Exosomes facilitate mRNA and siRNA delivery using cationic liposomes 2X3-DOPE to rat heart mesenchymal cells in vitro
- Authors: Dovbysh O.V.1,2,3, Vysochinskaya V.V.1,2,3, Gavrilova N.V.2,3, Docshin P.M.1,4, Nikitina E.G.1, Klochev A.S.5, Elpaeva E.A.1,3, Dobrovolskaya O.A.3, Shmendel E.V.6, Maslov M.A.6, Zabrodskaya Y.A.1,2,3
-
Affiliations:
- Almazov National Medical Research Centre
- Peter the Great Saint-Petersburg Polytechnic University
- Smorodintsev Research Institute of Influenza
- Institute of Cytology, Russian Academy of Sciences
- Saint Petersburg State University
- MIREA – Russian Technological University
- Issue: Vol 25, No 2 (2025)
- Pages: 55-67
- Section: Original research
- URL: https://ogarev-online.ru/MAJ/article/view/319495
- DOI: https://doi.org/10.17816/MAJ641910
- EDN: https://elibrary.ru/HYPFPI
- ID: 319495
Cite item
Abstract
BACKGROUND: The delivery of nucleic acids to mesenchymal stem cells, which are used as model objects in in vitro experiments or as therapeutic agents in regenerative medicine and oncology, is an actively developing area of research. Existing non-viral delivery systems either have low effectiveness or highly toxic to mesenchymal stem cells. Therefore, the development of new carriers has become an urgent priority.
AIM: To demonstrate the feasibility of delivering model messenger RNA and small interfering RNA to rat heart mesenchymal stem cells (MSCs) in vitro using original cationic liposomes 2X3-DOPE (1:3 molar ratio) and to evaluate the influence of exosomes incorporated into hybrid nanoparticles with 2X3-DOPE on the efficiency of RNA delivery.
METHODS: Exosomes were isolated using a standard ultracentrifugation technique followed by characterization of the obtained vesicles through Western blotting, transmission electron microscopy, atomic force microscopy, and hydrodynamic diameter measurement using dynamic light scattering. Small interfering RNA was chemically synthesized; whereas messenger RNA was obtained by in vitro transcription. Complexes of liposomes or hybrid nanoparticles with RNA were prepared by mixing; the properties of the resulting particles were assessed using dynamic light scattering and atomic force microscopy. To evaluate the efficiency of RNA delivery to rat heart mesenchymal stem cells derived from both healthy and ischemic myocardium, we used fluorescence microscopy, laser scanning confocal microscopy, and flow cytometry.
RESULTS: Complexes of cationic liposomes 2X3-DOPE (1:3 molar ratio) with messenger RNA and 2X3-DOPE modified with DSPE-PEG2000 (0.62 mol%) complexed with small interfering RNA were successfully prepared and characterized. It was demonstrated that 2X3-DOPE is ineffective for messenger RNA delivery to rat cardiac mesenchymal stem cells; whereas hybrid nanoparticles incorporating exosomes based on these liposomes exhibited up to 40% transfection efficiency. In addition, 2X3-DOPE modified with DSPE-PEG2000 (0.62 mol%) was effective for small interfering RNA delivery to rat cardiac mesenchymal stem cells, achieving up to 90% transfection efficiency; whereas the use of hybrid nanoparticles based on this formulation resulted in 100% transfected cells with more than a twofold increase in small interfering RNA in the cells as indicated by the average fluorescence intensity.
CONCLUSION: Cationic liposomes 2X3-DOPE (1:3 molar ratio) modified with DSPE-PEG2000 (0.62 mol%) are promising vehicles for small interfering RNA delivery to mesenchymal stem cells, both independently and in combination with exosomes. Exosomes integrated in hybrid nanoparticles based on 2X3-DOPE improve the transfection efficiency of both messenger RNA and small interfering RNA in rat cardiac mesenchymal stem cells in vitro.
