Application of herbal medicinal raw material in complex treatment COVID-19

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

COVID-19 is an acute respiratory viral infection caused by the coronavirus SARS-CoV-2 (2019-nCoV). Currently, approaches to coronavirus infusion are mostly confined to pathogenetic and symptomatic therapy. New treatment strategies include research to find new molecul candidates for COVID-19 treatment, as well as the repositioning of existing medicinal products. Recently, medicinal plants have been actively studied as potential candidates for COVID-19 treatment, showing high levels of antiviral activity and anti-inflammatory activity. This review focuses on medicinal plants whose biologically active substances are used or can be used for the treatment and the supportive therapy for a new coronavirus infection.

About the authors

Alyona S. Khaliullina

Kazan Federal University

Author for correspondence.
Email: anela_90@mail.ru
ORCID iD: 0000-0002-9914-5554
SPIN-code: 9050-6940
Scopus Author ID: 57201829240
ResearcherId: D-4833-2019

Cand. Sci. (Pharm.), Assistant Professor

Russian Federation, Kazan

Dilyara Kh. Shakirova

Kazan Federal University

Email: dhabilevna@mail.ru
ORCID iD: 0000-0002-7840-1985
SPIN-code: 1271-6870

Dr. Sci. (Pharm.), Professor, Head of the Department

Russian Federation, Kazan

Leysan A. Aliullina

Kazan Federal University

Email: aliullina98@mail.ru
ORCID iD: 0000-0002-6741-8394
SPIN-code: 2641-1158

Assistant Lecturer

Russian Federation, Kazan

Olga V. Morgatskaya

Kazan Federal University

Email: ol-morgatskaya@yandex.ru

student

Russian Federation, Kazan

References

  1. Rai P, Kumar BK, Deekshit VK, et al. Detection technologies and recent developments in the diagnosis of COVID-19 infection. Appl Microbiol Biotechnol. 2021;105(2):441–455. doi: 10.1007/s00253-020-11061-5
  2. Majumder J, Minko T. Recent developments on therapeutic and diagnostic approaches for COVID-19. AAPS J. 2021;23(1):14. doi: 10.1208/s12248-020-00532-2
  3. Ministerstvo zdravookhraneniya Rossiiskoi Federatsii. Vremennye metodicheskie rekomendatsii: Profilaktika, diagnostika i lechenie novoi koronavirusnoi infektsii (COVID-19). Versiya 15 (22.02.2022). (In Russ.)
  4. Rehman SU, Rehman SU, Yoo HH. COVID-19 challenges and its therapeutics. Biomed Phamacother. 2021;142:112015. doi: 10.1016/j.biopha.2021.112015
  5. Muthumanickam S, Kamaladevi A, Boomi P, et al. Indian ethnomedicinal phytochemicals as promising inhibitors of RNA-binding domain of SARS-CoV-2 nucleocapsid phosphoprotein: an in silico study. Front Mol Biosci. 2021;8:637329. doi: 10.3389/fmolb.2021.637329
  6. Alhazmi HA, Najmi A, Javed SA, et al. Medicinal plants and isolated molecules demonstrating immunomodulation activity as potential alternative therapies for viral diseases including COVID-19. Front Immunol. 2021;12:637553. doi: 10.3389/fimmu.2021.637553
  7. Sreepadmanabh M, Sahu AK, Chande A. COVID-19: Advances in diagnostic tools, treatment strategies, and vaccine development. J Biosci. 2020;45(1):148. doi: 10.1007/s12038-020-00114-6
  8. Ullah S, Munir B, Al-Sehemi AG, et al. Identification of phytochemical inhibitors of SARS-CoV-2 protease 3CLpro from selected medicinal plants as per molecular docking, bond energies and amino acid binding energies. Saudi J Biol Sci. 2022;29(6):103274. doi: 10.1016/j.sjbs.2022.03.024
  9. Qin H, Zhao A. Mesenchymal stem cell therapy for acute respiratory distress syndrome: from basic to clinics. Protein Cell. 2020;11(10):707–722. doi: 10.1007/s13238-020-00738-2
  10. Li Z, Niu S, Guo B, et al. Stem cell therapy for COVID-19, ARDS and pulmonary fibrosis. Cell Prolif. 2020;53(12):e12939. doi: 10.1111/cpr.12939
  11. Pollard CA, Morran MP, Nestor-Kalinoski AL. The COVID-19 pandemic: a global health crisis. Physiol Genomics. 2020;52(11):549–557. doi: 10.1152/physiolgenomics.00089.2020
  12. Chaachouay N, Douira A, Zidane L. COVID-19, prevention and treatment with herbal medicine in the herbal markets of Salé Prefecture, North-Western Morocco. Eur J Integr Med. 2021;42:101285. doi: 10.1016/j.eujim.2021.101285
  13. Chinsembu KC. Coronaviruses and nature’s pharmacy for the relief of coronavirus disease 2019. Rev Bras Farmacogn. 2020;30(5):603–621. doi: 10.1007/s43450-020-00104-7
  14. Adhikari B, Marasini BP, Rayamajhee B, et al. Potential roles of medicinal plants for the treatment of viral diseases focusing on COVID-19: A review. Phytother Res. 2021;35(3):1298–1312. doi: 10.1002/ptr.6893
