Роль микробиоты кишечника в патогенезе рассеянного склероза. Часть 3. Кишечная микробиота как потенциальный триггер рассеянного склероза
- Авторы: Абдурасулова И.Н.1
-
Учреждения:
- Институт экспериментальной медицины
- Выпуск: Том 24, № 3 (2024)
- Страницы: 5-44
- Раздел: Аналитический обзор
- URL: https://ogarev-online.ru/MAJ/article/view/277931
- DOI: https://doi.org/10.17816/MAJ633511
- ID: 277931
Цитировать
Аннотация
В предыдущей части обзора была рассмотрена роль кишечной микробиоты как фактора предрасположенности к рассеянному склерозу. В представленной части обзора приведены факты, которые подтверждают триггерную роль кишечной микробиоты. Основное внимание уделено начальным этапам патогенеза, которые, согласно современной концепции рассеянного склероза, происходят в кишечнике.
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
Ирина Николаевна Абдурасулова
Институт экспериментальной медицины
Автор, ответственный за переписку.
Email: i_abdurasulova@mail.ru
ORCID iD: 0000-0003-1010-6768
SPIN-код: 5019-3940
канд. биол. наук, заведующая физиологическим отделом им. И.П. Павлова
Россия, Санкт-ПетербургСписок литературы
- De Luca F., Shoenfeld Y. The microbiome in autoimmune diseases // Clin Exp Immunol. 2019. Vol. 195, N 1. P. 74–85. doi: 10.1111/cei.13158
- Berer K., Mues M., Koutrolos M. et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination // Nature. 2011. Vol. 479, N 7374. P. 538–541. doi: 10.1038/nature10554
- Абдурасулова И.Н. Роль микробиоты кишечника в патогенезе рассеянного склероза. Часть 1. Клинические и экспериментальные доказательства вовлечения микробиоты кишечника в развитие рассеянного склероза // Медицинский академический журнал. 2022. Т. 22, № 2. С. 9–36. EDN: BZXZDJ doi: 10.17816/MAJ108241
- Абдурасулова И.Н., Клименко В.М. Гетерогенность механизмов повреждения нервных клеток при демиелинизирующих аутоиммунных заболеваниях ЦНС // Российский физиологический журнал им. И.М. Сеченова. 2010. Т. 96, № 1. С. 50–68. EDN: OJGJUV
- Dendrou C.A., Lars F., Friese M.A. Immunopathology of multiple sclerosis // Nat Rev Immunol. 2015. Vol. 15, N 9. P. 545–558. doi: 10.1038/nri3871
- Bornstein M.B., Appel S.H. Tissue culture studies of demyelination // Ann NY Acad Sci. 1965. Vol. 122. P. 280–286. doi: 10.1111/j.1749-6632.1965.tb20212.x
- Lucchinetti C., Brück W., Parisi J., et al. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination // Ann Neurol. 2000. Vol. 47, N 6. P. 707–717. doi: 10.1002/1531-8249(200006)47:6<707::aid-ana3>3.0.co;2-q
- Linington C., Bradl M., Lassmann H., et al. Augmentation of demyelination in rat acute allergic encephalomyelitis by circulating mouse monoclonal antibodies directed against a myelin ⁄ oligodendrocytes glycoprotein // Am J Pathol. 1988. Vol. 130, N 3. P. 443–454.
- Litzenburger T., Fässler R., Bauer J., et al. B lymphocytes producing demyelinating autoantibodies: development and function in gene-targeted transgenic mice // J Exp Med. 1998. Vol. 188, N 1. P. 169–180. doi: 10.1084/jem.188.1.169
- Marrodan M., Alessandro L., Farez M.F., Correale J. The role of infections in multiple sclerosis // Mult Scler. 2019. Vol. 25, N 7. P. 891–901. doi: 10.1177/1352458518823940
- Sintzel M.B., Rametta M., Reder A.T. Vitamin D and multiple sclerosis: A comprehensive review // Neurol Ther. 2018. Vol. 7, N 1. P. 59–85. doi: 10.1007/s40120-017-0086-4
- Artemiadis A.K., Anagnostouli M.C., Alexopoulos E.C. Stress as a risk factor for multiple sclerosis onset or relaps: a systematic rewiew // Neuroepidemiology. 2011. Vol. 36, N 2. P. 109–120. doi: 10.1159/000323953
- Stoiloudis P., Kesidou E., Bakirtzis C., et al. The role of diet and interventions on multiple sclerosis: a review // Nutrients. 2022. Vol. 14, N 6. P. 1150. doi: 10.3390/nu14061150
- Mirza A., Mao-Draayer Y. The gut microbiome and microbial translocation in multiple sclerosis // Clin Immunol. 2017. Vol. 183. P. 213–224. doi: 10.1016/j.clim.2017.03.001
- Petersen C., Round J.L. Defining dysbiosis and its influence on host immunity and disease // Cell Microbiol. 2014. Vol. 16, N 7. P. 1024–1033. doi: 10.1111/cmi.12308
- Gandy K.A.O., Zhang J., Nagarkatti P., Nagarkatti M. The role of gut microbiota in shaping the relapse-remitting and chronic-progressive forms of multiple sclerosis in mouse models // Sci Rep. 2019. Vol. 9, N 1. P. 6923. doi: 10.1038/s41598-019-43356-7
- Абдурасулова И.Н. Роль микробиоты кишечника в патогенезе рассеянного склероза. Часть 2. Кишечная микробиота как фактор предрасположенности к развитию рассеянного склероза // Медицинский академический журнал. 2023. Т. 23, № 1. С. 5–40. EDN: ACUJDK doi: 10.17816/MAJ115019
- Martin C.R., Osadchiy V., Kalani A., Mayer E.A. The brain-gut-microbiome axis // Cell Mol Gastroenterol Hepatol. 2018. Vol. 6, N 2. P. 133–148. doi: 10.1016/j.jcmgh.2018.04.003
- Mikulková Z., Praksová P., Stourac P., et al. Imbalance in T-cell and cytokine profiles in patients with relapsing-remitting multiple sclerosis // J Neurol Sci. 2011. Vol. 300, N 1–2. P. 135–141. doi: 10.1016/j.jns.2010.08.053
- Moser A.M., Spindelboeck W., Strohmaier H., et al. Mucosal biopsy shows immunologic changes of the colon in patients with early MS // Neurol Neuroimmunol Neuroinflamm. 2017. Vol. 4, N 4. P. e362. doi: 10.1212/NXI.0000000000000362
- Stanisavljević S., Lukić J., Soković S., et al. Correlation of gut microbiota composition with resistance to experimental autoimmune encephalomyelitis in rats // Front Microbiol. 2016. Vol. 7. P. 2005. doi: 10.3389/fmicb.2016.02005
- Stanisavljević S., Dinić M., Jevtić B., et al. Gut microbiota confers resistance of Albino Oxford rats to the induction of experimental autoimmune encephalomyelitis // Front Immunol. 2018. Vol. 9. P. 942. doi: 10.3389/fimmu.2018.00942
- Cosorich I., Dalla-Costa G., Sorini C., et al. High frequency of intestinal TH17 cells correlates with microbiota alterations and disease activity in multiple sclerosis // Sci Adv. 2017. Vol. 3, N 7. P. e1700492. doi: 10.1126/sciadv.1700492
- Абдурасулова И.Н., Тарасова Е.А., Мацулевич А.В. и др. Изменение качественного и количественного состава кишечной микробиоты у крыс в течение экспериментального аллергического энцефаломиелита // Российский физиологический журнал им. И.М. Сеченова. 2015. Т. 101, № 11. С. 1235–1249. EDN: UWPLYH
- Lee Y.K., Menezes J.S., Umesaki Y., Mazmanian S.K. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis // Proc Natl Acad Sci USA. 2011. Vol. 108, N Suppl 1. P. 4615–4622. doi: 10.1073/pnas.1000082107
- López P., Gueimonde M., Margolles A., Suárez A. Distinct Bifidobacterium strains drive different immune responses in vitro // Int J Food Microbiol. 2010. Vol. 138, N 1–2. P. 157–165. doi: 10.1016/j.ijfoodmicro.2009.12.023
- Tan T.G., Sefik E., Geva-Zatorsky N., et al. Identifying species of symbiont bacteria from the human gut that, alone, can induce intestinal Th17 cells in mice // Proc Natl Acad Sci USA. 2016. Vol. 113, N 50. P. E8141–E81150. doi: 10.1073/pnas.1617460113
- Абдурасулова И.Н., Тарасова Е.А., Мацулевич А.В. и др. Влияние бифидобактерий в составе кишечной микробиоты на течение рассеянного склероза // Проблемы медицинской микологии. 2022. Т. 24, № 2. С. 38. EDN: EAEXJJ
- Alexander M., Ang Q.Y., Nayak R.R., et al. Human gut bacterial metabolism drives Th17 activation and colitis // Cell Host Microbe. 2022. Vol. 30, N 1. P. 17–30. doi: 10.1016/j.chom.2021.11.001
- Bacher P., Hohnstein T., Beerbaum E., et al. Human fnti-fungal Th17 immunity and pathology rely on cross-reactivity against Candida albicans // Cell. 2019. Vol. 176, N 6. P. 1340–1355.e15. doi: 10.1016/j.cell.2019.01.041
- Bartsch P., Kilian C., Hellmig M., et al. Th17 cell plasticity towards a T-bet-dependent Th1 phenotype is required for bacterial control in Staphylococcus aureus infection // PLoS Pathog. 2022. Vol. 18, N 4. P. e1010430. doi: 10.1371/journal.ppat.1010430
- Miyake S., Kim S., Suda W., et al. Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to Clostridia XIVa and IV cluster // PLoS One. 2015. Vol. 10, N 9. P. e0137429. doi: 10.1371/journal.pone.0137429
- Forbes J.D., Chen C.-Y., Knox N.C., et al. A comparative study of the gut microbiota in immune-mediated inflammatory diseases – does a common dysbiosis exist? // Microbiome. 2018. Vol. 6, N 1. P. 221. doi: 10.1186/s40168-018-0603-4
- Chen J., Chia N., Kalari K.R., et al. Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls // Sci Rep. 2016. Vol. 6. P. 28484. doi: 10.1038/srep28484
- Cekanaviciute E., Yoo B.B., Runia T.F., et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models // Proc Natl Acad Sci USA. 2017. Vol. 114, N 40. P. 10713–10718. doi: 10.1073/pnas.1711235114
- Ochoa-Repáraz J., Mielcarz D.W., Ditrio L.E., et al. Central nervous system demyelinating disease protection by the human commensal Bacteroides fragilis dependson polysaccharide A expression // J Immunol. 2010. Vol. 185, N 7. P. 4101–4108. doi: 10.4049/jimmunol.1001443
- Tremlett H., Fadrosh D., Faruqi A.A., et al. Gut microbiome in early pediatric multiple sclerosis: a case-control study // Eur J Neurol. 2016. Vol. 23, N 8. P. 1308–1321. doi: 10.1111/ene.13026
