Exosomes facilitate mRNA and siRNA delivery using cationic liposomes 2X3-DOPE to rat heart mesenchymal cells in vitro

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: The delivery of nucleic acids to mesenchymal stem cells, which are used as model objects in in vitro experiments or as therapeutic agents in regenerative medicine and oncology, is an actively developing area of research. Existing non-viral delivery systems either have low effectiveness or highly toxic to mesenchymal stem cells. Therefore, the development of new carriers has become an urgent priority.

AIM: To demonstrate the feasibility of delivering model messenger RNA and small interfering RNA to rat heart mesenchymal stem cells (MSCs) in vitro using original cationic liposomes 2X3-DOPE (1:3 molar ratio) and to evaluate the influence of exosomes incorporated into hybrid nanoparticles with 2X3-DOPE on the efficiency of RNA delivery.

METHODS: Exosomes were isolated using a standard ultracentrifugation technique followed by characterization of the obtained vesicles through Western blotting, transmission electron microscopy, atomic force microscopy, and hydrodynamic diameter measurement using dynamic light scattering. Small interfering RNA was chemically synthesized; whereas messenger RNA was obtained by in vitro transcription. Complexes of liposomes or hybrid nanoparticles with RNA were prepared by mixing; the properties of the resulting particles were assessed using dynamic light scattering and atomic force microscopy. To evaluate the efficiency of RNA delivery to rat heart mesenchymal stem cells derived from both healthy and ischemic myocardium, we used fluorescence microscopy, laser scanning confocal microscopy, and flow cytometry.

RESULTS: Complexes of cationic liposomes 2X3-DOPE (1:3 molar ratio) with messenger RNA and 2X3-DOPE modified with DSPE-PEG2000 (0.62 mol%) complexed with small interfering RNA were successfully prepared and characterized. It was demonstrated that 2X3-DOPE is ineffective for messenger RNA delivery to rat cardiac mesenchymal stem cells; whereas hybrid nanoparticles incorporating exosomes based on these liposomes exhibited up to 40% transfection efficiency. In addition, 2X3-DOPE modified with DSPE-PEG2000 (0.62 mol%) was effective for small interfering RNA delivery to rat cardiac mesenchymal stem cells, achieving up to 90% transfection efficiency; whereas the use of hybrid nanoparticles based on this formulation resulted in 100% transfected cells with more than a twofold increase in small interfering RNA in the cells as indicated by the average fluorescence intensity.

CONCLUSION: Cationic liposomes 2X3-DOPE (1:3 molar ratio) modified with DSPE-PEG2000 (0.62 mol%) are promising vehicles for small interfering RNA delivery to mesenchymal stem cells, both independently and in combination with exosomes. Exosomes integrated in hybrid nanoparticles based on 2X3-DOPE improve the transfection efficiency of both messenger RNA and small interfering RNA in rat cardiac mesenchymal stem cells in vitro.

About the authors

Olesya V. Dovbysh

Almazov National Medical Research Centre; Peter the Great Saint-Petersburg Polytechnic University; Smorodintsev Research Institute of Influenza

Email: lesya.dovbysh@mail.ru
ORCID iD: 0009-0005-0924-3118
SPIN-code: 7885-7580
Russian Federation, Saint Petersburg; Saint Petersburg; Saint Petersburg

Vera V. Vysochinskaya

Almazov National Medical Research Centre; Peter the Great Saint-Petersburg Polytechnic University; Smorodintsev Research Institute of Influenza

Email: veravv2509@gmail.com
ORCID iD: 0000-0003-3533-2606
SPIN-code: 2662-5700

Cand. Sci. (Biology)

Russian Federation, Saint Petersburg; Saint Petersburg; Saint Petersburg

Nina V. Gavrilova

Peter the Great Saint-Petersburg Polytechnic University; Smorodintsev Research Institute of Influenza

Email: daughtervgater@gmail.com
ORCID iD: 0000-0002-7825-9130
SPIN-code: 1238-1989
Russian Federation, Saint Petersburg; Saint Petersburg

Pavel M. Docshin

Almazov National Medical Research Centre; Institute of Cytology, Russian Academy of Sciences

Email: dokshin_pm@almazovcentre.ru
ORCID iD: 0000-0002-0182-009X
SPIN-code: 9896-3742

Cand. Sci. (Biology)

