDN: TYAZZP
- Deng H, McShan D, Zhang Y, et al. Mechanistic study of the synergistic antibacterial activity of combined silver nanoparticles and common antibiotics. Environ Sci Technol. 2016;50(16):8840–8848. doi: 10.1021/acs.est.6b00998 EDN: WSNCOP
- Wang YW, Tang H, Wu D, et al. Enhanced bactericidal toxicity of silver nanoparticles by the antibiotic gentamicin. Environ Sci Nano. 2016;3(4):788–798. doi: 10.1039/C6EN00031B
- Li Y, Xiang Q, Zhang Q, et al. Overview on the recent study of antimicrobial peptides: Origins, functions, relative mechanisms and application. Peptides. 2012;37(2):207–215. doi: 10.1016/j.peptides.2012.07.001 EDN: RKCWNP
- Tosi MF. Innate immune responses to infection. J Allergy Clin Immunol. 2005;116(2):241–249. doi: 10.1016/j.jaci.2005.05.036
- Zharkova MS, Golubeva OY, Orlov DS, et al. Silver nanoparticles functionalized with antimicrobial polypeptides: benefits and possible pitfalls of a novel anti-infective tool. Front Microbiol. 2021;12:750556. doi: 10.3389/fmicb.2021.750556 EDN: XEGFEZ
- Masimen MAA, Harun NA, Maulidiani M, Ismail WIW. Overcoming methicillin-resistance Staphylococcus aureus (MRSA) using antimicrobial peptides-silver nanoparticles. Antibiotics (Basel). 2022;11(7):951. doi: 10.3390/antibiotics11070951 EDN: EPQOWL
- Jin Y, Yang Y, Duan W, et al. Synergistic and on-demand release of ag-AMPs loaded on porous silicon nanocarriers for antibacteria and wound healing. ACS Appl Mater Interfaces. 2021;13(14):16127–16141. doi: 10.1021/acsami.1c02161 EDN: QLMWXM
- Jin Y, Duan W, Wo F, Wu J. Two-dimensional fluorescent strategy based on porous silicon quantum dots for metal-ion detection and recognition. ACS Appl Nano Mater. 2019;2(10):6110–6115. doi: 10.1021/acsanm.9b01647
- Gao J, Na H, Zhong R, et al. One step synthesis of antimicrobial peptide protected silver nanoparticles: The core-shell mutual enhancement of antibacterial activity. Colloids Surf B Biointerfaces. 2020;186:110704. doi: 10.1016/j.colsurfb.2019.110704 EDN: NVBSYD
- Zhen JB, Kang PW, Zhao MH, Yang KW. Silver nanoparticle conjugated star PCL-b-AMPs copolymer as nanocomposite exhibits efficient antibacterial properties. Bioconjug Chem. 2020;31(1):51–63. doi: 10.1021/acs.bioconjchem.9b00739
- Xu J, Li Y, Wang H, et al. Enhanced antibacterial and anti-biofilm activities of antimicrobial peptides modified silver nanoparticles. Int J Nanomedicine. 2021;16:4831–4846. doi: 10.2147/IJN.S315839 EDN: JSCOTI
- Zheng K, Setyawati MI, Lim TP, et al. Antimicrobial cluster bombs: silver nanoclusters packed with daptomycin. ACS Nano. 2016;10(8):7934–7942. doi: 10.1021/acsnano.6b03862
- Ye Z, Sang T, Li K, et al. Hybrid nanocoatings of self-assembled organic-inorganic amphiphiles for prevention of implant infections. Acta Biomater. 2022;140:338–349. doi: 10.1016/j.actbio.2021.12.008 EDN: UPRRNQ
Supplementary files