- Swidsinski A., Dörffel Y., Loening-Baucke V., et al. Reduced mass and diversity of the colonic microbiome in patients with multiple sclerosis and their improvement with ketogenic diet // Front Microbiol. 2017. Vol. 8. P. 1141. doi: 10.3389/fmicb.2017.01141
- Mangalam A., Shahi S.K., Luckey D., et al. Human gut-derived commensal bacteria suppress CNS inflammatory and demyelinating disease // Cell Rep. 2017. Vol. 20, N 6. P. 1269–1277. doi: 10.1016/j.celrep.2017.07.031
- Абдурасулова И.Н., Тарасова Е.А., Кудрявцев И.В., и др. Состав микробиоты кишечника и популяций циркулирующих Тh-клеток у пациентов с рассеянным склерозом // Инфекция и иммунитет. 2019. Т. 9, № 3. С. 504–522. EDN: GYYNNL doi: 10.15789/2220-7619-2019-3-4-504-522
- Yamashita M., Ukibe K., Matsubara Y., et al. Lactobacillus helveticus SBT2171 attenuates experimental autoimmune encephalomyelitis in mice // Front Microbiol. 2018. Vol. 8. P. 2596. doi: 10.3389/fmicb.2017.02596
- Lavasani S., Dzhambazov B., Nouri M., et al. A novel probiotic mixture exerts a therapeutic effect on experimental autoimmune encephalomyelitis mediated by IL-10 producing regulatory T cells // PLoS One. 2010. Vol. 5, N 2. P. e9009. doi: 10.1371/journal.pone.0009009
- Kadowaki A., Saga R., Lin Y., et al. Gut microbiota-dependent CCR9+ CD4+ T cells are altered in secondary progressive multiple sclerosis // Brain. 2019. Vol. 142, N 4. P. 916–931. doi: 10.1093/brain/awz012
- Hemmer B., Fleckenstein B.T., Vergelli M., et al. Identification of high potency microbial and self ligands for a human autoreactive class II–restricted T cell clone // J Exp Med. 1997. Vol. 185, N 9. P. 1651–1660. doi: 10.1084/jem.185.9.1651
- Westall F.C. Molecular mimicry revisited: gut bacteria and multiple sclerosis // J Clin Microbiol. 2006. Vol. 44, N 6. P. 2099–2104. doi: 10.1128/JCM.02532-05
- Zeng Q., Gong J., Liu X., et al. Gut dysbiosis and lack of short chain fatty acids in a Chinese cohort of patients with multiple sclerosis // Neurochem Int. 2019. Vol. 129. P. 104468. doi: 10.1016/j.neuint.2019.104468
- Hughes L.E., Smith P.A., Bonell S., et al. Cross-reactivity between related sequences found in Acinetobacter sp., Pseudomonas aeruginosa, myelin basic protein and myelin oligodendrocyte glycoprotein in multiple sclerosis // J Neuroimmunol. 2003. Vol. 144, N 1–2. P. 105–115. doi: 10.1016/s0165-5728(03)00274-1
- Ebringer A., Rashid T., Wilson C. The role of Acinetobacter in the pathogenesis of multiple sclerosis examined by using Popper sequences // Med Hypotheses. 2012. Vol. 78, N 6. P. 763–769. doi: 10.1016/j.mehy.2012.02.026
- Yadav S.K., Ito N., Mindur J.E., et al. Fecal Lcn-2 level is a sensitive biological indicator for gut dysbiosis and intestinal inflammation in multiple sclerosis // Front Immunol. 2022. Vol. 13. P. 1015372. doi: 10.3389/fimmu.2022.1015372
- Szabó T.G., Palotai R., Antal P., et al. Critical role of glycosylation in determining the length and structure of T cell epitopes // Immunol Res. 2009. Vol. 5. P. 4. doi: 10.1186/1745-7580-5-4
- Grogan J.L., Kramer A., Nogai A., et al. Cross-reactivity of myelin basic protein-specific T cells with multiple microbial peptides: Experimental autoimmune encephalomyelitis induction in TCR transgenic mice // J Immunol. 1999. Vol. 163, N 7. P. 3764–3770.
- Planas R., Santos R., Tomas-Ojer P., et al. GDP-l-fucose synthase is a CD4+ T cell-specific autoantigen in DRB3*02:02 patients with multiple sclerosis // Sci Transl Med. 2018. Vol. 10, N 462. P. eaat4301. doi: 10.1126/scitranslmed.aat4301
- Goodyear C.S., Silverman G.J. B cell superantigens: a microbe’s answer to innate-like B cells and natural antibodies // Springer Semin Immunopathol. 2005. Vol. 26, N 4. P. 463–484. doi: 10.1007/s00281-004-0190-2
- Stinissen P., Vandevyver C., Raus J., Zhang J. Superantigen reactivity of γδ T cell clones isolated from patients with multiple sclerosis and controls // Cell Immunol. 1995. Vol. 166, N 2. P. 227–235. doi: 10.1006/cimm.1995.9975
- Deacy A.M., Gan S.K., Derrick J.P. Superantigen recognition and interactions: Functions, mechanisms and applications // Front Immunol. 2021. Vol. 12. P. 731845. doi: 10.3389/fimmu.2021.731845
- Saha D., Cepeda J., Hayden D., Ciment A. Empyema presenting as low extremity weakness // Chest. 2014. Vol. 145, N 3 Suppl. P. 118A. doi: 10.1378/chest.1836709
- Sterlin D., Larsen M., Fadlallah J., et al. Perturbed microbiota / immune homeostasis in multiple sclerosis // Neurol Neuroimmunol Neuroinflamm. 2021. Vol. 8, N 4. P. e997. doi: 10.1212/NXI.0000000000000997
- Hughes L.E., Bonell S., Natt R.S., et al. Antibody responses to Acinetobacter spp. and Pseudomonas aeruginosa in multiple sclerosis: Prospects for diagnosis using the myelin-Acinetobacter-neurofilament antibody index // Clin Diagn Lab Immunol. 2001. Vol. 8, N 6. P. 1181–1188. doi: 10.1128/CDLI.8.6.1181–1188.2001
- Rollenske T., Szijarto V., Lukasiewicz J., et al. Cross-specificity of protective human antibodies against Klebsiella pneumoniae LPS O-antigen // Nat Immunol. 2018. Vol. 19, N 6. P. 617–624. doi: 10.1038/s41590-018-0106-2
- Sterlin D., Fadlallah J., Adams O., et al. Human IgA binds a diverse array of commensal bacteria // J Exp Med. 2020. Vol. 217, N 3. P. e20181635. doi: 10.1084/jem.20181635
- Banati M., Csecsei P., Koszegi E., et al. Antibody response against gastrointestinal antigens in demyelinating diseases of the central nervous system // Eur J Neurol. 2013. Vol. 20, N 11. P. 1492–1495. doi: 10.1111/ene.12072
- Nordenbo A.M., Andersen J.R., Andersen J.T. Disturbances of ano-rectal function in multiple sclerosis // J Neurol. 1996. Vol. 243, N 6. P. 445–451. doi: 10.1007/BF00900497
- Wiesel P.H., Norton C., Roy A.J., et al. Gut focused behavioural treatment for constipation and faecal incontinence in MS // J Neurol Neurosurg Psychiatry. 2000. Vol. 69, N 2. P. 240–243. doi: 10.1136/jnnp.69.2.240
- Levinthal D.J., Rahman A., Nusrat S., et al. Adding to the burden: gastrointestinal symptoms and syndromes in multiple sclerosis // Mult Scler Int. 2013. Vol. 2013. P. 319201. doi: 10.1155/2013/319201
- Preziosi G., Raptis D.A., Raeburn A., et al. Gut dysfunction in patients with multiple sclerosis and the role of spinal cord involvement in the disease // Eur J Gastroenterol Hepatol. 2013. Vol. 25, N 9. P. 1044–1050. doi: 10.1097/MEG.0b013e328361eaf8
- Waldron D.J., Horgan P.G., Patel F.R., et al. Multiple sclerosis: assessment of colonic and anorectal function in the presence of faecal incontinence // Dis Colon Rectum. 2014. Vol. 57, N 4. P. 514–521. doi: 10.1097/DCR.0000000000000048
- Абдурасулова И.Н., Тарасова Е.А., Ермоленко Е.И. и др. При рассеянном склерозе изменяется качественный и количественный состав микробиоты кишечника // Медицинский академический журнал. 2015. Т. 15, № 3. С. 55–67. EDN: UNEYGH
- Абдурасулова И.Н., Тарасова Е.А., Никифорова И.Г. и др. Особенности состава микробиоты кишечника у пациентов с рассеянным склерозом, получающих препараты, изменяющие течение рассеянного склероза // Журнал неврологии и психиатрии им. С.С. Корсакова. 2018. Т. 118, № 8–2. С. 62–69. EDN: YBMCDZ doi: 10.17116/jnevro201811808262
- Тарасова Е.А., Людыно В.И. , Мацулевич А.В. и др. Особенности состава микробиоты кишечника у пациентов с рассеянным склерозом, получающих пероральные препараты, изменяющие течение рассеянного склероза // Медицинский академический журнал. 2021. Т. 21, № 4. С. 47–56. EDN: UFKJVO doi: 10.17816/MAJ88595
- Khanna L., Zeydan B., Kantarci O.H., Camilleri M. Gastrointestinal motility disorders in patients with multiple sclerosis: A single-center study // Neurogastroenterol Motil. 2022. Vol. 34, N 8. P. e14326. doi: 10.1111/nmo.14326
- Ascanelli S., Bombardini C., Chimisso L., et al. Trans-anal irrigation in patients with multiple sclerosis: Efficacy in treating disease-related bowel dysfunctions and impact on the gut microbiota: A monocentric prospective study // Mult Scler J Exp Transl Clin. 2022. Vol. 8, N 3. P. 20552173221109771. doi: 10.1177/20552173221109771
- Quesada-Simó A., Garrido-Marín A., Nos P., Gil-Perotín S. Impact of Anti-CD20 therapies on the immune homeostasis of gastrointestinal mucosa and their relationship with de novo intestinal bowel disease in multiple sclerosis: a review // Front Pharmacol. 2023. Vol. 14. P. 1186016. doi: 10.3389/fphar.2023.1186016
- Spear E.T., Holt E.A., Joyce E.J., et al. Altered gastrointestinal motility involving autoantibodies in the experimental autoimmune encephalomyelitis model of multiple sclerosis // Neurogastroenterol Motil. 2018. Vol. 30, N 9. P. e13349. doi: 10.1111/nmo.13349
- Wunsch M., Jabari S., Voussen B., et al. The enteric nervous system is a potential autoimmune target in multiple sclerosis // Acta Neuropathol. 2017. Vol. 134, N 2. P. 281–295. doi: 10.1007/s00401-017-1742-6
- Kosmidou M., Katsanos A.H., Katsanos K.H., et al. Multiple sclerosis and inflammatory bowel diseases: A systematic review and meta-analysis // J Neurol. 2017. Vol. 264, N 2. P. 254–259. doi: 10.1007/s00415-016-8340-8
- Rang E.H., Brooke B.N., Hermon-Taylor J. Association of ulcerative colitis with multiple sclerosis // Lancet. 1982. Vol. 2, N 8297. P. 555. doi: 10.1016/s0140-6736(82)90629-8
- Sadovnick A.D., Paty D.W., Yannakoulias G. Concurrence of multiple sclerosis and inflammatory bowel disease // N Engl J Med. 1989. Vol. 321, N 11. P. 762–763.