Full Text
##article.viewOnOriginalSite##About the authors
Olesya V. Dovbysh
Almazov National Medical Research Centre; Peter the Great Saint-Petersburg Polytechnic University; Smorodintsev Research Institute of Influenza
Email: lesya.dovbysh@mail.ru
ORCID iD: 0009-0005-0924-3118
SPIN-code: 7885-7580
Russian Federation, Saint Petersburg; Saint Petersburg; Saint Petersburg
Vera V. Vysochinskaya
Almazov National Medical Research Centre; Peter the Great Saint-Petersburg Polytechnic University; Smorodintsev Research Institute of Influenza
Email: veravv2509@gmail.com
ORCID iD: 0000-0003-3533-2606
SPIN-code: 2662-5700
Cand. Sci. (Biology)
Russian Federation, Saint Petersburg; Saint Petersburg; Saint PetersburgNina V. Gavrilova
Peter the Great Saint-Petersburg Polytechnic University; Smorodintsev Research Institute of Influenza
Email: daughtervgater@gmail.com
ORCID iD: 0000-0002-7825-9130
SPIN-code: 1238-1989
Russian Federation, Saint Petersburg; Saint Petersburg
Pavel M. Docshin
Almazov National Medical Research Centre; Institute of Cytology, Russian Academy of Sciences
Email: dokshin_pm@almazovcentre.ru
ORCID iD: 0000-0002-0182-009X
SPIN-code: 9896-3742
Cand. Sci. (Biology)
Russian Federation, Saint Petersburg; Saint PetersburgEkaterina G. Nikitina
Almazov National Medical Research Centre
Email: purrpurr@list.ru
ORCID iD: 0009-0009-0407-3307
SPIN-code: 5903-8336
Russian Federation, Saint Petersburg
Aleksandr S. Klochev
Saint Petersburg State University
Email: klochev03@bk.ru
ORCID iD: 0009-0009-9031-6925
Russian Federation, Saint Petersburg
Ekaterina A. Elpaeva
Almazov National Medical Research Centre; Smorodintsev Research Institute of Influenza
Email: elpaevak@yandex.ru
ORCID iD: 0000-0001-8271-0003
SPIN-code: 8201-1590
Cand. Sci. (Biology)
Russian Federation, Saint Petersburg; Saint PetersburgOlga A. Dobrovolskaya
Smorodintsev Research Institute of Influenza
Email: dobrovolskaya.od@gmail.com
ORCID iD: 0000-0001-6654-1107
SPIN-code: 2915-5173
Russian Federation, Saint Petersburg
Elena V. Shmendel
MIREA – Russian Technological University
Email: elena_shmendel@mail.ru
ORCID iD: 0000-0003-3727-4905
SPIN-code: 7961-5774
Cand. Sci. (Chemistry)
Russian Federation, MoscowMikhail A. Maslov
MIREA – Russian Technological University
Email: mamaslov@mail.ru
ORCID iD: 0000-0002-5372-1325
SPIN-code: 6451-6580
Dr. Sci. (Chemistry)
Russian Federation, MoscowYana A. Zabrodskaya
Almazov National Medical Research Centre; Peter the Great Saint-Petersburg Polytechnic University; Smorodintsev Research Institute of Influenza
Author for correspondence.