  15. Khan T, Khan MA, Mashwani ZU, et al. Therapeutic potential of medicinal plants against COVID-19: The role of antiviral medicinal metabolites. Biocatal Agric Biotechnol. 2021;31:101890. DOI: 0.1016/j.bcab.2020.101890
  16. Khan SA, Al-Balushi K. Combating COVID-19: The role of drug repurposing and medicinal plants. J Infect Public Health. 2021;14(4):495–503. doi: 10.1016/j.jiph.2020.10.012
  17. Jalali A, Dabaghian F, Akbrialiabad H, et al. A pharmacology-based comprehensive review on medicinal plants and phytoactive constituents possibly effective in the management of COVID-19. Phytother Res. 2021;35(4):1925–1938. doi: 10.1002/ptr.6936
  18. Anand AV, Balamuralikrishnan B, Kaviya M, et al. Medicinal plants, phytochemicals, and herbs to combat viral pathogens including SARS-CoV-2. Molecules. 2021;26(6):1775. doi: 10.3390/molecules26061775
  19. Maideen NMP. Prophetic medicine — Nigella Sativa (black cumin seeds) — potential herb for COVID-19? J Pharmacopuncture. 2020;23(2):62–70. doi: 10.3831/KPI.2020.23.010
  20. Imran M, Khan SA, Abida, et al. Nigella sativa L. and COVID-19: A glance at the anti-COVID-19 chemical constituents, clinical trials, inventions, and patent literature. Molecules. 2022;27(9):2750. doi: 10.3390/molecules27092750
  21. Shirvani H, Rostamkhani F, Arabzadeh E, et al. Potential role of Nigella sativa supplementation with physical activity in prophylaxis and treatment of COVID-19: a contemporary review. Sport Sci Health. 2021;17(4):849–854. doi: 10.1007/s11332-021-00787-y
  22. Elebeedy D, Elkhatib WF, Kandeil A, et al. Anti-SARS-CoV-2 activities of tanshinone IIA, carnosic acid, rosmarinic acid, salvianolic acid, baicalein, and glycyrrhetinic acid between computational and in vitro insights. RSC Adv. 2021;11(47):29267–29286. doi: 10.1039/d1ra05268c
  23. Li J, Xu D, Wang L, et al. Glycyrrhizic Acid Inhibits SARS-CoV-2 infection by blocking spike protein-mediated cell attachment. Molecules. 2021;26(20):6090. doi: 10.3390/molecules26206090
  24. Li R, Wu K, Li Y, et al. Integrative pharmacological mechanism of vitamin C combined with glycyrrhizic acid against COVID-19: findings of bioinformatics analyses. Brief Bioinform. 2021;22(2):1161–1174. doi: 10.1093/bib/bbaa141
  25. Demeke CA, Woldeyohanins AE, Kifle ZD. Herbal medicine use for the management of COVID-19: a review article. Metabol Open. 2021;12:100141. doi: 10.1016/j.metop.2021.100141
  26. Zhong S, Guozhong H, Ninghao H, et al. Glycyrrhizic Acid: a natural plant ingredient as a drug candidate to treat COVID-19. Front Pharmacol. 2021;12:707205. doi: 10.3389/fphar.2021.707205
  27. Yu S, Zhu Y, Xu J, et al. Glycyrrhizic acid exerts inhibitory activity against the spike protein of SARS-CoV-2. Phytomedicine. 2021;85:153364. doi: 10.1016/j.phymed.2020.153364
  28. Van de Sand L, Bormann M, Alt M, et al. Glycyrrhizin effectively inhibits SARS-CoV-2 replication by inhibiting the viral main protease. Viruses. 2021;13(4):609. doi: 10.3390/v13040609
  29. Al-Kamel H, Grundmann O. Glycyrrhizin as a potential treatment for the novel coronavirus (COVID-19). Mini Rev Med Chem. 2021;21(16):2204–2208. doi: 10.2174/1389557521666210210160237
  30. Zheng W, Huang X, Lai Y, et al. Glycyrrhizic Acid for COVID-19: findings of targeting pivotal inflammatory pathways triggered by SARS-CoV-2. Front Pharmacol. 2021;12:631206. doi: 10.3389/fphar.2021.631206
  31. Lucas K, Fröhlich-Nowoisky J, Oppitz N, Ackermann M. Cinnamon and Hop extracts as potential immunomodulators for severe COVID-19 cases. Front Plant Sci. 2021;12:589783. doi: 10.3389/fpls.2021.589783
  32. Lin Y, Zang R, Ma Y, et al. Xanthohumol is a potent pan-inhibitor of coronaviruses targeting main protease. Int J Mol Sci. 2021;22(22):12134. doi: 10.3390/ijms222212134
  33. Teisseyre A, Chmielarz M, Uryga A, et al. Co-application of statin and flavonoids as an effective strategy to reduce the activity of voltage-gated potassium channels kv1.3 and induce apoptosis in human leukemic T cell line jurkat. Molecules. 2022;27(10):3227. doi: 10.3390/molecules27103227
  34. Buckett L, Schönberger S, Spindler V, et al. Synthesis of human phase I and phase II metabolites of hop (Humulus lupulus) prenylated flavonoids. Metabolites. 2022;12(4):345. doi: 10.3390/metabo12040345