- Kimura K., Hunter S.F., Thollander M.S., et al. Concurrence of inflammatory bowel disease and multiple sclerosis // Mayo Clin Proc. 2000. Vol. 75, N 8. P. 802–806. doi: 10.4065/75.8.802
- Gupta G., Gelfand J.M., Lewis J.D. Increased risk for demyelinating diseases in patients with inflammatory bowel disease // Gastroenterology. 2005. Vol. 129, N 3. P. 819–826. doi: 10.1053/j.gastro.2005.06.022
- Pokorny C.S., Beran R.G., Pokorny M.J. Association between ulcerative colitis and multiple sclerosis // Intern Med. J. 2007. Vol. 37, N 10. P. 721–724. doi: 10.1111/j.1445-5994.2007.01452.x
- Marrie R.A., Yu B.N., Leung S., et al. The utility of administrative data for surveillance of comorbidity in multiple sclerosis: a validation study // Neuroepidemiology. 2013. Vol. 40, N 2. P. 85–92. doi: 10.1159/000343188
- Yacyshyn B., Meddings J., Sadowski D., Bowen-Yacyshyn M.B. Multiple sclerosis patients have peripheral blood CD45RO+ B cells and increased intestinal permeability // Dig Dis Sci. 1996. Vol. 41, N 12. P. 2493–2498. doi: 10.1007/BF02100148
- Fasano A. Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer // Physiol Rev. 2011. Vol. 91, N 1. P. 151–175. doi: 10.1152/physrev.00003.2008
- Teixeira B., Bittencourt V.C.B., Ferreira T.B., et al. Low sensitivity to glucocorticoid inhibition of in vitro Th17-related cytokine production in multiple sclerosis patients is related to elevated plasma lipopolysaccharide levels // Clin Immunol. 2013. Vol. 148, N 2. P. 209–218. doi: 10.1016/j.clim.2013.05.012
- Buscarinu M.C., Cerasoli B., Annibali V., et al. Altered intestinal permeability in patients with relapsing-remitting multiple sclerosis: A pilot study // Mult Scler. 2017. Vol. 23, N 3. P. 442–446. doi: 10.1177/1352458516652498
- Pellizoni F.P., Leite A.Z., Rodrigues N.C., et al. Detection of dysbiosis and increased intestinal permeability in Brazilian patients with relapsing-remitting multiple sclerosis // Int J Environ Res Public Health. 2021. Vol. 18, N 9. P. 4621. doi: 10.3390/ijerph18094621
- Sjöström B., Bredberg A., Mandl T., et al. Increased intestinal permeability in primary Sjögren’s syndrome and multiple sclerosis // J Transl Autoimmun. 2021. Vol. 4. P. 100082. doi: 10.1016/j.jtauto.2021.100082
- Buscarinu M.C., Romano S., Mechelli R. Intestinal permeability in relapsing-remitting multiple sclerosis // Neurotherapeutics. 2018. Vol. 15, N 1. P. 68–74. doi: 10.1007/s13311-017-0582-3
- Olsson A., Gustavsen S., Langkilde A.R., et al. Circulating levels of tight junction proteins in multiple sclerosis: Association with inflammation and disease activity before and after disease modifying therapy // Mult Scler Relat Disord. 2021. Vol. 54. P. 103136. doi: 10.1016/j.msard.2021.103136
- Rahman M.T., Ghosh C., Hossain M., et al. IFN-g, IL-17A, or zonulin rapidly increase the permeability of the blood-brain and small intestinal epithelial barriers: relevance for neuroinflammatory diseases // Biochem Biophys Res Commun. 2018. Vol. 507, N 1–2. P. 274–279. doi: 10.1016/j.bbrc.2018.11.021
- Camara-Lemarroy C.R., Silva C., Greenfield J., et al. Biomarkers of intestinal barrier function in multiple sclerosis are associated with disease activity // Mult Scler. 2020. Vol. 26, N 11. P. 1340–1350. doi: 10.1177/1352458519863133
- Nouri M., Bredberg A., Weström B., Lavasani S. Intestinal barrier dysfunction develops at the onset of experimental autoimmune encephalomyelitis, and can be induced by adoptive transfer of autoreactive T cells // PLoS One. 2014. Vol. 9, N 9. P. e106335. doi: 10.1371/journal.pone.0106335
- Secher T., Kassem S., Benamar M., et al. Oral Administration of the probiotic strain Escherichia coli Nissle 1917 reduces susceptibility to neuroinflammation and repairs experimental futoimmune encephalomyelitis-induced intestinal barrier dysfunction // Front Immunol. 2017. Vol. 8. P. 1096. doi: 10.3389/fimmu.2017.01096
- Abdurasulova I.N., Matsulevich A.V., Kirik O.V., et al. The protective effect of Enterococcus faecium L-3 in experimental allergic encephalomyelitis in rats is dose-dependent // Nutrafoods. 2019. Vol. 1. P. 1–11. doi: 10.17470/NF-019-0001
- Sonoda N., Furuse M., Sasaki H. Clostridium perfringens enterotoxin fragment removes specific claudins from tight junction strands: Evidence for direct involvement of claudins in tight junction barrier // J Cell Biol. 1999. Vol. 147, N 1. P. 195–204. doi: 10.1083/jcb.147.1.195
- Madi A., Svinareff P., Orange N., et al. Pseudomonas fluorescens alters epithelial permeability and translocates across Caco-2/TC7 intestinal cells // Gut Pathog. 2010. Vol. 2, N 1. P. 16. doi: 10.1186/1757-4749-2-16
- Wu S., Lim K.C., Huang J., et al. Bacteroides fragilis enterotoxin cleaves the zonula adherens protein, E-cadherin // Proc Natl Acad Sci USA. 1998. Vol. 95, N 25. P. 14979–14984. doi: 10.1073/pnas.95.25.14979
- Bates J.M., Akerlund J., Mittge E., Guillemin K. Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota // Cell Host Microbe. 2007. Vol. 2, N 6. P. 371–382. doi: 10.1016/j.chom.2007.10.010
- Huang Z., Wang J., Xu X., et al. Antibody neutralization of microbiota-derived circulating peptidoglycan dampens inflammation and ameliorates autoimmunity // Nat Microbiol. 2019. Vol. 4, N 5. P. 766–773. doi: 10.1038/s41564-019-0381-1
- Jiang W., Lederman M.M., Hunt P., et al. Plasma levels of bacterial DNA correlate with immune activation and the magnitude of immune restoration in persons with antiretroviral-treated HIV infection // J Infect Dis. 2009. Vol. 199, N 8. P. 1177–1185. doi: 10.1086/597476
- Sandler N.G., Douek D.C. Microbial translocation in HIV infection: causes, consequences and treatment opportunities // Nat Rev Microbiol. 2012. Vol. 10, N 9. P. 655–666. doi: 10.1038/nrmicro2848
- Садеков Т.Ш., Бойко А.Н., Омарова М.А. и др. Оценка структуры микробиома человека при рассеянном склерозе по концентрациям микробных маркеров в крови // Клиническая лабораторная диагностика. 2022. Т. 67, № 10. С. 600–606. EDN: TBRRGZ doi: 10.51620/0869-2084-2022-67-10-600-606
- Ebringer A., Hughes L., Rashid T., Wilson C. Acinetobacter immune responses in multiple sclerosis: etiopathogenetic role and its possible use as a diagnostic marker // Arch Neurol. 2005. Vol. 62, N 1. P. 33–36. doi: 10.1001/archneur.62.1.33
- Benito-Leon J., Pisa D., Alonso R., et al. Association between multiple sclerosis and Candida species: evidence from a case-control study // Eur J Clin Microbiol Infect Dis. 2010. Vol. 29, N 9. P. 1139–1145. doi: 10.1007/s10096-010-0979-y
- Braniste V., Al-Asmakh M., Kowal C., et al. The gut microbiota influences blood-brain barrier permeability in mice // Sci Transl Med. 2014. Vol. 6, N 263. P. 263ra158. doi: 10.1126/scitranslmed.3009759
- Leech S., Kirk J., Plumb J., McQuaid S. Persistent endothelial abnormalities and blood-brain barrier leak in primary and secondary progressive multiple sclerosis // Neuropathol Appl Neurobiol. 2007. Vol. 33, N 1. P. 86–98. doi: 10.1111/j.1365-2990.2006.00781.x
- Alvarez J.I., Cayrol R., Prat A. Disruption of central nervous system barriers in multiple sclerosis // Biochim Biophys Acta. 2011. Vol. 1812, N 2. P. 252–264. doi: 10.1016/j.bbadis.2010.06.017
- Bartholomaus I., Kawakami N., Odoardi F., et al. Effector Tcell interactions with meningeal vascular structures in nascent autoimmune CNS lesions // Nature. 2009. Vol. 462, N 7269. P. 94–98. doi: 10.1038/nature08478
- Hoyles L., Snelling T., Umlai U.-K., et al. Microbiome-host systems interactions: protective effects of propionate upon the blood-brain barrier // Microbiome. 2018. Vol. 6, N 1. P. 55. doi: 10.1186/s40168-018-0439-y
- Melbye P., Olsson A., Hansen T.H., et al. Short-chain fatty acids and gut microbiota in multiple sclerosis // Acta Neurol Scand. 2019. Vol. 139, N 3. P. 208–219. doi: 10.1111/ane.13045
- Li Z., Zhang F., Sun M., et al. The modulatory effects of gut microbes and metabolites on blood–brain barrier integrity and brain function in sepsis-associated encephalopathy // Peer J. 2023. Vol. 11. P. e15122. doi: 10.7717/peerj.15122
- Hoyles L., Pontifex M.G., Rodriguez-Ramiro I., et al. Regulation of blood-brain barrier integrity by microbiome-associated methylamines and cognition by trimethylamine N-oxide // Microbiome. 2021. Vol. 9, N 1. P. 235. doi: 10.1186/s40168-021-01181-z
- Stachulski A.V., Knausenbergrer T.B., Shah S.N., et al. A host-gut microbial co-metabolite of aromatic amino acids, p-cresol glucuronide, promotes blood-brain barrier integrity in vivo // Tissue Barriers. 2023. Vol. 11, N 1. P. 2073175. doi: 10.1080/21688370.2022.2073175
- Vallino A., Dos Santos A., Mathé C.V., et al. Gut bacteria Akkermansia elicit a specific IgG response in CSF of patients with MS // Neurol Neuroimmunol Neuroinflamm. 2020. Vol. 7, N 3. P. e688. doi: 10.1212/NXI.0000000000000688