Russian Federation, Saint Petersburg; Saint Petersburg

Ekaterina G. Nikitina

Almazov National Medical Research Centre

Email: purrpurr@list.ru
ORCID iD: 0009-0009-0407-3307
SPIN-code: 5903-8336
Russian Federation, Saint Petersburg

Aleksandr S. Klochev

Saint Petersburg State University

Email: klochev03@bk.ru
ORCID iD: 0009-0009-9031-6925
Russian Federation, Saint Petersburg

Ekaterina A. Elpaeva

Almazov National Medical Research Centre; Smorodintsev Research Institute of Influenza

Email: elpaevak@yandex.ru
ORCID iD: 0000-0001-8271-0003
SPIN-code: 8201-1590

Cand. Sci. (Biology)

Russian Federation, Saint Petersburg; Saint Petersburg

Olga A. Dobrovolskaya

Smorodintsev Research Institute of Influenza

Email: dobrovolskaya.od@gmail.com
ORCID iD: 0000-0001-6654-1107
SPIN-code: 2915-5173
Russian Federation, Saint Petersburg

Elena V. Shmendel

MIREA – Russian Technological University

Email: elena_shmendel@mail.ru
ORCID iD: 0000-0003-3727-4905
SPIN-code: 7961-5774

Cand. Sci. (Chemistry)

Russian Federation, Moscow

Mikhail A. Maslov

MIREA – Russian Technological University

Email: mamaslov@mail.ru
ORCID iD: 0000-0002-5372-1325
SPIN-code: 6451-6580

Dr. Sci. (Chemistry)

Russian Federation, Moscow

Yana A. Zabrodskaya

Almazov National Medical Research Centre; Peter the Great Saint-Petersburg Polytechnic University; Smorodintsev Research Institute of Influenza

Author for correspondence.
Email: yana@zabrodskaya.net
ORCID iD: 0000-0003-2012-9461
SPIN-code: 3907-8702

Cand. Sci. (Physics and Mathematics)