  35. Xiong Y, Zhu GH, Wang HN, et al. Discovery of naturally occurring inhibitors against SARS-CoV-2 3CLpro from Ginkgo biloba leaves via large-scale screening. Fitoterapia. 2021;152:104909. doi: 10.1016/j.fitote.2021.104909
  36. Zrig A. The effect of phytocompounds of medicinal plants on coronavirus (2019-NCOV) infection. Pharm Chem J. 2022;55(10):1080–1084. doi: 10.1007/s11094-021-02540-8
  37. Silva ER, de Carvalho FO, Teixeira L, et al. Pharmacological effects of Carvacrol in in vitro studies: a review. Curr Pharm Des. 2018;24(29):3454–3465. doi: 10.2174/1381612824666181003123400
  38. Mieres-Castro D, Ahmar S, Shabbir R, Mora-Poblete F. Antiviral activities of Eucalyptus Essential Oils: Their effectiveness as therapeutic targets against human viruses. Pharmaceuticals (Basel). 2021;14(12):1210. doi: 10.3390/ph14121210
  39. Panikar S, Shoba G, Arun M, et al. Essential oils as an effective alternative for the treatment of COVID-19: Molecular interaction analysis of protease (Mpro) with pharmacokinetics and toxicological properties. J Infect Public Health. 2021;14(5):601–610. doi: 10.1016/j.jiph.2020.12.037
  40. Villena-Tejada M, Vera-Ferchau I, Cardona-Rivero A, et al. Use of medicinal plants for COVID-19 prevention and respiratory symptom treatment during the pandemic in Cusco, Peru: a cross-sectional survey. PLoS One. 2021;16(9):e0257165. doi: 10.1371/journal.pone.0257165
  41. Song JW, Long JY, Xie L, et al. Applications, phytochemistry, pharmacological effects, pharmacokinetics, toxicity of Scutellaria baicalensis Georgi and its probably potential therapeutic effects on COVID-19: a review. Chin Med. 2020;15:102. doi: 10.1186/s13020-020-00384-0
  42. Liu H, Ye F, Sun Q, et al. Scutellaria baicalensis extract and baicalein inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro. J Enzyme Inhib Med Chem. 2021;36(1):497–503. doi: 10.1080/14756366.2021.1873977
  43. Boozari M, Hosseinzadeh H. Natural products for COVID-19 prevention and treatment regarding to previous coronavirus infections and novel studies. Phytother Res. 2021;35(2):864–876. doi: 10.1002/ptr.6873
  44. Speciale A, Muscarà C, Molonia MS, et al. Silibinin as potential tool against SARS-Cov-2: In silico spike receptor-binding domain and main protease molecular docking analysis, and in vitro endothelial protective effects. Phytother Res. 2021;35(8):4616–4625. doi: 10.1002/ptr.7107
  45. Hanafy NAN, El-Kemary MA. Silymarin/curcumin loaded albumin nanoparticles coated by chitosan as muco-inhalable delivery system observing anti-inflammatory and anti COVID-19 characterizations in oleic acid triggered lung injury and in vitro COVID-19 experiment. Int J Biol Macromol. 2022;198:101–110. doi: 10.1016/j.ijbiomac.2021.12.073
  46. Chinsembu KC. Coronaviruses and nature’s pharmacy for the relief of coronavirus disease 2019. Rev Bras Farmacogn. 2020;30(5):603–621. doi: 10.1007/s43450-020-00104-7
  47. Xu H, Li J, Song S, et al. Effective inhibition of coronavirus replication by Polygonum cuspidatum. Front Biosci (Landmark Ed). 2021;26(10):789–798. doi: 10.52586/4988
  48. Lewis DSM, Ho J, Wills S, et al. Aloin isoforms (A and B) selectively inhibits proteolytic and deubiquitinating activity of papain like protease (PLpro) of SARS-CoV-2 in vitro. Sci Rep. 2022;12(1):2145. doi: 10.1038/s41598-022-06104-y
  49. Kandeel M, Kitade Y, Almubarak A. Repurposing FDA-approved phytomedicines, natural products, antivirals and cell protectives against SARS-CoV-2 (COVID-19) RNA-dependent RNA polymerase. Peer J. 2020;8:e10480. doi: 10.7717/peerj.10480
  50. Yalçın S, Yalçınkaya S, Ercan F. Determination of potential drug candidate molecules of the hypericum perforatum for COVID-19 treatment. Cur Pharmacol Rep. 2021;7(2):42–48. doi: 10.1007/s40495-021-00254-9
  51. Mohamed FF, Anhlan D, Schöfbänker M, et al. Hypericum perforatum and its ingredients hypericin and pseudohypericin demonstrate an antiviral activity against SARS-CoV-2. Pharmaceuticals (Basel). 2022;15(5):530. doi: 10.3390/ph15050530
  52. Khubber S, Hashemifesharaki R, Mohammadi M, et al. Garlic (Allium sativum L.): a potential unique therapeutic food rich in organosulfur and flavonoid compounds to fight with COVID-19. Nutr J. 2020;19(1):124. doi: 10.1186/s12937-020-00643-8
  53. Keflie TS, Biesalski HK. Micronutrients and bioactive substances: Their potential roles in combating COVID-19. Nutrition. 2021;84:111103. doi: 10.1016/j.nut.2020.111103