- Boussamet L., Montassier E., Soulillou J.-P., Berthelot L. Anti α1-3Gal antibodies and Gal content in gut microbiota in immune disorders and multiple sclerosis // Clin Immunol. 2022. Vol. 235. P. 108693. doi: 10.1016/j.clim.2021.108693
- Eckman E., Laman J.D., Fischer K.F., et al. Spinal fluid IgG antibodies from patients with demyelinating diseases bind multiple sclerosis-associated bacteria // J Mol Med (Berl). 2021. Vol. 99, N 10. P. 1399–1411. doi: 10.1007/s00109-021-02085-z
- Aasjord P., Nyland H., Haaheim L.R. Intrathecal synthesis of antibodies to staphylococcal antigens in multiple sclerosis patients // Acta Pathol Microbiol Immunol Scand. C. 1986. Vol. 94, N 3. P. 97–103. doi: 10.1111/j.1699-0463.1986.tb02097.x
- Бойко А.Н., Мельников М.В., Бойко О.В. и др. Исследование содержания маркеров микробиоты в цереброспинальной жидкости пациентов с рассеянным склерозом и радиологически изолированным синдромом // Неврология, нейропсихиатрия, психосоматика. 2021. Т. 13, № S1. С. 27–30. EDN: ORSJHL doi: 10.14412/2074-2711-2021-1S-27-30
- Pisa D., Alonso R., Jimenez-Jimenez F.J., Carrasco L. Fungal infection in cerebrospinal fluid from some patients with multiple sclerosis // Eur J Clin Microbiol Infect. Dis. 2013. Vol. 32, N 6. P. 795–801. doi: 10.1007/s10096-012-1810-8
- Schrijver I.A., van Meurs M., Melief M.J. Bacterial peptidoglycan and immune reactivity in central nervous system in multiple sclerosis // Brain. 2001. Vol. 124, N Pt 8. P. 1544–1554. doi: 10.1093/brain/124.8.1544
- Visser L., Melief M.-J., van Riel D., et al. Phagocytes containing a disease-promoting Toll-like receptor/Nod ligand are present in the brain during demyelinating disease in primates // Am J Pathol. 2006. Vol. 169, N 5. P. 1671–1685. doi: 10.2353/ajpath.2006.060143
- Branton W.G., Lu J.Q., Surette M.G., et al. Brain microbiota disruption within inflammatory demyelinating lesions in multiple sclerosis // Sci Rep. 2016. Vol. 6. P. 37344. doi: 10.1038/srep37344
- Kriesel J.D., Bhetariya P., Wang Z.M., et al. Spectrum of microbial sequences and a bacterial cell wall antigen in primary demyelination brain specimens obtained from living patients // Sci Rep. 2019. Vol. 9, N 1. P. 1387. doi: 10.1038/s41598-018-38198-8
- Alonso R., Fernández-Fernández A.M., Pisa D., Carrasco L. Multiple sclerosis and mixed microbial infections. Direct identification of fungi and bacteria in nervous tissue // Neurobiol Dis. 2018. Vol. 117. P. 42–61. doi: 10.1016/j.nbd.2018.05.022
- Pröbstel A.-K., Zhou X., Baumann R., et al. Gut microbiota-specific IgA+ B cells traffic to the CNS in active multiple sclerosis // Sci Immunol. 2020. Vol. 5, N 53. P. eabc7191. doi: 10.1126/sciimmunol.abc7191
- Kim K.S. Mechanisms of microbial traversal of the blood-brain barrier // Nat Rev Microbiol. 2008. Vol. 6, N 8. P. 625–634. doi: 10.1038/nrmicro1952
- Erny D., Hrabě de Angelis A.L., Jaitin D., et al. Host microbiota constantly control maturation and function of microglia in the CNS // Nat Neurosci. 2015. Vol. 18, N 7. P. 965–977. doi: 10.1038/nn.4030
- Luczynsci P., Whelan S.O., O’Sullivan C., et al. Adult microbiota-deficient mice have distinct dendritic morphological changes: differential effects in the amygdale and hippocampus // Eur J Neurosci. 2016. Vol. 44. P. 2654–2666. doi: 10.1111/ejn.13291
- Heijtz R.D., Wang S., Anuar F., Petterson S. Normal gut microbiota modulates brain developmant and behavior // Proc Natl Acad Sci USA. 2011. Vol. 108, N 7. P. 3047–3052. doi: 10.1073/pnas.1010529108
- Lu J., Lu L., Yu Y., et al. Effects of Intestinal microbiota on brain development in humanized gnotobiotic mice // Sci Rep. 2018. Vol. 8, N 1. P. 5443. doi: 10.1038/s41598-018-23692-w
- Luo C., Jian C., Liao Y., et al. The role of microglia in multiple sclerosis // Neuropsychiatr Dis Treat. 2017. Vol. 13. P. 1661–1667. doi: 10.2147/NDT.S140634
- Vogel D.Y.S., Vereyken E.J.F., Glim J.E., et al. Macrophages in inflammatory multiple sclerosis lesions have an intermediate activation status // J Neuroinflammation. 2013. Vol. 10. P. 35. doi: 10.1186/1742-2094-10-35
- Heppner F.L., Greter M., Marino D., et al. Experimental autoimmune encephalomyelitis repressed by microglial paralysis // Nat Med. 2005. Vol. 11, N 2. P. 146–152. doi: 10.1038/nm1177
- Rothhammer V., Mascanfroni I.D., Bunse L., et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor // Nat Med. 2016. Vol. 22, N 6. P. 586–597. doi: 10.1038/nm.4106
- Zelante T., Iannotti R.G., Cunha C., et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22 // Immunity. 2013. Vol. 39, N 2. P. 372–385. doi: 10.1016/j.immuni.2013.08.003
- Li G., Young K.D. Indole production by the tryptophanase TnaA in Escherichia coli is determined by the amount of exogenous tryptophan // Microbiology. 2013. Vol. 159, N Pt 2. P. 402–410. doi: 10.1099/mic.0.064139-0
- Devlin A.S., Marcobal A., Dodd D., et al. Modulation of a circulating uremic solute via rational genetic manipulation of the gut microbiota // Cell Host Microbe. 2016. Vol. 20, N 6. P. 709–715. doi: 10.1016/j.chom.2016.10.021
- Shapira L., Ayalon S., Brenner T. Effects of Porphyromonas gingivalis on the central nervous system: Activation of glial cells and exacerbation of experimental autoimmune encephalomyelitis // J Periodontol. 2002. Vol. 73, N 5. P. 511–516. doi: 10.1902/jop.2002.73.5.511
- Wang Y., Telesford K.M., Ochoa-Repáraz J., et al. An intestinal commensal symbiosis factor controls neuroinflammation via TLR2-mediated CD39 signalling // Nat Commun. 2014. Vol. 5. P. 4432. doi: 10.1038/ncomms5432
- Hoban A.E., Stilling R.M., Ryan F.J., et al. Regulation of prefrontal cortex myelination by the microbiota // Transl Psychiatry. 2016. Vol. 6, N 4. P. e774. doi: 10.1038/tp.2016.42
- Kuhlman T., Miron V., Cui Q., et al. Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis // Brain. 2008. Vol. 131, N Pt 7. P. 1749–1758. doi: 10.1093/brain/awn096
- Gacias M., Gaspari S., Santos P.M.G., et al. Microbiota-driven transcriptional changes in prefrontal cortex override genetic differences in social behavior // Elife. 2016. Vol. 5. P. e13442. doi: 10.7554/eLife.13442
- Cox L.M., Maghzi A.H., Liu S., et al. The gut microbiome in progressive multiple sclerosis // Ann Neurol. 2021. Vol. 89, N 6. P. 1195–1211. doi: 10.1002/ana.26084
- Reynders T., Devolder L., Valles-Colomer M., et al. Gut microbiome variation is associated to multiple sclerosis phenotypic subtypes // Ann Clin Transl Neurol. 2020. Vol. 7, N 4. P. 406–419. doi: 10.1002/acn3.51004
- Saito Y., Sato T., Nomoto K., Tsuji H. Identification of phenol- and p-cresol-producing intestinal bacteria by using media supplemented with tyrosine and its metabolites // FEMS Microbiol Ecol. 2018. Vol. 94, N 9. P. fiy125. doi: 10.1093/femsec/fiy125
- Rumah K.R., Linden J., Fischetti V.A., Vartanian T. Isolation of Clostridium perfringens type B in an individual at first clinical presentation of multiple sclerosis provides clues for environmental triggers of the disease // PLoS One. 2013. Vol. 8, N 10. P. e76359. doi: 10.1371/journal.pone.0076359
- Cekanaviciute E., Pröbstel A.-K., Thomann A., et al. Multiple sclerosis-associated changes in the composition and immune functions of spore-forming bacteria // mSystems. 2018. Vol. 3, N 6. P. e00083–18. doi: 10.1128/mSystems.00083-18
- Szmigielski S., Blankenship M., Robinson J.P., Harshman S. Injury of myelin sheaths in isolated rabbit vagus nerves by alpha-toxin of Staphylococcus aureus // Toxicon. 1979. Vol. 17, N 4. P. 363–371. doi: 10.1016/0041-0101(79)90264-2
- Uyeda C., Gerstl B., Smith J., Carr W. Anti-staphylococcal β-hemolysin antibodies in humans with neurological disease // Proc Soc Exp Biol Med. 1966. Vol. 123, N 1. P. 143–146. doi: 10.3181/00379727-123-31425
- Ntranos A., Park H.J., Wentling M., et al. Bacterial neurotoxic metabolites in multiple sclerosis cerebrospinal fluid and plasma // Brain. 2022. Vol. 145, N 2. P. 569–583. doi: 10.1093/brain/awab320
- Schepici G., Silvestro S., Bramanti P., Mazzon E. The gut microbiota in multiple sclerosis: An overview of clinical trials // Cell Transplant. 2019. Vol. 28, N 12. P. 1507–1527. doi: 10.1177/0963689719873890
- Yadav S.K., Mindur J.E., Ito K., Dhib-Jalbut S. Advances in the immunopathogenesis of multiple sclerosis // Curr Opin Neurol. 2015. Vol. 28, N 3. P. 206–219. doi: 10.1097/WCO.0000000000000205
- Fletcher J.M., Lalor S.J., Sweeney C.M., et al. T cells in multiple sclerosis and experimental autoimmune encephalomyelitis // Clin Exp Immunol. 2010. Vol. 162, N 1. P. 1–11. doi: 10.1111/j.1365-2249.2010.04143.x
- Ivanov I.I., Atarashi K., Manel N., et al. Induction of intestinal Th17 cells by segmented filamentous bacteria // Cell. 2009. Vol. 139, N 3. P. 485–498. doi: 10.1016/j.cell.2009.09.033
- Legroux L., Arbour N. Multiple sclerosis and T lymphocytes: An entangled story // J Neuroimmune Pharmacol. 2015. Vol. 10, N 4. P. 528–546. doi: 10.1007/s11481-015-9614-0