Email: yana@zabrodskaya.net
ORCID iD: 0000-0003-2012-9461
SPIN-code: 3907-8702
Cand. Sci. (Physics and Mathematics)
Russian Federation, Saint Petersburg; Saint Petersburg; Saint PetersburgReferences
- Lai JJ, Chau ZL, Chen S, et al. Exosome processing and characterization approaches for research and technology development. Adv Sci (Weinh). 2022;9(15):2103222. doi: 10.1002/advs.202103222
- Gupta AK, Wang T, Rapaport JA. Systematic review of exosome treatment in hair restoration: Preliminary evidence, safety, and future directions. J Cosmet Dermatol. 2023;22(9):2424–2433. doi: 10.1111/jocd.15869
- Familtseva A, Jeremic N, Tyagi SC. Exosomes: cell-created drug delivery systems. Mol Cell Biochem. 2019;459(1–2):1–6. doi: 10.1007/s11010-019-03545-4
- Cheng HL, Fu CY, Kuo WC, et al. Detecting miRNA biomarkers from extracellular vesicles for cardiovascular disease with a microfluidic system. Lab Chip. 2018;18(19):2917–2925. doi: 10.1039/c8lc00386f
- Kura B, Kalocayova B, Devaux Y, Bartekova M. Potential clinical implications of miR-1 and miR-21 in heart disease and cardioprotection. Int J Mol Sci. 2020;21(3):700. doi: 10.3390/ijms21030700
- Bellin G, Gardin C, Ferroni L, et al. Exosome in cardiovascular diseases: a complex world full of hope. Cells. 2019;8(2):166. doi: 10.3390/cells8020166
- Rastogi S, Sharma V, Bharti PS, et al. The evolving landscape of exosomes in neurodegenerative diseases: exosomes characteristics and a promising role in early diagnosis. Int J Mol Sci. 2021;22(1):440. doi: 10.3390/ijms22010440
- Welch JL, Stapleton JT, Okeoma CM. Vehicles of intercellular communication: exosomes and HIV-1. J Gen Virol. 2019;100(3):350–366. doi: 10.1099/jgv.0.001193
- Sims B, Farrow AL, Williams SD, et al. Tetraspanin blockage reduces exosome-mediated HIV-1 entry. Arch Virol. 2018;163(6):1683–1689. doi: 10.1007/s00705-018-3737-6
- Ouattara LA, Anderson SM, Doncel GF. Seminal exosomes and HIV-1 transmission. Andrologia. 2018;50(11):e13220. doi: 10.1111/and.13220
- Zabrodskaya Y, Plotnikova M, Gavrilova N, et al. Exosomes released by influenza-virus-infected cells carry factors capable of suppressing immune defense genes in naïve cells. Viruses. 2022;14(12):2690. doi: 10.3390/V14122690
- Chen CC, Liu L, Ma F, et al. Elucidation of exosome migration across the blood–brain barrier model in vitro. Cell Mol Bioeng. 2016;9(4):509–529. doi: 10.1007/s12195-016-0458-3
- Salarpour S, Forootanfar H, Pournamdari M, et al. Paclitaxel incorporated exosomes derived from glioblastoma cells: comparative study of two loading techniques. Daru. 2019;27(2):533–539. doi: 10.1007/s40199-019-00280-5
- Kim MS, Haney MJ, Zhao Y, et al. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine. 2016;12(3):655–664. doi: 10.1016/j.nano.2015.10.012
- Sun D, Zhuang X, Xiang X, et al. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther. 2010;18(9):1606–1614. doi: 10.1038/mt.2010.105
- Bryniarski K, Ptak W, Jayakumar A, et al. Antigen-specific, antibody-coated, exosome-like nanovesicles deliver suppressor T-cell microRNA-150 to effector T cells to inhibit contact sensitivity. J Allergy Clin Immunol. 2013;132(1):170–181. doi: 10.1016/j.jaci.2013.04.048
- Gong C, Tian J, Wang Z, et al. Functional exosome-mediated co-delivery of doxorubicin and hydrophobically modified microRNA 159 for triple-negative breast cancer therapy. J Nanobiotechnology. 2019;17(1):93. doi: 10.1186/s12951-019-0526-7