Russian Federation, Saint Petersburg; Saint Petersburg; Saint Petersburg

References

  1. Lai JJ, Chau ZL, Chen S, et al. Exosome processing and characterization approaches for research and technology development. Adv Sci (Weinh). 2022;9(15):2103222. doi: 10.1002/advs.202103222
  2. Gupta AK, Wang T, Rapaport JA. Systematic review of exosome treatment in hair restoration: Preliminary evidence, safety, and future directions. J Cosmet Dermatol. 2023;22(9):2424–2433. doi: 10.1111/jocd.15869
  3. Familtseva A, Jeremic N, Tyagi SC. Exosomes: cell-created drug delivery systems. Mol Cell Biochem. 2019;459(1–2):1–6. doi: 10.1007/s11010-019-03545-4
  4. Cheng HL, Fu CY, Kuo WC, et al. Detecting miRNA biomarkers from extracellular vesicles for cardiovascular disease with a microfluidic system. Lab Chip. 2018;18(19):2917–2925. doi: 10.1039/c8lc00386f
  5. Kura B, Kalocayova B, Devaux Y, Bartekova M. Potential clinical implications of miR-1 and miR-21 in heart disease and cardioprotection. Int J Mol Sci. 2020;21(3):700. doi: 10.3390/ijms21030700
  6. Bellin G, Gardin C, Ferroni L, et al. Exosome in cardiovascular diseases: a complex world full of hope. Cells. 2019;8(2):166. doi: 10.3390/cells8020166
  7. Rastogi S, Sharma V, Bharti PS, et al. The evolving landscape of exosomes in neurodegenerative diseases: exosomes characteristics and a promising role in early diagnosis. Int J Mol Sci. 2021;22(1):440. doi: 10.3390/ijms22010440
  8. Welch JL, Stapleton JT, Okeoma CM. Vehicles of intercellular communication: exosomes and HIV-1. J Gen Virol. 2019;100(3):350–366. doi: 10.1099/jgv.0.001193
  9. Sims B, Farrow AL, Williams SD, et al. Tetraspanin blockage reduces exosome-mediated HIV-1 entry. Arch Virol. 2018;163(6):1683–1689. doi: 10.1007/s00705-018-3737-6
  10. Ouattara LA, Anderson SM, Doncel GF. Seminal exosomes and HIV-1 transmission. Andrologia. 2018;50(11):e13220. doi: 10.1111/and.13220
  11. Zabrodskaya Y, Plotnikova M, Gavrilova N, et al. Exosomes released by influenza-virus-infected cells carry factors capable of suppressing immune defense genes in naïve cells. Viruses. 2022;14(12):2690. doi: 10.3390/V14122690
  12. Chen CC, Liu L, Ma F, et al. Elucidation of exosome migration across the blood–brain barrier model in vitro. Cell Mol Bioeng. 2016;9(4):509–529. doi: 10.1007/s12195-016-0458-3
  13. Salarpour S, Forootanfar H, Pournamdari M, et al. Paclitaxel incorporated exosomes derived from glioblastoma cells: comparative study of two loading techniques. Daru. 2019;27(2):533–539. doi: 10.1007/s40199-019-00280-5
  14. Kim MS, Haney MJ, Zhao Y, et al. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine. 2016;12(3):655–664. doi: 10.1016/j.nano.2015.10.012
  15. Sun D, Zhuang X, Xiang X, et al. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther. 2010;18(9):1606–1614. doi: 10.1038/mt.2010.105
  16. Bryniarski K, Ptak W, Jayakumar A, et al. Antigen-specific, antibody-coated, exosome-like nanovesicles deliver suppressor T-cell microRNA-150 to effector T cells to inhibit contact sensitivity. J Allergy Clin Immunol. 2013;132(1):170–181. doi: 10.1016/j.jaci.2013.04.048
  17. Gong C, Tian J, Wang Z, et al. Functional exosome-mediated co-delivery of doxorubicin and hydrophobically modified microRNA 159 for triple-negative breast cancer therapy. J Nanobiotechnology. 2019;17(1):93. doi: 10.1186/s12951-019-0526-7
  18. O’Loughlin AJ, Mäger I, de Jong OG, et al. Functional delivery of lipid-conjugated siRNA by extracellular vesicles. Mol Ther. 2017;25(7):1580–1587. doi: 10.1016/j.ymthe.2017.03.021
  19. Kanada M, Bachmann MH, Hardy JW, et al. Differential fates of biomolecules delivered to target cells via extracellular vesicles. Proc Natl Acad Sci USA. 2015;112(12):E1433–E1442. doi: 10.1073/PNAS.1418401112
  20. Barrios MH, Garnham AL, Foers AD, et al. Small extracellular vesicle enrichment of a retrotransposon-derived double-stranded RNA: a means to avoid autoinflammation? Biomedicines. 2021;9(9):1136. doi: 10.3390/biomedicines9091136
  21. Wang JH, Forterre AV, Zhao J, et al. Anti-HER2 scFv-directed extracellular vesicle-mediated mRNA-based gene delivery inhibits growth of HER2-positive human breast tumor xenografts by prodrug activation. Mol Cancer Ther. 2018;17(5):1133–1142. doi: 10.1158/1535-7163.MCT-17-0827
  22. Bellavia D, Raimondo S, Calabrese G, et al. Interleukin 3- receptor targeted exosomes inhibit in vitro and in vivo chronic myelogenous leukemia cell growth. Theranostics. 2017;7(5):1333–1345. doi: 10.7150/thno.17092
  23. Lou G, Song X, Yang F, et al. Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma. J Hematol Oncol. 2015;8(1):122. doi: 10.1186/s13045-015-0220-7
  24. Izco M, Blesa J, Schleef M, et al. Systemic exosomal delivery of shRNA minicircles prevents parkinsonian pathology. Mol Ther. 2019;27(12):2111–2122. doi: 10.1016/j.ymthe.2019.08.010
  25. Alvarez-Erviti L, Seow Y, Yin H, et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29(4):341–345. doi: 10.1038/nbt.1807
  26. Lamichhane TN, Jeyaram A, Patel DB, et al. Oncogene knockdown via active loading of small RNAs into extracellular vesicles by sonication. Cell Mol Bioeng. 2016;9(3):315–324. doi: 10.1007/s12195-016-0457-4