- McGeachy M.J., Chen Y., Tato C.M., et al. The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo // Nat Immunol. 2009. Vol. 10, N 3. P. 314–324. doi: 10.1038/ni.1698
- Jadidi-Niaragh F., Mirshafiey A. Th17 cell, the new player of neuroinflammatory process in multiple sclerosis // Scand J Immunol. 2011. Vol. 74, N 1. P. 1–13. doi: 10.1111/j.1365-3083.2011.02536.x
- Vaknin-Dembinsky A., Balashov K., Weiner H.L. IL-23 is increased in dendritic cells in multiple sclerosis and down-regulation of IL-23 by antisense oligos increases dendritic cell IL-10 production // J Immunol. 2006. Vol. 176, N 12. P. 7768–7774. doi: 10.4049/jimmunol.176.12.7768
- Berer K., Boziki M., Krishnamoorthy G. Selective accumulation of pro-inflammatory T cells in the intestine contributes to the resistance to autoimmune demyelinating disease // PLoS One. 2014. Vol. 9, N 2. P. e87876. doi: 10.1371/journal.pone.0087876
- Kohm A.P., Carpentier P.A., Anger H.A., Miller S.D. Cutting edge: CD4+CD25+ regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis // J Immunol. 2002. Vol. 169, N 9. P. 4712–4716. doi: 10.4049/jimmunol.169.9.4712
- Абдурасулова И.Н., Клименко В.М. Роль иммунных и глиальных клеток в процессах нейродегенерации // Медицинский академический журнал. 2011. T. 11, № 1. C. 12–29. EDN: TKPSIT
- Castillo-Alvarez F., Marzo-Sola M.E. Role of intestinal microbiota in the development of multiple sclerosis // Neurologia. 2017. Vol. 32, N 3. P. 175–184. doi: 10.1016/j.nrl.2015.07.005
- Jäger A., Dardalhon V., Sobel R.A., et al. Th1, Th17 and Th9 effector cells induce experimental autoimmune encephalomyelitis with different pathological phenotypes // J Immunol. 2009. Vol. 183, N 11. P. 7169–7177. doi: 10.4049/jimmunol.0901906
- Kamma E., Lasisi W., Libner C., et al. Central nervous system macrophages in progressive multiple sclerosis: relationship to neurodegeneration and therapeutics // J Neuroinflammation. 2022. Vol. 19. P. 45. doi: 10.1186/s12974-022-02408-y
- Gazzinelli-Guimaraes P.H., Nutman T.B. Helminth parasites and immune regulation // F1000Res. 2018. Vol. 7. P. F1000. Faculty Rev-1685. doi: 10.12688/f1000research.15596
- Barone M., Mendozzi L., D’Amico F., et al. Influence of a high-impact multidimensional rehabilitation program on the gut microbiota of patients with multiple sclerosis // Int J Mol Sci. 2021. Vol. 22, N 13. P. 7173. doi: 10.3390/ijms22137173
- Bitan M., Weiss L., Reibstein I., et al. Influence of a high-impact multidimensional rehabilitation program on the gut microbiota of patients with multiple sclerosis // Mol Immunol. 2010. Vol. 47, N 10. P. 1890–1898. doi: 10.1016/j.molimm.2010.03.014
- Badolati I., Sverremark-Ekström E., van der Heiden M. Th9 cells in allergic diseases: A role for the microbiota? // Scand J Immunol. 2020. Vol. 91, N 4. P. e12857. doi: 10.1111/sji.12857
- Badolati I., van der Heiden M., Brodin D., et al. Staphylococcus aureus-derived factors promote human Th9 cell polarization and enhance a transcriptional program associated with allergic inflammation // Eur J Immunol. 2023. Vol. 53, N 3. P. e2250083. doi: 10.1002/eji.202250083
- Nowak E.C., Weaver C.T., Turner H., et al. IL-9 as a mediator of Th17-driven inflammatory disease // J Exp Med. 2009. Vol. 206, N 8. P. 1653–1660. doi: 10.1084/jem.20090246
- Atarashi K., Tanoue T., Ando M., et al. Th17 cell induction by adhesion of microbes to intestinal epithelial cells // Cell. 2015. Vol. 163, N 2. P. 367–380. doi: 10.1016/j.cell.2015.08.058
- Atarashi K., Nishimura J., Shima T., et al. ATP drives lamina propria T(H)17 cell differentiation // Nature. 2008. Vol. 455, N 7214. P. 808–812. doi: 10.1038/nature07240
- Becattini S., Becattini S., Latorre D., et al. Functional heterogeneity of human memory CD4+ T cell clones primed by pathogens or vaccines // Science. 2015. Vol. 347, N 6220. P. 400–406. doi: 10.1126/science.1260668
- Zielinski C.E., Mele F., Aschenbrenner D., et al. Pathogen-induced human TH17 cells produce IFN-g or IL-10 and are regulated by IL-1b // Nature. 2012. Vol. 484, N 7395. P. 514–518. doi: 10.1038/nature10957
- Tzartos J.S., Friese M.A., Craner M.J., et al. Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis // Am J Pathol. 2008. Vol. 172, N 1. P. 146–155. doi: 10.2353/ajpath.2008.070690
- Kebir H., Kreymborg K., Ifergan I., et al. Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation // Nat Med. 2007. Vol. 13, N 10. P. 1173–1175. doi: 10.1038/nm1651
- Barnes J.L., Plank M.W., Asquith K., et al. T-helper 22 cells develop as a distinct lineage from Th17 cells during bacterial infection and phenotypic stability is regulated by T-bet // Mucosal Immunol. 2021. Vol. 14, N 5. P. 1077–1087. doi: 10.1038/s41385-021-00414-6
- Rolla S., Bardina V., De Mercanti S., et al. Th22 cells are expanded in multiple sclerosis and are resistant to IFN-β // J Leukoc Biol. 2014. Vol. 96, N 6. P. 1155–1164. doi: 10.1189/jlb.5A0813-463RR
- Xu W., Li R., Dai Y., et al. IL-22 secreting CD4+ T cells in the patients with neuromyelitis optica and multiple sclerosis // J Neuroimmunol. 2013. Vol. 261, N 1–2. P. 87–91. doi: 10.1016/j.jneuroim.2013.04.021
- Ansaldo E., Slayden L.C., Ching K.L., et al. Akkermansia muciniphila induces intestinal adaptive immune responses during homeostasis // Science. 2019. Vol. 364, N 6446. P. 1179–1184. doi: 10.1126/science.aaw7479
- Takahashi D., Hoshina N., Kabumoto Y., et al. Microbiota-derived butyrate limits the autoimmune response by promoting the differentiation of follicular regulatory T cells // EBioMedicine. 2020. Vol. 58. P. 102913. doi: 10.1016/j.ebiom.2020.102913
- Dhaeze T., Peelen E., Hombrouck A., et al. Circulating follicular regulatory T cells are defective in multiple sclerosis // J Immunol. 2015. Vol. 195, N 3. P. 832–840. doi: 10.4049/jimmunol.1500759
- Shahi S., Jensen S.N., Murra A.C., et al. Human commensal Prevotella histicola ameliorates disease as effectively as interferone-beta in the experimental autoimmune encephalomyelitis // Front Immunol. 2020. Vol. 11. P. 578648. doi: 10.3389/fimmu.2020.578648
- Furusawa Y., Obata Y., Fukuda S., et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells // Nature. 2013. Vol. 504, N 7480. P. 446–450. doi: 10.1038/nature12721
- Qiu X., Zhang M., Yang X., et al. Faecalibacterium prausnitzii upregulates regulatory T cells and anti-inflammatory cytokines in treating TNBS-induced colitis // J Crohns Colitis. 2013. Vol. 7, N 11. P. e558–568. doi: 10.1016/j.crohns.2013.04.002
- Atarashi K., Tanoue T., Shima T., et al. Induction of colonic regulatory T cells by indigenous Clostridium species // Science. 2011. Vol. 331, N 6015. P. 337–341. doi: 10.1126/science.1198469
- Vital M., Penton C.R., Wang Q., et al. A gene-targeted approach to investigate the intestinal butyrate-producing bacterial community // Microbiome. 2013. Vol. 1, N 1. P. 8. doi: 10.1186/2049-2618-1-8
- Ochoa-Repáraz J., Mielcarz D.W., Wang Y., et al. A polysaccharide from the human commensal Bacteroides fragilis protects against CNS demyelinating disease // Mucosal Immunol. 2010. Vol. 3, N 5. P. 487–495. doi: 10.1038/mi.2010.29
- Tejon G.P., Manriques V., De Calisto J., et al. Vitamin A impairs the reprogramming of Tregs into IL-17-producing cells during intestinal inflammation // Biomed Res Int. 2015. Vol. 2015. P. 137893. doi: 10.1155/2015/137893
- Viglietta V., Baecher-Allan C., Weiner H.L., Hafler D.A. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis // J Exp Med. 2004. Vol. 199, N 7. P. 971–979. doi: 10.1084/jem.20031579
- Haas J., Hug A., Viehöver A., et al. Reduced suppressive effect of CD4+CD25high regulatory T cells on the T cell immune response against myelin oligodendrocyte glycoprotein in patients with multiple sclerosis // Eur J Immunol. 2005. Vol. 35, N 11. P. 3343–3352. doi: 10.1002/eji.200526065
- Zhang H., Podojil J.R., Chang J., et al. TGF-beta-induced myelin peptide-specific regulatory T cells mediate antigen-specific suppression of induction of experimental autoimmune encephalomyelitis // J Immunol. 2010. Vol. 184, N 12. P. 6629–6636. doi: 10.4049/jimmunol.0904044
- Dombrowski Y., O’Hagan T., Dittmer M., et al. Regulatory T cells promote myelin regeneration in the central nervous system // Nat Neurosci. 2017. Vol. 20, N 5. P. 674–680. doi: 10.1038/nn.4528
- Takata K., Kinoshita M., Okuno T., et al. The lactic acid bacterium Pediococcus acidilactici suppresses autoimmune encephalomyelitis by inducing IL-10-producing regulatory T cells // PLoS One. 2011. Vol. 6, N 11. P. e27644. doi: 10.1371/journal.pone.0027644
- Carrier Y., Yuan J., Kuchroo V.K., Weiner H.L. Th3 cells in peripheral tolerance. I. Induction of Foxp3-positive regulatory T cells by Th3 cells derived from TGF-beta T cell-transgenic mice // J Immunol. 2007. Vol. 178, N 1. P. 179–185. doi: 10.4049/jimmunol.178.1.179