- O’Loughlin AJ, Mäger I, de Jong OG, et al. Functional delivery of lipid-conjugated siRNA by extracellular vesicles. Mol Ther. 2017;25(7):1580–1587. doi: 10.1016/j.ymthe.2017.03.021
- Kanada M, Bachmann MH, Hardy JW, et al. Differential fates of biomolecules delivered to target cells via extracellular vesicles. Proc Natl Acad Sci USA. 2015;112(12):E1433–E1442. doi: 10.1073/PNAS.1418401112
- Barrios MH, Garnham AL, Foers AD, et al. Small extracellular vesicle enrichment of a retrotransposon-derived double-stranded RNA: a means to avoid autoinflammation? Biomedicines. 2021;9(9):1136. doi: 10.3390/biomedicines9091136
- Wang JH, Forterre AV, Zhao J, et al. Anti-HER2 scFv-directed extracellular vesicle-mediated mRNA-based gene delivery inhibits growth of HER2-positive human breast tumor xenografts by prodrug activation. Mol Cancer Ther. 2018;17(5):1133–1142. doi: 10.1158/1535-7163.MCT-17-0827
- Bellavia D, Raimondo S, Calabrese G, et al. Interleukin 3- receptor targeted exosomes inhibit in vitro and in vivo chronic myelogenous leukemia cell growth. Theranostics. 2017;7(5):1333–1345. doi: 10.7150/thno.17092
- Lou G, Song X, Yang F, et al. Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma. J Hematol Oncol. 2015;8(1):122. doi: 10.1186/s13045-015-0220-7
- Izco M, Blesa J, Schleef M, et al. Systemic exosomal delivery of shRNA minicircles prevents parkinsonian pathology. Mol Ther. 2019;27(12):2111–2122. doi: 10.1016/j.ymthe.2019.08.010
- Alvarez-Erviti L, Seow Y, Yin H, et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29(4):341–345. doi: 10.1038/nbt.1807
- Lamichhane TN, Jeyaram A, Patel DB, et al. Oncogene knockdown via active loading of small RNAs into extracellular vesicles by sonication. Cell Mol Bioeng. 2016;9(3):315–324. doi: 10.1007/s12195-016-0457-4
- Jeyaram A, Lamichhane TN, Wang S, et al. Enhanced loading of functional miRNA cargo via pH gradient modification of extracellular vesicles. Mol Ther. 2020;28(3):975–985. doi: 10.1016/j.ymthe.2019.12.007
- Mondal J, Pillarisetti S, Junnuthula V, et al. Hybrid exosomes, exosome-like nanovesicles and engineered exosomes for therapeutic applications. J Control Release. 2023;353:1127–1149. doi: 10.1016/j.jconrel.2022.12.027
- Wu S, Yun J, Tang W, et al. Therapeutic m6 A eraser ALKBH5 mRNA-loaded exosome-liposome hybrid nanoparticles inhibit progression of colorectal cancer in preclinical tumor models. ACS Nano. 2023;17(12):11838–11854. doi: 10.1021/acsnano.3c03050
- Shtam TA, Kovalev RA, Varfolomeeva EY, et al. Exosomes are natural carriers of exogenous siRNA to human cells in vitro. Cell Commun Signal. 2013;11(1):88. doi: 10.1186/1478-811X-11-88
- Li LM, Ruan GX, HuangFu MY, et al. ScreenFect A: an efficient and low toxic liposome for gene delivery to mesenchymal stem cells. Int J Pharm. 2015;488(1–2):1–11. doi: 10.1016/j.ijpharm.2015.04.050
- Ito K, Suda T. Metabolic requirements for the maintenance of self-renewing stem cells. Nat Rev Mol Cell Biol. 2014;15(4):243–256. doi: 10.1038/nrm3772
- Clackson T. Regulated gene expression systems. Gene Ther. 2000;7(2):120–125. doi: 10.1038/sj.gt.3301120
- Lin Y, Wu J, Gu W, et al. Exosome–liposome hybrid nanoparticles deliver CRISPR/Cas9 system in MSCs. Adv Sci (Weinh). 2018;5(4):1700611. doi: 10.1002/advs.201700611