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure. Medicinal plants and their secondary metabolites with a high level of antiviral activity against SARS-CoV-2 (the figure is compiled by the authors on various sources cited in the article)

Download (412KB)
3. Table 1: Nigella sativa L.

Download (11KB)
4. Table 1: Salvia spp. Rosmarinic acid

Download (35KB)
5. Table 1: Salvia spp. Tanshinon

Download (22KB)
6. Table 1: Glycyrrhiza spp.

Download (60KB)
7. Table 1: Humulus lupulus L.

Download (28KB)
8. Table 1: Thymus serpyllum L. Thymol

Download (9KB)
9. Table 1: Thymus serpyllum L. Carvacrol

Download (9KB)
10. Table 1: Ginkgo biloba L. Bilobetin

Download (48KB)
11. Table 1: Ginkgo biloba L. Amentoflavone

Download (46KB)
12. Table 1. Mentha spp.

Download (8KB)
13. Table 1: Eucalyptus spp.

Download (9KB)
14. Table 1: Scutellaria galericulata L.

Download (39KB)
15. Table 1: Silybum marianum L.

Download (40KB)
16. Table 1: Polygonum cuspidatum Siebold & Zucc., Rheum palmatum L. var. tanguticum Maxim. ex Balf.

Download (22KB)
17. Table 1: Aloe arborescens Mill.

Download (34KB)
18. Table 1: Hypericum perforatum L.

Download (42KB)
19. Table 1: Allium sativum L.

Download (13KB)

Copyright (c) 2022 Eco-Vector



Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).