- Abdurasulova I.N., Matsulevich A.V., Tarasova E.A., et al. Enterococcus faecium L3 and glatiramer acetate ameliorate of experimental allergic encephalomyelitis (EAE) in rats by affecting different populations of immune cells // Benef Microbes. 2016. Vol. 7, N 5. P. 719–729. doi: 10.3920/BM2016.0018
- Brucklacher-Waldert V., Carr E.J., Linterman M.A., Veldhoen M. Cellular plasticity of CD4T cells in the intestine // Front Immunol. 2014. Vol. 5. P. 488. doi: 10.3389/fimmu.2014.00488
- Maceiras A.R., Fonseca V.R., Agua-Doce A., Graca L. T follicular regulatory cells in mice and men // Immunology. 2017. Vol. 152, N 1. P. 23–35. doi: 10.1111/imm.12774
- Воронина Е.В., Талаев В.Ю. Созревание фолликулярных Т-хелперов // Иммунология. 2018. Т. 39, № 4. C. 230–238. EDN: SCTFLO doi: 18821/0206-4952-2018-39-4-230-238
- Maynard C.L., Elson C.O., Hatton R.D., Weaver C.T. Reciprocal interactions of the intestinal microbiota and immune system // Nature. 2012. Vol. 489, N 7415. P. 231–241. doi: 10.1038/nature11551
- Artis D. Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut // Nat Rev Immunol. 2008. Vol. 8, N 6. P. 411–420. doi: 10.1038/nri2316
- Correa-Oliveira R., Fachi J.L., Vieira A., et al. Regulation of immune cell function by short-chain fatty acids // Clin Transl Immunol. 2016. Vol. 5, N 4. P. e73. doi: 10.1038/cti.2016.17
- Honda K., Littman D.R. The microbiota in adaptive immune homeostasis and disease // Nature. 2016. Vol. 535, N 7610. P. 75–84. doi: 10.1038/nature18848
- Walker A.W., Sanderson J.D., Churcher C., et al. High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease // BMC Microbiol. 2011. Vol. 11. P. 7. doi: 10.1186/1471-2180-11-7
- den Besten G., van Eunen K., Groen A.K., et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism // J Lipid Res. 2013. Vol. 54, N 9. P. 2325–2340. doi: 10.1194/jlr.R036012
- Hugenholtz F., Mullaney J.A., Kleerebezem M., et al. Modulation of the microbial fermentation in the gut by fermentable carbohydrates // Bioactive Carbohydr Dietary Fibre. 2013. Vol. 2, N 2. P. 133–142. doi: 10.1016/j.bcdf.2013.09.008
- Louis P., Flint H.J. Formation of propionate and butyrate by the human colonic microbiota // Environ Microbiol. 2017. Vol. 19, N 1. P. 29–41. doi: 10.1111/1462-2920.13589
- Venegas D.P., De la Fuente M.K., Landskron G. Short chain fatty acids (SCFAs)mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases // Front Immunol. 2019. Vol. 10. P. 277. doi: 10.3389/fimmu.2019.00277
- Morrison D.J., Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism // Gut Microbes. 2016. Vol. 7, N 3. P. 189–200. doi: 10.1080/19490976.2015.1134082
- Anand S., Kaur H., Mande S.S. Comparative in silico analysis of butyrate production pathways in gut commensals and pathogens // Front Microbiol. 2016. Vol. 7. P. 1945. doi: 10.3389/fmicb.2016.01945
- Vital M., Howe A.C., Tiedje J.M. Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data // mBio. 2014. Vol. 5, N 2. P. e00889. doi: 10.1128/mBio.00889-14
- Arpaia N., Campbell C., Fan X., et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation // Nature. 2013. Vol. 504, N 7480. P. 451–455. doi: 10.1038/nature12726
- Park J., Wang Q., Wu Q., et al. Bidirectional regulatory potentials of short-chain fatty acids and their G-protein-coupled receptors in autoimmune neuroinflammation // Sci Rep. 2019. Vol. 9, N 1. P. 8837. doi: 10.1038/s41598-019-45311-y
- Duscha A., Gisevius B., Hirschberg S., et al. Propionic acid shapes the multiple sclerosis disease course by an immunomodulatory mechanism // Cell. 2020. Vol. 180, N 6. P. 1067–1080.e16. doi: 10.1016/j.cell.2020.02.035
- Saresella M., Marventano I., Barone M., et al. Alterations in circulating fatty acid are associated with gut microbiota dysbiosis and inflammation in multiple sclerosis // Front Immunol. 2020. Vol. 11. P. 1390. doi: 10.3389/fimmu.2020.01390
- Takewaki D., Suda W., Sato W., et al. Alterations of the gut ecological and functional microenvironment in different stages of multiple sclerosis // Proc Natl Acad Sci USA. 2020. Vol. 117, N 36. P. 22402–22412. doi: 10.1073/pnas.2011703117
- Van den Abbeele P., Belzer C., Goossens M., et al. Butyrate-producing Clostridium cluster XIVa species specifically colonize mucins in an in vitro gut model // ISME J. 2013. Vol. 7, N 5. P. 949–961. doi: 10.1038/ismej.2012.158
- Kim C.H., Park J., Kim M. Gut microbiota-derived short-chain fatty acids, T cells, and inflammation // Immune Netw. 2014. Vol. 14, N 6. P. 277–288. doi: 10.4110/in.2014.14.6.277
- Round J.L., Mazmanian S.K. Inducible Foxp3+ regulatory Tcell development by a commensal bacterium of the intestinal microbiota // Proc Natl Acad Sci USA. 2010. Vol. 107, N 27. P. 12204–12209. doi: 10.1073/pnas.0909122107
- Olsson A., Gustavsen S., Nguyen T.D., et al. Serum short-chain fatty acids and associations with inflammation in newly diagnosed patients with multiple sclerosis and healthy controls // Front Immunol. 2021. Vol. 12. P. 661493. doi: 10.3389/fimmu.2021.661493
- Trend S., Leffler J., Jones A.P., et al. Associations of serum short-chain fatty acids with circulating immune cells and serum biomarkers in patients with multiple sclerosis // Sci Rep. 2021. Vol. 11, N 1. P. 5244. doi: 10.1038/s41598-021-84881-8
- Becker A., Abuazab M., Schwiertz A., et al. Short-chain fatty acids and intestinal inflammation in multiple sclerosis: modulation of female susceptibility by microbial products? // Auto Immun Highlights. 2021. Vol. 12, N 1. P. 7. doi: 10.1186/s13317-021-00149-1
- Viglietta V., Baecher-Allan C., Weiner H.L., Hafler D.A. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis // J Exp Med. 2004. Vol. 199, N 7. P. 971–979. doi: 10.1084/jem.20031579
- Haas J., Fritzsching B., Trübswetter P., et al. Prevalence of newly generated naive regulatory T cells (Treg) is critical for Treg suppressive function and determines Treg dysfunction in multiple sclerosis // J Immunol. 2007. Vol. 179, N 2. P. 1322–1330. doi: 10.4049/jimmunol.179.2.1322
- Venken K., Hellings N., Liblau R., Stinissen P. Disturbed regulatory T cell homeostasis in multiple sclerosis // Trends Mol Med. 2010. Vol. 16, N 2. P. 58–68. doi: 10.1016/j.molmed.2009.12.003
- Roager H.M., Licht T.R. Microbial tryptophan catabolites in health and disease // Nat Commun. 2018. Vol. 9. P. 3294. doi: 10.1038/s41467-018-05470-4
- Singh N.P., Singh U.P., Rouse M., et al. Dietary indoles suppress delayed-type hypersensitivity by inducing a switch from proinflammatory Th17 cells to anti-inflammatory regulatory T cells through regulation of micro-RNA // J Immunol. 2016. Vol. 196, N 3. P. 1108–1122. doi: 10.4049/jimmunol.1501727
- Beischlag T.V., Luis Morales J., Hollingshead B.D., Perdew G.H. The aryl hydrocarbon receptor complex and the control of gene expression // Crit Rev Eukaryot Gene Expr. 2008. Vol. 18, N 3. P. 207–250. doi: 10.1615/critreveukargeneexpr.v18.i3.20
- Lamas B., Natividad J.M., Sokol H. Aryl hydrocarbon receptor and intestinal immunity // Mucosal Immunol. 2018. Vol. 11, N 4. P. 1024–1038. doi: 10.1038/s41385-018-0019-2
- Cervantes-Barragan L., Chai J.N., Tianero M.D., et al. Lactobacillus reuteri induces gut intraepithelial CD4(+)CD8αα(+) T cells // Science. 2017. Vol. 357, N 6353. P. 806–810. doi: 10.1126/science.aah5825
- Rothhammer V., Borucki D.M., Sanchez M.I.G., et al. Dynamic regulation of serum aryl hydrocarbon receptor agonists in MS // Neurol Neuroimmunol Neuroinflamm. 2017. Vol. 4, N 4. P. e359. doi: 10.1212/NXI.0000000000000359
- Tsaktanis T., Beyer T., Nirschl L., et al. Aryl hydrocarbon receptor plasma agonist activity correlates with disease activity in progressive MS // Neurol Neuroimmunol Neuroinflam. 2021. Vol. 8, N 2. P. e933. doi: 10.1212/NXI.0000000000000933
- Quintana F.J., Basso A.S., Iglesias A.H., et al. Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor // Nature. 2008. Vol. 453, N 7191. P. 65–71. doi: 10.1038/nature06880
- Hanieh H., Alzahrani A. MicroRNA-132 suppresses autoimmune encephalomyelitis by inducing cholinergic anti-inflammation: A new Ahr-based exploration // Eur J Immunol. 2013. Vol. 43, N 10. P. 2771–2782. doi: 10.1002/eji.201343486
- Alzahrani A., Maged M., Hairul-Islam M.I., et al. Activation of aryl hydrocarbon receptor signaling by a novel agonist ameliorates autoimmune encephalomyelitis // PLoS One. 2019. Vol. 14, N 4. P. e0215981. doi: 10.1371/journal.pone.0215981
- Neamah W.H., Busbee P.B., Alghetaa H., et al. AhR activation leads to alterations in the gut microbiome with consequent effect on induction of myeloid derived suppressor cells in a CXCR2-dependent manner // Int J Mol Sci. 2020. Vol. 21, N 24. P. 9613. doi: 10.3390/ijms21249613
- Mangalam A., Murray J. Microbial monotherapy with Prevotella histicola for patients with multiple sclerosis // Expert Rev Neurother. 2019. Vol. 19, N 1. P. 45–53. doi: 10.1080/14737175.2019.1555473