- Vysochinskaya V, Shishlyannikov S, Zabrodskaya Y, et al. Influence of lipid composition of cationic liposomes 2X3-DOPE on mRNA delivery into eukaryotic cells. Pharmaceutics. 2022;15(1):8. doi: 10.3390/pharmaceutics15010008
- Zabrodskaya YA, Gavrilova NV, Elpaeva EA, et al. mRNA encoding antibodies against hemagglutinin and nucleoprotein prevents influenza virus infection in vitro. Biochem Biophys Res Commun. 2024;738:150945. doi: 10.1016/j.bbrc.2024.150945
- Vysochinskaya V, Zabrodskaya Y, Dovbysh O, et al. Cell-penetrating peptide and cationic liposomes mediated siRNA delivery to arrest growth of chronic myeloid leukemia cells in vitro. Biochimie. 2024;221:1–12. doi: 10.1016/J.BIOCHI.2024.01.006
- Théry C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. 2006;Chapter 3:Unit 3.22. doi: 10.1002/0471143030.cb0322s30
- Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680–685. doi: 10.1038/227680a0
- Petukhov IA, Maslov MA, Morozova NG, Serebrennikova GA. Synthesis of polycationic lipids based on cholesterol and spermine. Russian Chemical Bulletin. 2010;59(1):260–268. EDN: OBUHZH doi: 10.1007/s11172-010-0071-x
- Nečas D, Klapetek P. Gwyddion: an open-source software for SPM data analysis. Cent Eur J Phys. 2012;10(1):181–188. doi: 10.2478/s11534-011-0096-2
- Docshin PM, Karpov AA, Mametov MV, et al. Mechanisms of regenerative potential activation in cardiac mesenchymal cells. Biomedicines. 2022;10(6):1283. doi: 10.3390/biomedicines10061283
- Docshin PM, Karpov AA, Eyvazova ShD, et al. Activation of cardiac stem cells in myocardial infarction. Cell and Tissue Biology. 2018;12(3):175–182. EDN: YBUTMT doi: 10.1134/S1990519X18030045
- Sturm L, Schwemberger B, Menzel U, et al. In vitro evaluation of a nanoparticle-based mRNA delivery system for cells in the joint. Biomedicines. 2021;9(7):794. doi: 10.3390/biomedicines9070794
- Levy O, Zhao W, Mortensen LJ, et al. mRNA-engineered mesenchymal stem cells for targeted delivery of interleukin-10 to sites of inflammation. Blood. 2013;122(14):e23–e32. doi: 10.1182/blood-2013-04-495119
- Drzeniek NM, Kahwaji N, Schlickeiser S, et al. Immuno-engineered mRNA combined with cell adhesive niche for synergistic modulation of the MSC secretome. Biomaterials. 2023;294:121971. doi: 10.1016/j.biomaterials.2022.121971
- Nowakowski A, Andrzejewska A, Boltze J, et al. Translation, but not transfection limits clinically relevant, exogenous mRNA based induction of alpha-4 integrin expression on human mesenchymal stem cells. Sci Rep. 2017;7(1):1103. doi: 10.1038/s41598-017-01304-3
- Fedorovskiy AG, Antropov DN, Dome AS, et al. Novel efficient lipid-based delivery systems enable a delayed uptake and sustained expression of mRNA in human cells and mouse tissues. Pharmaceutics. 2024;16(5):684. doi: 10.3390/pharmaceutics16050684
- Zhang L, Qiang W, Li MQ, et al. A drug delivery system of HIF-1α siRNA nanoparticles loaded by mesenchymal stem cells on choroidal neovascularization. Nanomedicine. 2024;19(26):2171–2185. doi: 10.1080/17435889.2024.2393075
- Andersen MØ, Nygaard JV, Burns JS, et al. siRNA nanoparticle functionalization of nanostructured scaffolds enables controlled multilineage differentiation of stem cells. Mol Ther. 2010;18(11):2018–2027. doi: 10.1038/mt.2010.166
- Benoit DSW, Boutin ME. Controlling mesenchymal stem cell gene expression using polymer-mediated delivery of siRNA. Biomacromolecules. 2012;13(11):3841–3849. doi: 10.1021/bm301294n
Supplementary files