  27. Jeyaram A, Lamichhane TN, Wang S, et al. Enhanced loading of functional miRNA cargo via pH gradient modification of extracellular vesicles. Mol Ther. 2020;28(3):975–985. doi: 10.1016/j.ymthe.2019.12.007
  28. Mondal J, Pillarisetti S, Junnuthula V, et al. Hybrid exosomes, exosome-like nanovesicles and engineered exosomes for therapeutic applications. J Control Release. 2023;353:1127–1149. doi: 10.1016/j.jconrel.2022.12.027
  29. Wu S, Yun J, Tang W, et al. Therapeutic m6 A eraser ALKBH5 mRNA-loaded exosome-liposome hybrid nanoparticles inhibit progression of colorectal cancer in preclinical tumor models. ACS Nano. 2023;17(12):11838–11854. doi: 10.1021/acsnano.3c03050
  30. Shtam TA, Kovalev RA, Varfolomeeva EY, et al. Exosomes are natural carriers of exogenous siRNA to human cells in vitro. Cell Commun Signal. 2013;11(1):88. doi: 10.1186/1478-811X-11-88
  31. Li LM, Ruan GX, HuangFu MY, et al. ScreenFect A: an efficient and low toxic liposome for gene delivery to mesenchymal stem cells. Int J Pharm. 2015;488(1–2):1–11. doi: 10.1016/j.ijpharm.2015.04.050
  32. Ito K, Suda T. Metabolic requirements for the maintenance of self-renewing stem cells. Nat Rev Mol Cell Biol. 2014;15(4):243–256. doi: 10.1038/nrm3772
  33. Clackson T. Regulated gene expression systems. Gene Ther. 2000;7(2):120–125. doi: 10.1038/sj.gt.3301120
  34. Lin Y, Wu J, Gu W, et al. Exosome–liposome hybrid nanoparticles deliver CRISPR/Cas9 system in MSCs. Adv Sci (Weinh). 2018;5(4):1700611. doi: 10.1002/advs.201700611
  35. Vysochinskaya V, Shishlyannikov S, Zabrodskaya Y, et al. Influence of lipid composition of cationic liposomes 2X3-DOPE on mRNA delivery into eukaryotic cells. Pharmaceutics. 2022;15(1):8. doi: 10.3390/pharmaceutics15010008
  36. Zabrodskaya YA, Gavrilova NV, Elpaeva EA, et al. mRNA encoding antibodies against hemagglutinin and nucleoprotein prevents influenza virus infection in vitro. Biochem Biophys Res Commun. 2024;738:150945. doi: 10.1016/j.bbrc.2024.150945
  37. Vysochinskaya V, Zabrodskaya Y, Dovbysh O, et al. Cell-penetrating peptide and cationic liposomes mediated siRNA delivery to arrest growth of chronic myeloid leukemia cells in vitro. Biochimie. 2024;221:1–12. doi: 10.1016/J.BIOCHI.2024.01.006
  38. Théry C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. 2006;Chapter 3:Unit 3.22. doi: 10.1002/0471143030.cb0322s30
  39. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680–685. doi: 10.1038/227680a0
  40. Petukhov IA, Maslov MA, Morozova NG, Serebrennikova GA. Synthesis of polycationic lipids based on cholesterol and spermine. Russian Chemical Bulletin. 2010;59(1):260–268. EDN: OBUHZH doi: 10.1007/s11172-010-0071-x
  41. Nečas D, Klapetek P. Gwyddion: an open-source software for SPM data analysis. Cent Eur J Phys. 2012;10(1):181–188. doi: 10.2478/s11534-011-0096-2
  42. Docshin PM, Karpov AA, Mametov MV, et al. Mechanisms of regenerative potential activation in cardiac mesenchymal cells. Biomedicines. 2022;10(6):1283. doi: 10.3390/biomedicines10061283
  43. Docshin PM, Karpov AA, Eyvazova ShD, et al. Activation of cardiac stem cells in myocardial infarction. Cell and Tissue Biology. 2018;12(3):175–182. EDN: YBUTMT doi: 10.1134/S1990519X18030045
  44. Sturm L, Schwemberger B, Menzel U, et al. In vitro evaluation of a nanoparticle-based mRNA delivery system for cells in the joint. Biomedicines. 2021;9(7):794. doi: 10.3390/biomedicines9070794
  45. Levy O, Zhao W, Mortensen LJ, et al. mRNA-engineered mesenchymal stem cells for targeted delivery of interleukin-10 to sites of inflammation. Blood. 2013;122(14):e23–e32. doi: 10.1182/blood-2013-04-495119
  46. Drzeniek NM, Kahwaji N, Schlickeiser S, et al. Immuno-engineered mRNA combined with cell adhesive niche for synergistic modulation of the MSC secretome. Biomaterials. 2023;294:121971. doi: 10.1016/j.biomaterials.2022.121971
  47. Nowakowski A, Andrzejewska A, Boltze J, et al. Translation, but not transfection limits clinically relevant, exogenous mRNA based induction of alpha-4 integrin expression on human mesenchymal stem cells. Sci Rep. 2017;7(1):1103. doi: 10.1038/s41598-017-01304-3
  48. Fedorovskiy AG, Antropov DN, Dome AS, et al. Novel efficient lipid-based delivery systems enable a delayed uptake and sustained expression of mRNA in human cells and mouse tissues. Pharmaceutics. 2024;16(5):684. doi: 10.3390/pharmaceutics16050684
  49. Zhang L, Qiang W, Li MQ, et al. A drug delivery system of HIF-1α siRNA nanoparticles loaded by mesenchymal stem cells on choroidal neovascularization. Nanomedicine. 2024;19(26):2171–2185. doi: 10.1080/17435889.2024.2393075
  50. Andersen MØ, Nygaard JV, Burns JS, et al. siRNA nanoparticle functionalization of nanostructured scaffolds enables controlled multilineage differentiation of stem cells. Mol Ther. 2010;18(11):2018–2027. doi: 10.1038/mt.2010.166
  51. Benoit DSW, Boutin ME. Controlling mesenchymal stem cell gene expression using polymer-mediated delivery of siRNA. Biomacromolecules. 2012;13(11):3841–3849. doi: 10.1021/bm301294n