- Hwang S.J., Hwang Y.J., Yun M.O., et al. Indoxyl 3-sulfate stimulates Th17 differentiation enhancing phosphorylation of c-Src and STAT3 to worsen experimental autoimmune encephalomyelitis // Toxicol Lett. 2013. Vol. 220, N 2. P. 109–117. doi: 10.1016/j.toxlet.2013.04.016
- Kishikawa T., Ogawa K., Motooka D. A metagenome-wide association study of gut microbiome in patients with multiple sclerosis revealed novel disease pathology // Front Cell Infect Microbiol. 2020. Vol. 10. P. 585973. doi: 10.3389/fcimb.2020.585973
- Jangi S., Gandhi R., Cox L.M., et al. Alterations of the human gut microbiome in multiple sclerosis // Nat Commun. 2016. Vol. 7. P. 12015. doi: 10.1038/ncomms12015
- Martins T.B., Rose J.W., Jaskowski T.D., et al. Analysis of proinflammatory and anti-inflammatory cytokine serum concentrations in patients with multiple sclerosis by using a multiplexed immunoassay // Am J Clin Pathol. 2011. Vol. 136, N 5. P. 696–704. doi: 10.1309/AJCP7UBK8IBVMVNR
- Nichols F.C., Housley W.J., O’Conor C.A., et al. Unique lipids from a common human bacterium represent a new class of Toll-like receptor 2 ligands capable of enhancing autoimmunity // Am J Pathol. 2009. Vol. 175, N 6. P. 2430–2438. doi: 10.2353/ajpath.2009.090544
- Farrokhi V., Nemati R., Nichols F.C., et al. Bacterial lipodipeptide, Lipid 654, is a microbiomeassociated biomarker for multiple sclerosis // Clin Trans Immunol. 2013. Vol. 2, N 11. P. e8. doi: 10.1038/cti.2013.11
- Yokote H., Miyake S., Croxford J.L., et al. NKT cell-dependent amelioration of a mouse model of multiple sclerosis by altering gut flora // Am J Pathol. 2008. Vol. 173, N 6. P. 1714–1723. doi: 10.2353/ajpath.2008.080622
- Haghikia A., Jorg S., Duscha A., et al. Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine // Immunity. 2015. Vol. 43, N 4. P. 817–829. doi: 10.1016/j.immuni.2015.09.007
- Lemus H.N., Warrington A.E., Rodriguez M. Multiple sclerosis: mechanisms of disease and strategies for myelin and axonal repair // Neurol Clin. 2018. Vol. 36, N 1. P. 1–11. doi: 10.1016/j.ncl.2017.08.002
- Ochoa-Repáraz J., Mielcarz D.W., Ditrio L.E., et al. Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis // J Immunol. 2009. Vol. 183, N 10. P. 6041–6050. doi: 10.4049/jimmunol.0900747
- Miterski B., Böhringer S., Klein W., et al. Inhibitors in the NFkappaB cascade comprise prime candidate genes predisposing to multiple sclerosis, especially in selected combinations // Genes Immun. 2002. Vol. 3, N 4. P. 211–219. doi: 10.1038/sj.gene.6363846
- Gilli F., Lindberg R.L.P., Velentino P., et al. Learning from nature: pregnancy changes the expression of inflammation-related genes in patients with multiple sclerosis // PLoS One. 2010. Vol. 5, N 1. P. e8962. doi: 10.1371/journal.pone.0008962
- Bang C., Weidenbach K., Gutsmann T., et al. The intestinal archaea Methanosphaera stadtmanae and Methanobrevibacter smithii activate human dendritic cells // PLoS One. 2014. Vol. 9, N 6. P. e99411. doi: 10.1371/journal.pone.0099411
- Samuel B.S., Hansen E.E., Manchester J.K., et al. Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut // Proc Natl Acad Sci USA. 2007. Vol. 104, N 25. P. 10643–10648. doi: 10.1073/pnas.0704189104
- Kusu T., Kayama H., Konoshita M., et al. Ecto-nucleoside triphosphate diphosphohydrolase 7 controls Th17 cell responses through regulation of luminal ATP in the small intestine // J Immunol. 2013. Vol. 190, N 2. P. 774–783. doi: 10.4049/jimmunol.1103067
- Kamada N., Seo S.-U., Chen G.Y., Núñez G. Role of the gut microbiota in immunity and inflammatory disease // Nat Rev Immunol. 2013. Vol. 13, N 5. P. 321–335. doi: 10.1038/nri3430
- Fujinami R.S., von Herrath M.G., Christen U., Whitton J.L. Molecular mimicry, bystander activation, or viral persistence: infections and autoimmune disease // Clin Microbiol Rev. 2006. Vol. 19, N 1. P. 80–94. doi: 10.1128/CMR.19.1.80-94.2006
- Vanderlugt C.J., Miller S.D. Epitope spreading // Curr Opin Immunol. 1996. Vol. 8, N 6. P. 831–836. doi: 10.1016/s0952-7915(96)80012-4
- Fujinami R.S., Oldstone M.B. Amino acid homology between the encephalitogenic site of myelin basic protein (MBP) and virus: mechanism for autoimmunity // Science. 1985. Vol. 230, N 4729. P. 1043–1045. doi: 10.1126/science.2414848
- Christen U., von Herrath M.G. Induction, acceleration or prevention of autoimmunity by molecular mimicry // Mol Immunol. 2004. Vol. 40, N 14–15. P. 1113–1120. doi: 10.1016/j.molimm.2003.11.014
- Tough D.F., Sun S., Sprent J. T cell stimulation in vivo by lipopolysaccharide (LPS) // J Exp Med. 1997. Vol. 185, N 12. P. 2089–2094. doi: 10.1084/jem.185.12.2089
- Infante-Duarte C., Kamradt T. Lipopeptides of Borrelia burgdorferi outer surface proteins induce Th1 phenotype development in ab TCR transgenic mice // Infect Immun. 1997. Vol. 65, N 10. P. 4094–4099. doi: 10.1128/iai.65.10.4094-4099.1997
- Miller S.D., Vanderlugt C.L., Begolka W.S., et al. Persistent infection with Theiler’s virus leads to CNS autoimmunity via epitope spreading // Nat Med. 1997. Vol. 3, N 10. P. 1133–1136. doi: 10.1038/nm1097-1133
- Kamradt T., Soloway P.D., Perkins D.L., Gefter M.L. Pertussis toxin prevents the induction of peripheral T cell anergy and enhances the T cell response to an encephalitogenic peptide of myelin basic protein // J Immunol. 1991. Vol. 147, N 10. P. 3296–3302. doi: 10.4049/jimmunol.147.10.3296
- White J., Herman A., Pullen A.M., et al. The Vb-specific superantigen staphylococcal enterotoxin B: stimulation of mature T cells and clonal deletion in neonatal mice // Cell. 1989. Vol. 56, N 1. P. 27–35. doi: 10.1016/0092-8674(89)90980-x
- Segal B.M., Klinman D.M., Shevach E.M. Microbial products induce autoimmune disease by an IL-12-dependent pathway // J Immunol. 1997. Vol. 158, N 11. P. 5087–5090. doi: 10.4049/jimmunol.158.11.5087
- Blander J.M., Torchinsky M.B., Campisi L. Revisiting the old link between infection and autoimmune disease with commensals and T helper 17 cells // Immunol Res. 2012. Vol. 54, N 1–3. P. 50–68. doi: 10.1007/s12026-012-8311-9
- Balakrishnan B., Taneja V. Microbial modulation of the gut microbiome for treating autoimmune diseases // Expert Rev Gastroenterol Hepatol. 2018. Vol. 12, N 10. P. 985–996. doi: 10.1080/17474124.2018.1517044
- Brocke S., Gaur A., Piercy C., et al. Induction of relapsing paralysis in experimental autoimmune encephalomyelitis by bacterial superantigen // Nature. 1993. Vol. 365, N 6447. P. 642–644. doi: 10.1038/365642a0
- Krishnamoorthy G., Holz A., Wekerle H. Experimental models of spontaneous autoimmune disease in the central nervous system // J Mol Med (Berl). 2007. Vol. 85, N 11. P. 1161–1173. doi: 10.1007/s00109-007-0218-x
- Banki K., Colombo E., Sia F., et al. Oligodendrocyte-specific expression and autoantigenicity of transaldolase in multiple sclerosis // J Exp Med. 1994. Vol. 180, N 5. P. 1649–1663. doi: 10.1084/jem.180.5.1649
- Anderson D.C., van Schooten W.C., Barry M.E., et al. A Mycobacterium leprae-specific human T cell epitope crossreactive with an HLA-DR2 peptide // Science. 1988. Vol. 242, N 4876. P. 259–261. doi: 10.1126/science.2459778
- Atkinson M.A., Bowman M.A., Campbell L., et al. Cellular immunity to a determinant common to glutamic acid decarboxylase and Coxsackie virus in insulin dependent diabetes // J Clin Invest. 1994. Vol. 94, N 5. P. 2125–2129. doi: 10.1172/JCI117567
- van Eden W., Holoshitz J., Nevo Z., et al. Arthritis induced by a T-lymphocyte clone that responds to Mycobacterium tuberculosis and to cartilage proteoglycans // Proc Natl Acad Sci USA. 1985. Vol. 82, N 15. P. 5117–5120. doi: 10.1073/pnas.82.15.5117
- Garza K.M., Tung K.S. Frequency of molecular mimicry among T cell peptides as the basis for autoimmune disease and autoantibody induction // J Immunol. 1995. Vol. 155, N 11. P. 5444–5448.
- Singh V.K., Yamaki K., Donoso L.A., Shinohara T. Molecular mimicry: yeast histone H3-induced experimental autoimmune uveitis // J Immunol. 1989. Vol. 142, N 5. P. 1512–1517. doi: 10.4049/jimmunol.142.5.1512
- Mangalam A.K., Yadav M., Yadav R. The emerging world of microbiome in autoimmune disorders: Opportunities and challenges // Indian J Rheumatol. 2021. Vol. 16, N 1. P. 57–72. doi: 10.4103/injr.injr_210_20
- Evavold B.D., Sloan-Lancaster J., Wilson K.J., et al. Specific T cell recognition of minimally homologous peptides: evidence for multiple endogenous ligands // Immunity. 1995. Vol. 2, N 5. P. 655–663. doi: 10.1016/1074-7613(95)90010-1
- Ausubel L.J., Kwan C.K., Sette A., et al. Complementary mutations in an antigenic peptide allow for crossreactivity of autoreactive T-cell clones // Proc Natl Acad Sci USA. 1996. Vol. 93, N 26. P. 15317–15322. doi: 10.1073/pnas.93.26.15317
- Martin R., Vergelli M., Gran B., et al. Predictable TCR antigen recognition based on peptide scans leads to the identification of agonist ligands with no sequence homology // J Immunol. 1998. Vol. 160, N 8. P. 3631–3636.