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Characterization of extracellular vesicles isolated from human serum. a, Western blot analysis using antibodies against the specific exosome marker protein HLA class I. M, the molecular weight marker with electrophoretic mobility in kDa shown on the right. EXO, the sample under investigation; the arrow indicates the position of the detected protein band. b, Electron micrograph of a sample of extracellular vesicles. The scale bar is 100 nm long.

Download (38KB)
3. Fig. 2. Hydrodynamic diameter of the studied samples determined by the DLS method. EXO, exosomes; LP, cationic liposomes (2X3-DOPE or 2X3-DOPE-PEG for mRNA or siRNA, respectively); EXO-LP, hybrid nanoparticles containing 2X3-DOPE or 2X3-DOPE-PEG; LP/RNA, complexes of liposomes with RNA; EXO-LP/RNA, complexes of hybrid nanoparticles with RNA.

Download (64KB)
4. Fig. 3. Surface topography of samples containing 2X3-DOPE/mRNA and 2X3-DOPE-PEG/siRNA complexes (left column), exosomes (middle column), and their hybrids (right column) visualized by atomic force microscopy. A pseudo-color scale bar reflecting the particle height in nanometers (nm) is shown to the right of all images. The scale bar in each image is 500 nm long.

Download (367KB)
5. Fig. 4. Transfection efficiency of iCMC and hCMC with complexes of cationic liposome 2X3-DOPE with mRNA-eGFP and complexes of hybrid nanoparticles EXO-2X3-DOPE with mRNA-eGFP, 24 hours post-transfection, assessed by flow cytometry. The statistical significance of differences was determined using one-way ANOVA adjusted for multiple comparisons (Tukey test) (***p < 0.0002, **p < 0.0021).

Download (161KB)
6. Fig. 5. Transfection efficiency of iCMC and hCMC with cationic liposome complexes 2X3-DOPE-PEG containing siRNA-JOE and hybrid nanoparticle complexes EXO-2X3-DOPE-PEG with siRNA-JOE, 24 hours post-transfection, assessed by flow cytometry. Statistical significance of the differences was determined using a one-way ANOVA adjusted for multiple comparisons (Tukey test) (**p < 0.0021, *p < 0.0332).

Download (178KB)
7. Fig. 6. Transfection efficiency of iCMC (top) and hCMC (bottom) with cationic liposome complexes 2X3-DOPE-PEG containing siRNA-JOE (left) and hybrid nanoparticle complexes EXO-2X3-DOPE-PEG with siRNA-JOE (right), 24 hours post-transfection, assessed by fluorescence microscopy. Cell nuclei are stained with Hoechst 33342 (blue); siRNA is labeled with JOE (yellow). The scale bar is 150 μm long.

Download (1022KB)
8. Fig. 7. Evaluation of internalization of the studied complexes in iCMC (top) and hCMC (bottom), 24 hours post-transfection, by laser scanning confocal microscopy. Nuclei are stained with DAPI (blue), siRNA is labeled with JOE (green), and the actin cytoskeleton is stained with Alexa Fluor 680 Phalloidin (red). The scale bar is 50 μm long.

Download (675KB)

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».