- Hausmann S., Martin M., Gauthier L., Wucherpfennig K.W. Structural features of autoreactive TCR that determine the degree of degeneracy in peptide recognition // J Immunol. 1999. Vol. 162, N 1. P. 338–344. doi: 10.4049/jimmunol.162.1.338
- Wucherpfennig K.W., Strominger J.L. Molecular mimicry in T-cell mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein // Cell. 1995. Vol. 80, N 5. P. 695–705. doi: 10.1016/0092-8674(95)90348-8
- Grogan J.L., Kramer A., Nogai A., et al. Cross-reactivity of myelin basic protein-specific T cells with multiple microbial peptides: experimental autoimmune encephalomyelitis induction in TCR transgenic mice // J Immunol. 1999. Vol. 163, N 7. P. 3764–3770. doi: 10.4049/jimmunol.163.7.3764
- Parry S.L., Hall F.C., Olson J., et al. Autoreactivity versus autoaggression: a different perspective on human autoantigens // Curr Opin Immunol. 1998. Vol. 10, N 6. P. 663–668. doi: 10.1016/s0952-7915(98)80086-1
- Gautam A.M., Liblau R., Chelvanayagam G., et al. A viral peptide with limited homology to a self peptide can induce clinical signs of experimental autoimmune encephalomyelitis // J Immunol. 1998. Vol. 161, N 1. P. 60–64. doi: 10.4049/jimmunol.161.1.60
- Gautam A.M., Pearson C.I., Smilek D.E., et al. A polyalanine peptide with only five native myelin basic protein residues induces autoimmune encephalomyelitis // J Exp Med. 1992. Vol. 176, N 2. P. 605–609. doi: 10.1084/jem.176.2.605
- Ufret-Vincenty R.L., Quigley L., Tresser N., et al. In vivo survival of viral antigenspecific T cells that induce experimental autoimmune encephalomyelitis // J Exp Med. 1998. Vol. 188, N 9. P. 1725–1738. doi: 10.1084/jem.188.9.1725
- Lerner A., Aminov R., Matthias T. Dysbiosis may trigger autoimmune diseases via inappropriate post-translational modification of host proteins // Front Microbiol. 2016. Vol. 5, N 7. P. 84. doi: 10.3389/fmicb.2016.00084
- Root-Bernstein R.S., Westall F.C. Serotonin binding sites. II. Muramyl dipeptide binds serotonin binding sites on MBP, LHRH, and MSH-ACTH 4-10 // Brain Res Bull. 1990. Vol. 25, N 6. P. 827–841. doi: 10.1016/0361-9230(90)90178-3
- Westall F.C., Root-Bernstein R.S. An explanation of prevention and suppression of EAE // Mol Immunol. 1983. Vol. 20, N 2. P. 169–177. doi: 10.1016/0161-5890(83)90128-1
- Duc D., Vigne S., Bernier-Latmani J., et al. Disrupting myelin-specific Th17 cell gut homing confers protection in an adoptive transfer experimental autoimmune encephalomyelitis // Cell Rep. 2019. Vol. 29, N 2. P. 378–390. doi: 10.1016/j.celrep.2019.09.002
- Isailovic N., Daigo K., Mantovani A., Selmi C. Interleukin-17 and innate immunity in infections and chronic inflammation // J Autoimmun. 2015. Vol. 60. P. 1–11. doi: 10.1016/j.jaut.2015.04.006
- Fox A., Fox K., Christensson B., et al. Absolute identification of muramic acid, at trace levels, in human septic synovial fluids in vivo and absence in aseptic fluids // Infect Immun. 1996. Vol. 64, N 9. P. 3911–3915. doi: 10.1128/iai.64.9.3911-3915.1996
- Blais Lecours P., Duchaine C., Taillefer M., et al. Immunogenic properties of archaeal species found in bioaerosols // PLoS One. 2011. Vol. 6, N 8. P. e23326. doi: 10.1371/journal.pone.0023326
- Duchmann R., May E., Heike M., et al. T cell specificity and cross reactivity towards enterobacteria, bacteroides, bifidobacterium, and antigens from resident intestinal flora in humans // Gut. 1999. Vol. 44, N 6. P. 812–818. doi: 10.1136/gut.44.6.812
- McCoy K.D., Burkhard R., Geuking M.B. The microbiome and immune memory formation // Immunol Cell Biol. 2019. Vol. 97, N 7. P. 625–635. doi: 10.1111/imcb.12273
- Jahnke U., Fischer E.H., Alvord E.C.J. Sequence homology between certain viral proteins and proteins related to encephalomyelitis and neuritis // Science. 1985. Vol. 229, N 4710. P. 282–284. doi: 10.1126/science.2409602
- Marietta E.V., Murray J.A., Luckey D.H., et al. Human gut-derived Prevotella histicola suppresses inflammatory arthritis in humanized mice // Arthritis Rheumatol. 2016. Vol. 68, N 12. P. 2878–2888. doi: 10.1002/art.39785
- Yadav S.K., Boppana S., Ito N., et al. Gut dysbiosis breaks immunological tolerance toward the central nervous system during young adulthood // Proc Natl Acad Sci USA. 2017. Vol. 114, N 44. P. E9318–E9327. doi: 10.1073/pnas.1615715114
- Mosca A., Leclerc M., Hugot J.P. Gut microbiota diversity and human diseases: should we reintroduce key predators in our ecosystem? // Front Microbiol. 2016. Vol. 7. P. 455. doi: 10.3389/fmicb.2016.00455
- Qin J., Li R., Raes J., et al. A human gut microbial gene catalog established by metagenomic sequencing // Nature. 2010. Vol. 464, N 7285. P. 59–65. doi: 10.1038/nature08821
- Bergstrom J.H., Birchenough G.M., Katona G., et al. Gram-positive bacteria are held at a distance in the colon mucus by the lectin-like protein ZG16 // Proc Natl Acad Sci USA. 2016. Vol. 113, N 48. P. 13833–13838. doi: 10.1073/pnas.1611400113
- Donaldson G.P., Lee S.M., Mazmanian S.K. Gut biogeography of the bacterial microbiota // Nat Rev Microbiol. 2016. Vol. 14, N 1. P. 20–32. doi: 10.1038/nrmicro3552
- Derrien M., van Passel M.W., van de Bovenkamp J.H., et al. Mucin-bacterial interactions in the human oral cavity and digestive tract // Gut Microbes. 2010. Vol. 1, N 4. P. 254–268. doi: 10.4161/gmic.1.4.12778
- Yu Y., Sitaraman S., Gewirtz A.T. Intestinal epithelial cell regulation of mucosal inflammation // Immunol Res. 2004. Vol. 29, N 1–3. P. 55–68. doi: 10.1385/IR:29:1-3:055
- Cerutti F., Rescigno M. The biology of intestinal immunoglobulin A responses // Immunity. 2008. Vol. 28, N 6. P. 740–750. doi: 10.1016/j.immuni.2008.05.001
- Wells J.M., Loonen L.M., Karczewski J.M. The role of innate signaling in the homeostasis of tolerance and immunity in the intestine // Int J Med Microbiol. 2010. Vol. 300, N 1. P. 41–48. doi: 10.1016/j.ijmm.2009.08.008
- Wells J.M., Rossi O., Meijerink M., van Baarlen P. Epithelial crosstalk at the microbiota-mucosal interface // Proc Natl Acad Sci USA. 2011. Vol. 108 Suppl 1, N Suppl 1. P. 4607–4614. doi: 10.1073/pnas.1000092107
- Harris G., KuoLee R., Chen W.X. Role of toll-like receptors in health and diseases of gastrointestinal tract // World J Gastroenterol. 2006. Vol. 12, N 14. P. 2149–2160. doi: 10.3748/wjg.v12.i14.2149
- Günzel D., Yu A.S. Claudins and the modulation of tight junction permeability // Physiol Rev. 2013. Vol. 93, N 2. P. 525–569. doi: 10.1152/physrev.00019.2012
- Sato T., van Es J.H., Snippert H.J., et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts // Nature. 2011. Vol. 469, N 7330. P. 415–418. doi: 10.1038/nature09637
- Wells J.M., Brummer R.J., Derrien M., et al. Homeostasis of the gut barrier and potential biomarkers // Am J Physiol Gastrointest Liver Physiol. 2017. Vol. 312, N 3. P. G171–G193. doi: 10.1152/ajpgi.00048.2015
- Everard A., Belzer C., Geurts L., et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity // Proc Natl Acad Sci USA. 2013. Vol. 110, N 22. P. 9066–9071. doi: 10.1073/pnas.1219451110
- Peng L., Li Z.R., Green R.S., et al. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers // J Nutr. 2009. Vol. 139, N 9. P. 1619–1625. doi: 10.3945/jn.109.104638
- Plovier H., Everard A., Druart C., et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice // Nat Med. 2017. Vol. 23, N 1. P. 107–113. doi: 10.1038/nm.4236
- Kang C.S., Ban M., Choi E.J., et al. Extracellular vesicles derived from gut microbiota, especially Akkermansia muciniphila, protect the progression of dextran sulfate sodiuminduced colitis // PLoS One. 2013. Vol. 8, N 10. P. e76520. doi: 10.1371/journal.pone.0076520
- Mo Q., Liu T., Fu A., et al. Novel gut microbiota patterns involved in the attenuation of dextran sodium sulfate-induced mouse colitis mediated by glycerol monolaurate via inducing anti-inflammatory responses // mBio. 2021. Vol. 12, N 5. P. e02148–21. doi: 10.1128/mBio.02148-21
- Li J., Li Y., Zhou Y., et al. Actinomyces and alimentary tract diseases: a review of its biological functions and pathology // Biomed Res Int. 2018. Vol. 2018. P. 3820215. doi: 10.1155/2018/3820215
- Sellon R.K., Tonkonogy S., Schultz M., et al. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice // Infect Immun. 1998. Vol. 66, N 11. P. 5224–5231. doi: 10.1128/IAI.66.11.5224-5231.1998
- Winter S.E., Winter M.G., Xavier M.N., et al. Host-derived nitrate boosts growth of E. coli in the inflamed gut // Science. 2013. Vol. 339, N 6120. P. 708–711. doi: 10.1126/science.1232467
- Baumgart M., Dogan B., Rishniw M., et al. Culture independent analysis of ileal mucosa reveals a selective increase in invasive Escherichia coli of novel phylogeny relative to depletion of Clostridiales in Crohn’s disease involving the ileum // ISME J. 2007. Vol. 1, N 5. P. 403–418. doi: 10.1038/ismej.2007.52
- Williams J.M., Duckworth C.A., Burkitt M.D., et al. Epithelial cell shedding and barrier function: A matter of life and death at the small intestinal villus tip // Vet Pathol. 2015. Vol. 52, N 3. P. 445–455. doi: 10.1177/0300985814559404
- Bertin Y., Girardeau J.P., Chaucheyras-Durand F., et al. Enterohaemorrhagic Escherichia coli gains a competitive advantage by using ethanolamine as a nitrogen source in the bovine intestinal content // Environ Microbiol. 2011. Vol. 13, N 2. P. 365–377. doi: 10.1111/j.1462-2920.2010.02334.x
- Garsin D.A. Ethanolamine utilization in bacterial pathogens: roles and regulation // Nat Rev Microbiol. 2010. Vol. 8, N 4. P. 290–295. doi: 10.1038/nrmicro2334
- Olsen I., Nichols F.C. Are sphingolipids and serine dipeptide lipids underestimated virulence factors of Porphyromonas gingivalis? // Infect Immun. 2018. Vol. 86, N 7. P. e00035–18. doi: 10.1128/IAI.00035-18
- Kim Y.J., Kang H.Y., Han Y., et al. A bloodstream infection by Ruminococcus gnavus in a patient with a gall bladder perforation // Anaerobe. 2017. Vol. 47. P. 129–131. doi: 10.1016/j.anaerobe.2017.05.007
- Wang F., Graham W.V., Wang Y., et al. Interferon-gamma and tumor necrosis factor-alpha synergize to induce intestinal epithelial barrier dysfunction by up-regulating myosin light chain kinase expression // Am J Pathol. 2005. Vol. 166, N 2. P. 409–419. doi: 10.2353/ajpath.2006.060681
- Marrie R.A., Yu B.N., Leung S., et al. The utility of administrative data for surveillance of comorbidity in multiple sclerosis: a validation study // Neuroepidemiology. 2013. Vol. 40, N 2. P. 85–92. doi: 10.1159/000343188
- Koenig J., Cote N. Equine gastrointestinal motility – ileus and pharmacological modification // Can Vet J. 2006. Vol. 47, N 6. P. 551–559.
- Christakos S. Recent advances in our understanding of 1,25-dihydroxyvitamin D(3) regulation of intestinal calcium absorption // Arch Biochem Biophys. 2012. Vol. 523, N 1. P. 73–76. doi: 10.1016/j.abb.2011.12.020
- Somlyo A.P., Somlyo A.V. Signal transduction and regulation in smooth muscle // Nature. 1994. Vol. 372, N 6503. P. 231–236. doi: 10.1038/372231a0
- König J., Wells J., Cani P.D., et al. Human intestinal barrier function in health and disease // Clin Transl Gastroenterol. 2016. Vol. 7, N 10. P. e196. doi: 10.1038/ctg.2016.54
- Kawamoto S., Maruya M., Kato L.M., et al. Foxp3(+) T cells regulate immunoglobulin a selection and facilitate diversification of bacterial species responsible for immune homeostasis // Immunity. 2014. Vol. 41, N 1. P. 152–165. doi: 10.1016/j.immuni.2014.05.016
- Nakajima A., Vogelzang A., Maruya M., et al. IgA regulates the composition and metabolic function of gut microbiota by promoting symbiosis between bacteria // J Exp Med. 2018. Vol. 215, N 8. P. 2019–2034. doi: 10.1084/jem.20180427
- Shulzhenko N., Morgun A., Hsiao W., et al. Crosstalk between B lymphocytes, microbiota and the intestinal epithelium governs immunity versus metabolism in the gut // Nat Med. 2011. Vol. 17, N 12. P. 1585–1593. doi: 10.1038/nm.2505
- Rojas O.L., Pröbstel A.K., Porfilio E.A., et al. Recirculating intestinal IgA-producing cells regulate neuroinflammation via IL-10 // Cell. 2019. Vol. 176, N 3. P. 610–624.e18. doi: 10.1016/j.cell.2018.11.035
Дополнительные файлы
